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LETTER
An Optimized CNN-Attention Network for Clipped OFDM Receiver
of Underwater Acoustic Communications

Feng LIU†a), Qian XI†, Nonmembers, and Yanli XU†, Member

SUMMARY In underwater acoustic communication systems based on
orthogonal frequency division multiplexing (OFDM), taking clipping to
reduce the peak-to-average power ratio leads to nonlinear distortion of the
signal, making the receiver unable to recover the faded signal accurately. In
this letter, an Aquila optimizer-based convolutional attention block stacked
network (AO-CABNet) is proposed to replace the receiver to improve the
ability to recover the original signal. Simulation results show that the AO
method has better optimization capability to quickly obtain the optimal
parameters of the network model, and the proposed AO-CABNet structure
outperforms existing schemes.
key words: OFDM, convolutional neural network, attention mechanism,
Aquila optimizer

1. Introduction

With its advantages of strong interference immunity and
high spectral efficiency, orthogonal frequency division mul-
tiplexing (OFDM) has developed into a promising techni-
cal solution for achieving high-speed underwater acoustic
(UWA) communications [1]. However, OFDM suffers from
high peak-to-average power ratio (PAPR) problem [2]. Many
studies aim to reduce the PAPR, where clipping [3] is simple
to implement but leads to in-band distortion and out-of-band
noise, which affects the receiver performance.

Recently, deep learning (DL) has been introduced to
wireless communication. In the case of channel distortion,
Ye et al. [4] propose a fully connected deep neural network
(FC-DNN) to process wireless OFDM channels, implicitly
estimating channel state information (CSI) and directly re-
covering faded signals. For UWA-OFDM systems, the FC-
DNN scheme covers the channel decoding, channel estima-
tion, signal detection and constellation demapping modules
with improved performance [5]. Considering that FC-DNN
has high sensitivity to distortion and is not suitable for com-
plex UWA channels, [6] applies the convolutional neural net-
work (CNN) to the physical layer to extract potential features
from the received signal and cascade multilayer perceptron
(MLP) demodulation to recover the faded signal. However,
it ignores the outliers caused by the UWA environment and
pays excessive attention to those invalid data, which not only
reduces the efficiency, but also degrades the detection results.

In order to solve the above problems, we propose a
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network consisting of CNN-attention blocks (CAB) to as
a receiver for UWA-OFDM systems, jointly accomplishing
channel estimation and signal detection. This network in-
tegrates CNN and attention mechanism (AM) [7] at each
layer to extract signal sequence features and learn them au-
tonomously, and finally cascades the MLP to complete the
recovery of fading signals. Considering the problem of poor
network generalization ability during training, Aquila opti-
mizer (AO) [8] is used to obtain the optimal parameters.

2. System Model

Inspired by the existing DL model [9], we propose the
AO-CABNet based clipped UWA-OFDM communication
as shown in Fig. 1. The data stream b is modulated to signal
s. In order to make the discrete time domain signal better
approximate the continuous signal, the signal is L-fold over-
sampled to obtain the frequency domain signal X(K). Then
the signal is converted from the frequency domain to the
time domain using the inverse fast Fourier transform (IFFT)
with N points as

x (n) = IFFT(X (K)) =
1
√

LN

LN−1∑
K=0

X (K) e j( 2πKn
LN )

(1)

The PAPR of an OFDM signal is defined as the ratio
of the maximum instantaneous signal power to the average
signal power and can be expressed as

PAPR (x (n)) = 10 log10

max
(
|x (n)|2

)
E

(
|x (n)|2

) (2)

When the amplitude of the OFDM signal exceeds some
specified threshold level, the clipping approach is used to
reduce the PAPR as

Fig. 1 AO-CABNet based clipped UWA-OFDM system.
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xc (n) =

{
x (n) , if |x (n)| ≤ A
Ae jΦn , other

(3)

where Φn is the phase of x (n) and A is the signal amplitude
threshold, expressed as

A = CR · σ (4)

where clipping ratio (CR) is a parameter in the clipping pro-
cess, and σ is the average power of OFDM symbols. In the
traditional clipping method, the value of CR determines the
clipping level of the signal peak, which affects the PAPR re-
duction performance and bit-error-rate (BER) performance.

To eliminate the inter-symbol interference, cyclic pre-
fix (CP) is inserted before each OFDM symbol. After the
OFDMmodulation, the signal with CP Xcp (n) is fed into the
UWA channel. The received signal ycp (n) is represented as

ycp (n) = xcp (n) ⊗ h (n) + u (n) (5)

where ⊗ denotes the convolution, u (n) denotes the additive
whiteGaussian noise (AWGN), and h (n) denotes the impulse
response of the UWA channel.

At the receiver of the UWA-OFDM system, the chan-
nel estimation and signal detection are used to recover the
original source data stream b.

3. Proposed DL-Based Scheme

3.1 Network Architecture

Considering that AM has strong temporal feature extraction
capability and avoids the long-term dependency problem
compared to recurrent neural networks (RNN), we integrate
CNN and AM to simultaneously learn signal sequence fea-
tures at multiple levels without affecting each other.

As shown in Fig. 2, the CABNet consists of four layers.
In order to accelerate convergence and prevent over-fitting, a
layer normalization (LN) layer is added to the network, and
the data processed in multiple iterations is finally mapped
to the final result by two fully connected layer. The CAB
contains two parts: the CNN and the AM as [10]. A typi-
cal CNN structure consists of several alternately connected
convolutional and pooling layers. To ensure the accuracy of

the output signal of the model, the CNN used here includes
only the convolutional layer, which does not output the exact
value like the hidden layer, but extracts the intrinsic connec-
tion between the signal features, i.e., the input of the next
layer is the output of the previous layer [11]. Therefore, the
output of the nth layer of the CNN can be expressed as

X̂n = f (Wn ⊗ Yn + bn) (6)

where Wn is the weight matrix, bn is the bias vector, Yn is
the input data, and f (·) denotes the activation function.

Then, AM is integrated after each convolutional layer
to extract the time series features by the softmax function as

Attention (Q,K,V) = so f tmax
(
QKT

√
dk

V
)

(7)

where Q, K , V represent query, key, and value respectively,
and the dk is dimension of keys.

The integrated CNN and AM modules process the re-
ceived signals. After multiple layers of CAB iterations, the
CABNet is constructed to learn the global features of the sig-
nal sequences. Finally the cascade has anMLP that serves as
a classifier to complete the recovery of the decayed signals.

3.2 AO Improved CABNet Algorithm

The structural parameters of the network are crucial for the
performance. For instance, the model’s generalizability is
directly correlated with the number of hidden units [12]. In
order to achieve the best training accuracy, different param-
eters must be tried to construct the CABNet, which include
different number of filters, convolutional kernel size and
number of hidden units in the fully connected layer. For the
CABNet, we adopt the AO to optimize the network structure
and obtain the best parameters to be applied to the network,
avoiding the tedious and wrong methods.

The AO is a state-of-the-art intelligent optimization al-
gorithm that simulates the behavior of Aquila during the
hunting process. The specific steps of the AO improved
CABNet algorithm are shown in Algorithm 1. The algo-
rithm involves specific parameters and formula operations
as in [8], which are omitted here due to space limitation.

Fig. 2 CABNet structure diagram.
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3.3 Training

In the training phase, the data obtained from the simulation of
the clipped UWA-OFDM system is firstly pre-processed. In
order to improve the signal detection accuracy, themodulated
signals are labeled as training data labels, the combined pilot
signal and the received signal are used as sample data, and
divided into real and imaginary parts combined into two-
dimensional data. In this letter, the cross-entropy function is
adopted as the loss function, which is shown as:

LossCE = −
∑
k

y
′

k log (yk) (8)

where y′
k
is the output of the model and yk is the real label.

In order to accelerate the convergence speed and improve
the training efficiency, the Nadam optimization algorithm
is adopted to update the gradient in training and adaptively
adjust the learning rate.

4. Simulation Results

4.1 Parameter Setting

During the simulation experiments, we use the BELLHOP
ray model [13] to generate the impulse responses of UWA
channels. The involved parameters are as shown in Table 1,

Table 1 Simulation parameters of the UWA channel.

Table 2 Simulation parameters of the UWA-OFDM.

Fig. 3 CCDF comparison of clipping scheme (CR=1.2, 1.4 and 1.6).

while the clipped OFDM system parameters are shown in
Table 2. Considering the impact of CR on PAPR perfor-
mance and BER, we chose the clipping with CR of 1.2, 1.4
and 1.6 for the simulation and obtained the CCDF and BER
corresponding to the three cases. As shown in Fig. 3 and
Fig. 4, the small CR value increases PAPR performance and
degrades BER performance. When CR value is large, BER
performance degradation can be reduced to a certain extent,
but PAPR reduction effect is worse. In order to balance the
performance of PAPR and BER, CR of 1.4 is chosen in this
paper. The clipped OFDM system is simulated to generate
theQPSK and 16QAMdatasets required for the experiments.
20,000 simulated data and 100,000 simulated data are ob-
tained from the UWA-OFDMmodel, respectively, which are
divided into the training set and the test set according to the
ratio of 4:1.

4.2 AO Performance

In order to verify the convergence speed and optimization
performance of the AO algorithm, the genetic algorithm
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Fig. 4 BER comparison of clipping scheme (CR=1.2, 1.4 and 1.6).

Fig. 5 Comparison of fitness functions of AO and GA.

Table 3 Optimization results.

(GA) was adopted as a benchmark to optimize the CABNet
under the same environment parameters and dataset. The
curves of the fitness function and the optimization results
obtained by the two optimization algorithms were compared.

The fitness function value curves are shown in Fig. 5.
As can be seen from Fig. 5, the AO optimizes the CABNet
parameters with the highest value of the fitness function,
faster convergence, and better performance than theGA. This
is because four methods of updating population positions are
adopted in the AO, which makes the range of exploration
more flexible and thus improves the optimization efficiency
of the algorithm.

Specific optimization results, the best individuals ob-
tained by the AO and GA and the corresponding highest
fitness function values are shown in Table 3.

Fig. 6 BER performance comparison with QPSK.

4.3 BER Performance

BERperformance versus signal-to-noise ratios (SNR) should
be demonstrated. For comparison, we chose the following
methods:

• LS/MMSE-ZF: Conventional least squares (LS), min-
imum mean square error (MMSE) based channel esti-
mation [14] and Zero Forcing (ZF) signal detection [15]
for clipping system.

• MMSE-ZF (no clipping): MMSE-ZF is taken for chan-
nel estimation and signal detection for non-clipping sys-
tem.

• FC-DNN: [4] proposed typical DL-based receiver.
• CNN-MLP: [6] proposed CNN-based receiver.

After data pre-processing, the training set data is first
taken for offline training of the network model, and then the
completed training model is deployed online to recover the
transmitted data stream. The performance resultswithQPSK
and 16QAM are shown in Fig. 6 and Fig. 7, respectively.

As Fig. 6, since QPSK is only phase rotation modula-
tion, the effect of clipping is approximately linear distortion.
ComparedwithBERobtainedwithMMSE-ZF (no clipping),
the performance of MMSE-ZF is slightly reduced. With or
without the use of clipping techniques, the DL-based meth-
ods are significantly better than the conventional methods.
This is because the traditional methods often ignore the in-
fluence of underwater acoustic channel noise, resulting in a
poor BER. Among the three DL methods, the CNN-MLP
performs better compared to FC-DNN due to the strong fea-
ture extraction capability of CNN, which ensures accurate
signal recovery. However, the performance of AO-CABNet
is even better. The performance gain compared to FC-DNN
and CNN-MLP is approximately 9.6 dB and 1.3 dB at the
BER of 10−2. Therefore, the AO-CABNet not only has
stronger signal sequence feature extraction and learning abil-
ity, but also can focus on effective feature information, sup-
press abnormal features, and more effectively compensate
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Fig. 7 BER performance comparison with 16QAM.

for nonlinear distortion during signal transmission.
Figure 7 shows similar results. Since 16QAM is ampli-

tude modulated and phase modulated, the effect of clipping
can be viewed as nonlinear distortion. The performance of
MMSE-ZF is significantly degraded compared to the BER
obtained with MMSE-ZF (no clipping). However, the DL-
based methods still show superiority over the traditional
ones. In high SNR region, the proposed method achieves
the best performance with larger SNR gain than the other
case. This verifies that the proposed method has strong ro-
bustness.

5. Conclusion

In this letter, a DL-based network model was proposed to re-
place the receiver of a clipped UWA-OFDM system, which
can effectively combat the nonlinear noise generated during
the clipping process and thus improve the ability of the sys-
tem to recover the faded signal. The model integrates AM
and CNN to form the CABNet to extract signal sequence fea-
tures, and uses the newly proposed intelligent optimization
algorithm AO to optimize the network parameters. Sim-
ulation results show that for the optimization process, the
AO converges faster and has better optimization capability
than the GA. The AO-CABNet outperforms the traditional
method and the existing DL methods in the joint channel
estimation and signal detection process.
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