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Dynamic Limited Variable Step-Size Algorithm Based on the MSD
Variation Cost Function
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SUMMARY The steady-state and convergence performances are im-
portant indicators to evaluate adaptive algorithms. The step-size affects
these two important indicators directly. Many relevant scholars have also
proposed some variable step-size adaptive algorithms for improving perfor-
mance. However, there are still some problems in these existing variable
step-size adaptive algorithms, such as the insufficient theoretical analysis,
the imbalanced performance and the unachievable parameter. These prob-
lems influence the actual performance of some algorithms greatly. There-
fore, we intend to further explore an inherent relationship between the key
performance and the step-size in this paper. The variation of mean square
deviation (MSD) is adopted as the cost function. Based on some theo-
retical analyses and derivations, a novel variable step-size algorithm with
a dynamic limited function (DLF) was proposed. At the same time, the
sufficient theoretical analysis is conducted on the weight deviation and the
convergence stability. The proposed algorithm is also tested with some
typical algorithms in many different environments. Both the theoretical
analysis and the experimental result all have verified that the proposed
algorithm equips a superior performance.
key words: variable step-size algorithm, mean square deviation, conver-
gence speed, steady-state performance, stability

1. Introduction

With a continuous development of signal processing, adap-
tive filtering algorithms have been widely applied in many
fields, such as echo cancellation, active noise control and sys-
tem identification [1]. Amongmany adaptive algorithms, the
Least Mean Square (LMS) algorithm is flexible and simpli-
fied [2]. These advantages make the LMS algorithm applied
widely. The convergence and steady-state performances are
significant indicators to evaluate the LMS algorithm. The
step-size is a key parameter that affects the convergence,
steady-state, and stability performances. Its performance is
governed by the step-size, whose choice is tied to a compro-
mise: lower step-size lead to improved steady-state perfor-
mance, but slow down the convergence rate [3]. Although
a bigger step-size can get a fast convergence speed, it will
deteriorate the steady-state performance. Moreover, a big
step-size is also easy to make the algorithm misadjusted or
divergent.

To better balance the convergence and steady-state per-
formances, many scholars have proposed some variable step-
size LMS algorithms [3]–[11]. The functional controlled
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variable step-size (FCVSS) algorithm was proposed in [4].
It utilizes the function that conforms to the ideal change trend
of a step-size to improve the convergence and steady-state
performances. In [5], the method which adopts the modified
error function to vary a step-size (MEFVSS) was proposed.
It establishes a link between a control function and an error
signal. However, these algorithms which select a specific
function to control the step-size are not derived from any
theoretical formulas. They lack some theoretical depth and
have many limitations.

In [6], Bhotto and Antoniou further refined a prior er-
ror and a posterior error. The variable step-size strategy
(VSS) which is based on the shrinkage method is proposed
in [7]. The VSS [7] algorithm is derived from some ba-
sic theoretical formulas and it equips a certain theoretical
depth. The following algorithm which is based on the prior
and posterior errors has been widely recognized due to the
good performance [8]. However, there is a severe problem
in their expressions. In some unknown environments, it is
difficult to obtain some prior information. Thus, the actual
performance of these algorithms are difficult to guarantee.
In addition, some adjustment processes of the variable step-
size are highly susceptible to some interference. A step-size
value is prone to an unexpected fluctuation. A fluctuation
may affect some performances and even causes the diver-
gence or misalignment. But few scholars pay attention to the
stability problem of variable step-size algorithms.

For solving these existing problems, a novel variable
step-size algorithm is proposed in this letter. We adopt the
MSDvariation as the cost function. By using some basic the-
oretical analyzes and derivations, the reasonable expression
of step-size is obtained. The proposed algorithm can make
the MSD experience the maximum convergence variation
during an iteration. Besides, the proposed algorithm adopts
some relevant statistical values of input and error signals to
calculate and estimate the system noise. At the same time,
the DLF is combined with the proposed step-size expression.
It adopts different constraint parameters at different stages
to further prevent some fluctuations and ensure a fast con-
vergence speed. The proposed algorithm also omits a large
number of parameters. Some theoretical and experimental
results all show that the proposed algorithm equips good
convergence, steady-state and stability performances.

2. LMS Adaptive Algorithm

An error sequence, an input vector, an output sequence,
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a weight vector and a step-size constitute a typical LMS
adaptive algorithm [1], [2]. The LMS algorithm updates the
weight vector continuously to approach the optimal weight
as close as possible. The overall calculation is as follows:

e(n) = XT (n)Wopt + v(n) − y(n) (1)
W(n) =W(n − 1) + µe(n)X(n) (2)
y(n) = XT (n)W(n − 1) (3)

where X(n) is the input vector and y(n) is the output se-
quence. e(n) denotes the error. Wopt is the targeted weight
value and W(n) represents the weight vector. v(n) is the
system noise. We assume that the system noise v(n) is in-
dependent with the input vector X(n) and their mean values
are zero. µ represents the step-size and it is a key parameter
to adjust the weight vector W(n).

3. Proposed Algorithm

We assume that the system is in a static situation. X(n) and
e(n) are unrelated. Firstly, the equations of a prior error and
a prior error without system noise are defined as follows [6]:

ea, f (n) = XT (n)Wopt − XT (n)W(n − 1) (4)
ea(n) = ea, f (n) + v(n) (5)

where ea(n) is the error signal and ea, f (n) denotes the prior
error without system noise. Subtracting Wopt from both
sides of the Eq. (2), it becomes as follows:

Wopt −W(n) =Wopt −W(n − 1) − µe(n)X(n). (6)

Squaring both sides of the Eq. (6) and then taking ex-
pectations on both sides of it, the above equation becomes
as follows:

E
[
Wopt −W(n)

]2
− E

[
Wopt −W(n − 1)

]2
=

−E
[
e(n)ea, f (n)

]
2µ + E

[
e2(n)XT (n)X(n)

]
µ2. (7)

The above Eq. (7) is the MSD variation and E[ ] is the
mean value function. The MSD variation is a core of the
LMS algorithm. The MSD variation shows the distance
degree between the weight vector and the optimum value.
When the MSD variation is negative and its absolute value is
big, it helps the weight vector to approach the optimal value
closer. If we could find the method that makes the MSD
experience the maximum convergence variation during an
iteration, it is benefit to some performances.

Thus, taking derivative of the Eq. (7) with respect to
the step-size µ and setting the value of derivative equation
to zero, the Eq. (7) becomes as follows:

∂E
[
Wopt −W(n)

]2
− E

[
Wopt −W(n − 1)

]2

∂µ
=

−2E
[
e(n)ea, f (n)

]
+ 2E

[
e2(n)XT (n)X(n)

]
µ = 0. (8)

Then the optimal step-size which brings the fast con-
verged weight can be obtained. The changing step-size can

be calculated as follows:

µ(n) =
E

[
ea, f (n)

]
E [e(n)]

∗
1

E
[
XT (n)X(n)

] . (9)

In order to avoid the situation that the denominator is
0, the regularization factor α should be added to the Eq. (9).
The corrected variable step-size expression is as follows:

µ(n) =
E

[
ea, f (n)

]
E [e(n)] + α

∗
1

E
[
XT (n)X(n)

]
+ α

. (10)

The E[e(n)] of the Eq. (10) is a mean value and its value
can be calculated as follows:

E
[
e2(n)

]
= βE

[
e2(n − 1)

]
+ (1 − β)e2(n) (11)

E[e(n)] =
{
E

[
e2(n)

]}0.5 (12)

where β is the smooth factor and its value is close to 1.
Besides, E

[
ea, f (n)

]
also appears in the Eq. (10). It is often

calculated by the following method [9]:

E
[
ea, f (n)

]
= sgn[e(n)]max[|e(n)| − t,0] (13)

where t =
√
σ2
v is the threshold parameter and σ2

v represents
the variance value of system error. sgn[ ] and max[ ]
denotes the sign and the maximum functions.

As the system noise information is difficult to obtain in
some unknown environments, the proposed algorithm adopts
some relevant statistical values of input and error signals to
calculate and estimate the system noise. The full calculation
process is as follows [10]:

x̂2(n) = β x̂2(n − 1) + (1 − β)‖X(n)‖22 (14)
P̂ (n) = βP̂ (n) + (1 − β)e(n) ∗ X(n) (15)

E
[
ea, f (n)

]
=

√√
E

[
e2(n)

]
−

P̂(n)2
2

x̂2(n)
(16)

where ‖·‖2 denotes the l2 norm of a vector. By using this
method, the problem of unachievable system noise has been
solved. It also helps to expand many applied ranges.

The proposed variable step-size algorithm is derived
from some basic theoretical formulas and it equips a certain
theoretical depth. At the initial stage, as the distance between
the actual weight and the optimum weight is relatively large,
ea, f (n) will be also large and close to the error signal. Ac-
cording to the Eq. (10), this situationwill result in a relatively
large step-size value at the beginning of iterations. When the
proposed algorithm approaches to a steady-state, the weight
vector closes to the optimum value. The value of ea, f (n) is
close to zero and the error value e(n) is mainly composed of
the system noise v(n). Thus, the step-size value obtained by
the Eq. (10) will be relatively small in a steady-state.

This trend of the step-size is also consistent with the
reasonable variation which helps to bring the better conver-
gence and steady-state performances. It also means that the
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proposed strategy helps the iterative weight vector to ap-
proach the optimal value as close as possible. In addition,
the overall calculation process of this method is simple and
the number of parameter is relatively less.

4. Dynamic Limited Function

The step-size is critical to the convergence, steady-state and
stability performances of an adaptive LMS algorithm. Al-
though some variable step-size algorithms can effectively
adjust step-size to improve some performances, the step-size
is vulnerable to some interferences. The variable step-size
may occur some unexpected fluctuations which will reduce
the robustness, convergence and steady-state performances.
Moreover, some fluctuations may also lead to the divergence
or misalignment phenomenon.

For solving this problem, some limited functions are
proposed to reduce some unexpected fluctuations. However,
when a conventional limited function is adopted, the chang-
ing range of a step-size value will be also limited. It will
directly affect the convergence rate at the initial stage. In
order to ensure both the stability and the convergence speed,
the dynamic limited function is proposed in this letter. The
proposed method adopts two different limited parameters at
different stages. The specific information of the proposed
method is as follows:

L[µ(n)] = −0.5 +
1

1 + exp(−C ∗ µ(n))
(17)

where L[µ(n)] represents the limited step-size value. exp( )
is the exponential function. C is a scaling factor and the
value of C determines the degree of limitation.

At the initial stage, a large value of C is adopted to re-
duce the constraint effect of the limited function. It helps to
hold the MSD variation speed of the proposed algorithm. At
the steady-state stage, a small value of C is used to strengthen
the constraint effect of the limited function. It helps to hold
the stability. Thus, this DLF strategy could minimize the
impact on the convergence speed of MSD variation while
ensuring the stability of step-size. It is a coordination be-
tween robustness and MSD variation. In addition, the pro-
posed method can maintain a same symbol as the variable.
It does not affect the update direction of a variable step-size
and helps to adapt some environments.

5. Performance Analysis

In this section, the convergence stability and the weight de-
viation of the proposed algorithm will be analyzed. Firstly,
the weight deviation of the proposed algorithm is analyzed.
We assume that the system is in a static situation. X(n)
and e(n) are unrelated. To bring the Eq. (9) into the Eq. (7),

the MSD variation becomes −
E

[
e2
a , f (n)

]
E[XT (n)X(n)]

. Since the right
numerator and denominator of the MSD variation are both
square values, its value always less than or equal to 0. At
the initial stage, as the distance between the actual weight

and the optimum weight is relatively large, ea, f (n) will be
also large. Then the upper limit of the MSD variation is
less than 0 and its absolute value is big. It indicates that
the weight vector always decreases in the direction of con-
vergence and equips a fast convergence speed. When the
proposed algorithm reaches the steady-state, the value of
ea, f (n) approaches zero. Then, the value of MSD is also
close to zero. It shows that the weight of the proposed algo-
rithm is very close to the optimal value in the steady-state.
Therefore, the proposed algorithm can better balance the
convergence performance and the robustness performance.
It can keep a good performance at all stages.

Then the convergence stability of the proposed algo-
rithm is analyzed. If an adaptive LMS algorithm could con-
verge ultimately, its step-size should be less than 2

λmax
[11].

λmax represents the maximum eigenvalues in the autocorre-
lation matrix of the input vector.

Then we analyze the step-size range of the proposed
algorithm. The left side of the Eq. (9) is made of the prior
error without noise and the error signals. According to their
relationship in the Eq. (16), it is obvious that the value of
ea, f (n) is smaller than the value of e(n). Thus, the left side
value of the Eq. (9) is less than 1. The right side value of
the Eq. (9) is approximately equal to 1

λmax
. In other words,

the value of the Eq. (9) is smaller than 1
λmax

. In addition,
the proposed algorithm adopts the limited function which
is combined with the step-size. As the Eq. (17) is the final
step-size expression, then the actual value of the step-size
will be smaller than the value of the Eq. (9). Thus, the
proposed variable step-size algorithmmeets the convergence
and stability conditions.

6. Experimental Results

In this section, the proposed algorithm with DLF will be
tested and compared with the original proposed algorithm
without DLF, the FCVSS [4], the MEFVSS [5], and the
VSS [7] algorithms in some different environments. The
simulation environment adopts the case 1 of the MEFVSS
[5]. The mean value of the input vector X(n) is zero and its
variance value is 1. Some system noise is also added into the
environment to obtain a signal-to-noise ratio (SNR) of 30.

For the experimental environment, the maximum num-
ber of iteration number is 4000 and the number of the sys-
tem tap-length is 16. The initial value of the optimal weight
vector is 0 except the fifth weight coefficient which is set
to 1. When the algorithm iterates to the half time (2000),
the optimal weight vector will be changed suddenly. The
optimal weight vector changes to 1 except the fifth weight
coefficient which is set to 0. This operation helps to test the
ability of coping with some changing environments. The
corresponding parameter is consistent with their literatures
strictly. β = 0.9 and α = 0.1 are used for the proposed algo-
rithm. When the iterative number is less than one tenth of
the total, the value of parameter C is 3.5. In other situations,
its value becomes 1.2.

Figure 1 and Fig. 2 show the MSD and step-size vari-
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Fig. 1 MSD performance curve.

Fig. 2 Step-size variation curve.

ation curves of each algorithm in the experimental environ-
ment. These curves are acquired by averaging over 100
independent experiments. From the Fig. 1, the VSS [7] al-
gorithm equips a good convergence speed. However, its
steady-state performance is the worst one (−31 dB). The
MEFVSS [5] algorithm converges at more than 1000 iter-
ations and its steady-state performance is general (−37 dB).
Although the steady-state performance of the FCVSS [4] al-
gorithm is good (−39 dB), the convergence speed is relative
slow. The proposed algorithm without DLF exhibits good
convergence ability. However, it is vulnerable to some inter-
fere and its MSD value is −38 dB. The proposed algorithm
with DLF gets −40 dB less than 400 iterations in these two
environments. Although the environment changed, it shows
a stable performance. It reaches the steady-state at about
600 iterations and its steady-state value of MSD is −44 dB.
Its steady-state value is also the lowest one among these al-
gorithms. In addition, the MSD performance curve of the
proposed algorithm is smoother than the others at 500 to
2000 iterations and 2500 to 4000 iterations. In the Fig. 2, the

step-size fluctuation of the proposed algorithm with DLF is
relative small. It also indicates that the proposed algorithm
with DLF can prevent some fluctuations in a changing envi-
ronment. Besides, the step-size of the proposed algorithm
with DLF converges at about 200 iterations. It also shows a
fast convergence speed.

7. Conclusions

A novel variable step-size algorithm which sets the MSD
variation as the cost function is proposed. The proposed
algorithm can make the MSD experience the maximum con-
vergence variation at each iteration. The DLF that uses
different constraint parameters at different stages is also pro-
posed. This method is well combined with the adjustment
strategy of step-size. It can further prevent some fluctua-
tions while ensuring the convergence speed. The theoretical
analysis is also conducted on the weight deviation and the
convergence stability of the proposed algorithm. Various
simulations are also tested in this letter. Both the theoretical
and experimental results show that the proposed algorithm
has a certain adaptability in some unknown changing envi-
ronments.
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