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A Retinal Vessel Segmentation Network Fusing Cross-Modal
Features

Xiaosheng YU†a), Jianning CHI†, Nonmembers, and Ming XU††, Member

SUMMARY Accurate segmentation of fundus vessel structure can ef-
fectively assist doctors in diagnosing eye diseases. In this paper, we propose
a fundus blood vessel segmentation network combined with cross-modal
features and verify our method on the public data set OCTA-500. Experi-
mental results show that our method has high accuracy and robustness.
key words: vessel segmentation, CNN, feature fusion, cross-modal

1. Introduction

Eye diseases are often harmful to human health. Common
eye diseases include glaucoma, cataracts, and macular de-
generation. Early detection and diagnosis are important for
the treatment of eye diseases [1]. The retinal vessel system
is an important structure of the fundus, and its morphologi-
cal changes can infer the severity of many neurological and
hematological diseases and help to understand disease pro-
gression and evaluate treatment effects [2]. Currently, there
are two main types of retinal vascular imaging techniques:
color fundus imaging and optical coherence laminar angiog-
raphy. Figure 1(a) shows the fundus image generated by the
color fundus imaging technique, inwhich the vessel structure
is less obvious and it is difficult to present richer vascular
information.

OCTA is a high-resolution, non-invasive 3D imaging
technology for living organisms, which can capture 3D ves-
sel information of the retina at micrometer resolution using
coherent light in clinical ophthalmology [3], [4], as shown
in Fig. 1(b). Its vertical projection map is shown in Fig. 1(c).
Compared with color fundus imaging technology, OCTA
technology can capture more abundant fundus blood ves-
sel information, and has become a major detection tool for
fundus blood vessel structure.

Traditionally, vessel markings are mainly done by med-
ical practitioners. However, manual drawing of vessel masks
is time-consuming and laborious, and susceptible to personal
experience [5]. Therefore, using computer vision technol-
ogy to accurately segment retinal vessels to assist doctors in
diagnosing related diseases has become an important topic.

Traditional fundus vessel segmentationmethodsmainly
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Fig. 1 Fundus images generated by different retinal imaging techniques.
(a) Retinal color images; (b) 3DOCTA volume image; (c) OCTA projection
map.

include adaptive threshold [6]–[8], edge detection [9], [10],
andmatching filtering [11]–[13]. The structure of the fundus
image is complicated and fuzzy, so the traditional segmen-
tation algorithm has low segmentation accuracy and poor
adaptability. In recent years, with the development of the
field of artificial intelligence, more and more researchers use
deep learning methods to segment blood vessels.

Compared with traditional methods, the method based
on convolutional neural network (CNN) has been success-
fully applied in the field of medical segmentation because
of its strong feature extraction ability. Classic CNN models
include Unet [14], FCN [15], and ResNet [16]. On this basis,
researchers further improved the classical network model to
improve the accuracy and robustness of the vessel segmen-
tation task. Mou et al. [17] proposed the CS-Net, which
takes Unet as the basic structure and adds a spatial attention
module and a channel attention module for extracting vessel
structures in OCTA projection maps. Li et al. [18] pro-
posed an image projection network (IPN), which combined
with rich vessel information provided by 3D OCTA data
and used continuous projection learning modules to output
vessel structure 2D prediction results. Li et al. [19] further
improved IPN and proposed IPN-V2, which enhanced the
horizontal direction perception of the original network. Al-
though CNN-based methods have the strong feature extrac-
tion ability, the segmentation results of retinal blood vessel
walls and small blood vessels are still blurred or lost due to
the low signal-to-noise ratio of OCTA images and the limited
field of view of the CNN module.

To solve the above problems, in order to make full use
of 3D OCTA volume data and 2D vascular projection map
provided by dataset OCTA-500, we proposed an end-to-end
fundus vascular segmentation network (RVS-Net) combin-
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Fig. 2 The architecture of the proposed RVS-Net.

ing cross-modal features. The experimental results show
that the proposed network can segment fundus blood ves-
sels with high accuracy, can effectively reduce lesion and
capillary interference, and has strong robustness.

2. Methodologies

2.1 Model Architecture

In this paper, the RVS-Net is proposed to extract the vessel
structure of 3D OCTA images. As shown in Figure 2, the
RVS-Net as a whole is an encoder-decoder network structure
consisting of three parts: the CNN encoder module, the
multimodal feature cross fuse module (MFCFM), and the
CNN decoder module.

2.2 CNN Encoder Module

To better utilize CNN to extract features of retinal images
and retain spatial information, we design the CNN encoder
using the residual convolution (Conv) and down sampling
modules in ResNet-50 [16]. Inspired by Li et al. [18], in the
3D OCTA data CNN encoder module, we perform vertical
maximum pooling on the extracted features O1, O2, O3 to
ensure that the dimensions of O1, O2, O3 and P1, P2, P3 are
consistent.

2.3 MFCFM Module

Blood vessels in retinal images are mostly elongated struc-
tures, and the deep CNN structure is easy to cause local in-
formation loss, which makes the decoder prone to problems
such as blood vessel loss or rupture during feature recov-
ery [3]. Therefore, we further designed MFCFM to fuse

Fig. 3 The architecture of the proposed MFCFM.

cross-modal features in order to extract more valuable fea-
tures while suppressing useless features, thereby improving
the accuracy of vessel segmentation. The specific structure
of MFCFM is shown in Fig. 3.

In the MFCFM module, we first use the global average
pooling (GAP) and global max pooling (GMP) layers to
obtain a rich global information matrix for Oi and Pi , and
combine the full connection layer and Softmax activation
function to preserve valuable features on the channel. Taking
Oi as an example, the above specific formula is as follows:

ChaOi = SoftMax (FC (Concat (Avg (Oi) ,Max (Oi))))

(1)

whereAvg andMax are theGMPandGAP layer, respectively,
Concat is the matrix concatenate, FC is the full connection
layer, SoftMax is the Softmax activation function. ChaOi is
the channel attention feature map of the 3D OCTA data. In
the same way, ChaPi is the channel attention feature map of
the 2D projection map.

Further, we use 1 × 1 Conv to fuse cross-modal chan-
nel attention feature maps ChaOi and ChaPi . The specific
formula is as follows:

ChaPOi = 1 × 1Conv (ChaPi,ChaOi) (2)

where ChaPOi is the fused cross-modal channel attention
feature map.

Finally, we use element-wise multiplication and
element-wise sum to enhance and fuse features Oi and Pi

to generate cross-modal fusion feature CroPOi . The specific
formula is as follows:

CroPOi = (Oi ⊗ ChaPOi) ⊕ (Pi ⊗ ChaPOi) (3)

2.4 CNN Decoder Module

In the CNN decoder module, we still use the residual con-
volution structure in ResNet-50 to design deconvolution, so
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as to maintain sufficient spatial information in the feature re-
covery stage and establish long-distance pixel dependencies.

2.5 Loss Function

The proposed RVS-Net network is trained in an end-to-end
manner, and the loss function consists of two main parts: the
Dice and the Cross Entropy (CE) loss function. The specific
formula is as follows:

LDice = 1 −

2
N∑
i=1

GiYi

N∑
i=1
(Gi + Yi)

(4)

LCE = −
1
N

N∑
i=1
(Gi log (Yi) + (1 − Gi) log (1 − Yi)) (5)

Ltotal = LDice + LCE (6)

3. Experimental Results and Analysis

We used a publicly available dataset OCTA-500 [19] to eval-
uate the performance of the proposed vessel segmentation
method. Published by the School of Computer Science and
Engineering, Nanjing University of Science and Technology,
OCTA-500 provides 3D OCTA volume data and projection
maps retinal images of 500 subjects, which can be divided
into two subsets according to the fields of view: OCTA-6M
and OCTA-3M. Among them, OCTA6M is mainly from the
fundus data of patients with retinal diseases (macular degen-
eration, diabetic retinopathy), and OCTA3M is mainly from
the normal population.

We compare the proposed algorithm with existing
OCTA vessel segmentation algorithms: CS-Net [17], IPN
[18], and IPN-V2 [19]. The following indexes are used for
quantitative analysis: average similarity coefficient (DICE),
Jaccard coefficient (JAC), balance accuracy (BACC), preci-
sion (PRE), and recall (REC), which are specifically defined
as follows:

DICE =
2 × TP

2 × TP + FP + FN
(7)

JAC =
TP

TP + FP + FN
(8)

BACC =
TPR + TNR

2
(9)

PRE =
TP

TP + FP
(10)

REC = TPR =
TP

TP + FN
(11)

TNR =
TN

TN + FP
(12)

where TP and FP represent true positive and false positive,
respectively, TN and FN represent true negative and false
negative, respectively, TPR is the true positive rate, and

TNR is the true negative rate.
The experiments are implemented on the PyTorch and

trained on NVIDIA RTX3090 GPU with 24GB memory.
In the experiment, we set the Adam optimizer with weight
attenuation coefficient of 0.9, batch size of 4, number of
iterations of 1000, and learning rate of 1e-4.

To visually verify the feasibility of the proposed vessel
segmentation method, Fig. 4 shows the experimental results
of the proposed algorithm compared with the above segmen-
tation algorithms under the conditions of the healthy fundus,
age-related macular degeneration, and diabetic retinopathy,
where rows 1, 3, and 5 correspond to the healthy fundus, age-
related macular degeneration fundus and diabetic retinopa-
thy fundus, and rows 2, 4, and 6 are the corresponding local
magnification images.

Among the above vessel segmentationmethods, CS-Net
has poor vessel connectivity and seriously less segmentation.
Compared with IPN, IPNV2 has improved the segmenta-
tion accuracy, but there is some over-segmentation of blood
vessels. When blood vessels in medical images are over-
segmented, doctors may be disturbed by false information,
leading to misdiagnosis, which in turn leads to some unnec-
essary treatments and delays in the condition. The proposed
method effectively integrates the vascular features of OCTA
volume data and projection map through the cross-modal
feature fusion module, which enhances the vascular connec-
tivity and segmentation performance of small vessels, and
effectively overcomes retinopathy and capillary interference
by combining 3D OCTA volume data. The overall segmen-
tation is more accurate, which is helpful to assist doctors in
diagnosing eye diseases.

In order to further quantitatively verify the effectiveness
of the proposed vessel segmentation method, we combined
the above indicators with a series of OCTA vessel segmen-
tation methods for experimental comparison. Table 1 and
Table 2 show the experimental comparison results of DICE,
JAC, and BACC on the OCTA-6M dataset and OCTA-3M
dataset. Experimental results show that the proposed al-
gorithm’s DICE, JAC, BACC, PRE, and REC are superior
to other segmentation algorithms. The experimental results
show that the proposed segmentation network combining
OCTA volume data and vessel projection has high accuracy
and robustness.

In order to measure the effectiveness of the designed

Table 1 Experimental comparison results on the OCTA-6M dataset.

Table 2 Experimental comparison results on the OCTA-3M dataset.
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Fig. 4 Experimental results of vessel segmentation under different conditions. (a) Test images. (b)
Ground truth. (c) CS-Net. (d) IPN. (e) IPN-V2. (f) Our method.

Table 3 Ablation experimental strategy.

Table 4 Ablation experimental results of OCTA-6M dataset.

Table 5 Ablation experimental results of OCTA-3M dataset.

dual-flow network structure and the proposedMFCFMmod-
ule, we designed a set of ablation experiments, the experi-
mental strategies are shown in Table 3, and the experimental
results are shown in Tables 4 and 5.

4. Conclusion

In this paper, we propose an end-to-end retinal vessel seg-

mentation network: RVS-Net. Firstly, we propose to seg-
ment the vessel structure of OCTA fundus images by com-
bining OCTA volume data with the projection map. In the
feature fusion stage, we further propose a feature fusionmod-
ule to fuse the cross-modal OCTA retinal vessel features to
effectively improve the vessel segmentation performance.
The proposed algorithm is experimentally validated on the
OCTA-500 dataset, and compared with a series of vessel
segmentation algorithms, our algorithm has higher overall
segmentation accuracy and performs better on retinal im-
ages containing lesions and clinical applicability.
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