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Data-Reuse Extended NLMS Algorithm Based on Optimized
Time-Varying Step-Size for System Identification

Hakan BERCAG†a), Osman KUKRER†, and Aykut HOCANIN†, Nonmembers

SUMMARY A new extended normalized least-mean-square (ENLMS)
algorithm is proposed. A novel non-linear time-varying step-size
(NLTVSS) formula is derived. The convergence rate of ENLMS increases
due to NLTVSS as the number of data-reuse L is increased. ENLMS does
not involve matrix inversion, and, thus, avoids numerical instability issues.
key words: adaptive filter, NLMS, step-size, convergence rate, data-reuse

1. Introduction

System identification (SI) based on adaptive filtering is a sig-
nificant application which has been motivating researchers
to find better methods and solutions to the issues such as
convergence rate, misalignment, computational complexity
(CC), ease of implementation, and numerical instability.

Least-mean-square (LMS) algorithm is one of the main
algorithms which have low computational complexity and
ease of implementation [1]–[3] developed and used in SI,
but its convergence rate is low. Later, many variants of
LMS [4]–[7] such as the LMS-Newton algorithm [8] and
NLMS [2], [5], [9] algorithm are developed to improve the
convergence rate of LMS. Other algorithms among which
recursive least-squares (RLS) algorithm [1], [2], [10] and its
variants, affine projection algorithm (APA) and its variants
[9]–[11] which have high convergence rates, are developed
at the expense of numerical instability problems, and im-
plementation difficulties. This letter introduces the ENLMS
algorithm with the following contributions: i) The novel
NLTVSS method enhances the convergence rate of the pro-
posed ENLMS algorithm as the number of past data L used
in the coefficient updating is increased; ii) ENLMS does not
use matrix inversion, and, thus, eliminates numerical insta-
bility problems; iii) ENLMS is easy to implement with only
one parameter L which is simple to tune.

The problem considered in this letter is SI, and
the unknown system is considered to be an N-tap fi-
nite impulse response (FIR) model. The adaptive fil-
ter estimates the unknown impulse response (IR) coef-
ficients h = [h1, h2, . . . , hN ]

T via tap-weights w(k) =
[w0(k), w1(k), . . . , wN−1(k)]T , where N is the filter length,
[·]T denotes transposition operator, and k is the discrete-time

Manuscript received August 3, 2023.
Manuscript revised November 4, 2023.
Manuscript publicized January 11, 2024.
†Dept. of Electrical and Electronics Engineering, Eastern

Mediterranean University, 99628, Famagusta, North Cyprus, via
Mersin 10, Turkey.

a) E-mail: hakan.bercag@emu.edu.tr
DOI: 10.1587/transfun.2023EAL2072

index. The plant output, i.e, the desired response is d(k) =
hTx(k)+v(k), where x(k) = [x(k), x(k−1), . . . , x(k−N+1)]T
is the tap-input vector, and v(k) is the additive measurement
noise. The filter output is y(k) = xT (k)w(k − 1), and the
estimation error is e(k) = d(k) − y(k).

2. Derivation of ENLMS

The Wiener-Hopf equation [1] leads to the optimum tap-
weight vectorwo = R−1p for theFIR coefficients. Recursive
inverse (RI) algorithm [12], [13] is developed to obtain the
Wiener solution by iterative convergence of the weight up-
date equation:

w(k) = w(k − 1) + µ(k) [p(k) − R(k)w(k − 1)] , (1)

whereR(k) and p(k) are the autocorrelationmatrix andcross-
correlation vector, respectively. The RI algorithm attains the
Wiener solution wo, by recursive inversion and simultane-
ous recursive estimation of the autocorrelation, thus, not
requiring the inversion of the autocorrelation matrix. In this
way, numerical instability problems due to loss of Hermitian
symmetry, and loss of positive definiteness of the inverse
autocorrelation are eliminated. Using (1), the a-priori and
the a-posteriori residuals of the equation R(k)w(k) = p(k)
are denoted, respectively, as:

ξ(k, k − 1) = p(k) − R(k)w(k − 1), (2)
ξ(k, k) = p(k)−R(k)w(k) = [I− µ(k)R(k)]ξ(k, k −1).

(3)

In order to minimize the norm of (3), step-size is chosen as:

µ(k) = arg min
µ
‖ξ(k, k, µ)‖2

2
, (4)

where the squared Euclidean norm ‖ξ(k, k, µ)‖2
2
is the cost

function. Minimizing the norm of (3) corresponds to in-
creasing the convergence rate. Expanding ‖ξ(k, k, µ)‖2

2
,

evaluating its gradient w.r.t. µ, setting it to zero, and solving
for the scalar µ, the optimal NLTVSS formula minimizing
‖ξ(k, k, µ)‖2

2
is obtained as:

µNL(k) =
ξT (k, k − 1)R(k)ξ(k, k − 1)
ξT (k, k − 1)R2(k)ξ(k, k − 1)

. (5)

In the RI algorithm, the autocorrelationmatrix and the cross-
correlation vector are updated as:

R(k) = βR(k − 1) + x(k)xT (k), (6)
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p(k) = βp(k − 1) + d(k)x(k), (7)

where β is the forgetting factor. The last L input signal
vectors are collected in an N × L matrix; X(k) = [x(k)x(k −
1) · · · x(k − L + 1)]. The solutions of (6) and (7) are:

R(k) =
k∑
i=0

βk−ix(i)xT (i), (8)

p(k) =
k∑
i=0

βk−id(i)x(i). (9)

Substitution of (8) and (9) into (2) yields:

ξ(k, k−1) =
k∑
i=0

βk−ix(i)[d(i)−xT (i)w(k−1)]. (10)

Instead of (8) and (9),R(k) and p(k) are estimated as follows:

R(k) =
1
L

k∑
i=k−L+1

x(i)xT (i), (11)

p(k) =
1
L

k∑
i=k−L+1

d(i)x(i). (12)

Define the a-priori errors as:

e(i, k − 1) = d(i) − xT (i)w(k − 1), ∀i = k − L + 1 : k
(13)

Then, (10) as a function of (13) becomes:

ξ(k, k − 1) =
k∑
i=0

βk−ie(i, k − 1)x(i). (14)

Substituting(11) and (12) into (2), the a-priori residual used
insteadof (14), and averaged over the last L errors in (13), is:

ξ(k, k − 1) =
1
L

k∑
i=k−L+1

e(i, k − 1)x(i). (15)

A new vector for reducing CC of µNL(k) in (5) is defined as:

R(k)ξ(k, k−1) = z(k) =
1
L

k∑
i=k−L+1

(xT (i)ξ(k, k−1))x(i).

(16)

The number of multiplications of RHS of (16) is 2LN which
is less than N2 multiplications of LHS of (16). Substituting
(16) into (5), NLTVSS with reduced CC is expressed as:

µNL(k) =
ξT (k, k − 1)z(k)
‖z(k)‖2

2

. (17)

Substituting (15) for RHS of (2), and (17) into (1) yields the
ENLMS algorithm weight update equation:

w(k) = w(k − 1) + µNL(k)ξ(k, k − 1). (18)

It can be deduced that for the special case L = 1:

z(k) = ‖x(k)‖2
2
e(k, k − 1)x(k). (19)

Using (19), an expression for the NLTVSS µNL(k) is obtained
as µNL(k) = 1/‖x(k)‖2

2
that is used in (18) to reveal the

ENLMS weight update for L = 1, which is also the NLMS
weight update:

w(k) = w(k − 1) + µo
e(k, k − 1)x(k)
‖x(k)‖2

2

, (20)

where µo is included to control the convergence rate and
misalignment.

2.1 Stability Analysis of ENLMS

Define optimal error as eo(i) = d(i) − xT (i)wo, and ξ(k,0)
as:

ξ(k,0) = p(k) − R(k)wo =
1
L

k∑
i=k−L+1

eo(i)x(i). (21)

Using the residual (21), and substituting (1) intoweight-error
vector defined as ε(k) = w(k) − wo [1], deduces:

ε(k) = [I − µ(k)R(k)]ε(k − 1) + µ(k)ξ(k,0). (22)

The autocorrelation estimate can be expressed in terms
of its eigenvalue decomposition as R(k) = E(k)Λ(k)ET (k),
whereΛ(k) = diag{λi},∀i = 1,2, . . . ,N, is a diagonal matrix
of eigenvalues, and E(k) is a matrix, columns of which are
the eigenvectors of R(k). Using this decomposition, (22)
can be transformed into:

ε̃(k) = [I − µ(k)Λ(k)]ε̃(k − 1) + µ(k)ξ̃(k,0), (23)

where ε̃(k) = ET (k)ε(k) and ξ̃(k,0) = ET (k)ξ(k,0). The
squared norm of ξ̃(k,0) is given by:

‖ ξ̃(k,0)‖2
2
=

1
L2

k∑
i=k−L+1

k∑
j=k−L+1

eo(i)eo( j)xT (i)x( j), (24)
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which, based on the orthogonality of eo(i) and x(i), yields:

E
{
‖ ξ̃(k,0)‖2

2

}
=

1
L2

k∑
i=k−L+1

E
{
e2
o(i)‖x(i)‖

2

2

}
(25a)

=
1
L
σ2
oE

{
‖x(i)‖2

2

}
=

N
L
σ2
oσ

2
x, (25b)

where σ2
o is the noise variance, σ2

x is the input signal vari-
ance, and E

{
·
}
is mathematical expectation. The squared

norm of (23) is:

‖ε̃(k)‖2
2
=

N∑
n=1
(1−µ(k)λn(k))2ε̃2

n(k−1)+ µ2(k)‖ ξ̃(k,0)‖2
2

+2µ(k)[ε̃T (k−1)
{
I−µ(k)Λ(k)

}
ξ̃(k,0)].

(26)

Denote z̃(k) = ET (k)ξ(k, k − 1), and ϑi(k) = λi (k)
λmin(k)

,∀i =
1, . . . ,N . Noticing 1 ≤ ϑi(k) ≤ ϑmax(k), where ϑmax(k) =
λmax (k)
λmin(k)

is the eigenvalue spread, the NLTVSS µNL(k) in (5)
is reevaluated as:

µNL(k) =

N∑
i=1

λi(k)z̃2
i (k)

N∑
i=1

λ2
i (k)z̃

2
i (k)

=

λmin(k)
N∑
i=1

ϑi(k)z̃2
i (k)

λ2
min(k)

N∑
i=1

ϑ2
i (k)z̃

2
i (k)

,

(27)

from which, the following is deduced:

µNL(k)λmin(k) =

N∑
i=1

ϑi(k)z̃2
i (k)

N∑
i=1

ϑ2
i (k)z̃

2
i (k)

≥
1

ϑmax(k)
. (28)

Defining λa(k) ≈ λi(k) as the average of the eigenvalues of
R(k) for the case in which the eigenvalue spread ϑmax(k)
is not very large, NLTVSS in (27) can be approximated as
µNL(k) '

1
λa (k)

. In (26), replacing λn(k) by λmin(k), and
substituting (28) for µNL(k)λmin(k) results in the following:

‖ε̃(k)‖2
2
≤

(
1−

1
ϑmax(k)

)2
‖ε̃(k − 1)‖2

2
+ µ2

NL(k)‖ ξ̃(k,0)‖
2

2

+2µNL(k)[ε̃
T (k−1)

{
I−µNL(k)Λ(k)

}
ξ̃(k,0)].

(29)

The time-varying eigenvalue spread ϑmax(k) fluctuates
around the theoretical eigenvalue spread ρ of the covariance
matrix, and approaches it as time increases. Thus, ϑmax(k) is
replaced by ρ, while the expectation of (29) is taken to de-
termine the mean steady-state behaviour of the error norm.
Note that E[ε̃T (k −1)] ' 0, and since the terms ε̃T (k −1)
and [I− µNL(k)Λ(k)]ξ̃(k,0) are independent,E

{
ε̃T (k−1)[I−

µNL(k)Λ(k)]ξ̃(k,0)
}
' 0. Denoting v(k) = E

[
‖ε̃(k)‖2

2

]
and

taking the expected value of (29) yields:

v(k) ≤
(
1 −

1
ρ

)2
v(k−1)+E

{
µ2
NL(k)‖ ξ̃(k,0)‖

2

2

}
. (30)

The expected value of (11) is E
[
R(k)

]
= E

{
x(i)xT (i)

}
= Rx ,

the theoretical autocorrelation. The average eigenvalue of
R(k) can be expressed as λa(k) ' λx,a, where λx,a is the
average eigenvalue of Rx . Equating tr(Rx) = Nλx,a and
tr(Rx) = E

[
‖x(i)‖2

2

]
= Nσ2

x , leads to λx,a = σ2
x , which is

substituted with λa(k) ' λx,a, µNL(k) '
1

λa (k)
, and (25b)

into (30) to reveal:

v(k) ≤
(
1 −

1
ρ

)2
v(k − 1) +

Nσ2
o

Lσ2
x

. (31)

It can be deduced from (31) that the steady-state weight error
vector norm is upper bounded as follows:

v(∞) ≤

(
ρ2

2ρ − 1

)
Nσ2

o

Lσ2
x

. (32)

The upper bound of v(∞) increases as ρ increases. Yet,
increasing L will decrease the upper bound of v(∞), and
compensate the increase due to ρ, unraveling NLTVSS’s
capability of improving the performance of ENLMS. The
inequalities (31) and (32) show that, for all finite values of
ρ, the weight error vector norm is stable.

2.1.1 Experimental Results

The performance of the proposed ENLMS algorithm is
evaluated, and compared with that of the APA, RLS and
NLMS algorithms by executing five simulations, parame-
ters of which are given in the captions of Figs. 1–5. The
total multiplications per iteration of the algorithms are as
follows: ENLMS: (4L + 3)N , APA: (L2 + 2L)N + L3 + L
[9], RLS: 2N2 + 2N [14], NLMS: 2N + 3 [9]. The perfor-
mance metric used in the SI application is mean-square de-
viation (MSD), in dB, defined as 10log10(E[‖wo−w(k)‖22 ]).
Each simulation is averaged over 500 Monte Carlo ensem-
bles. The input signal used in the simulations 1 through 4 is
generated from the AR(4) process: x(k) = 1.79x(k − 1) −
1.85x(k − 2) + 1.27x(k − 3) − 0.41x(k − 4) + vo(k) where
vo(k) is white Gaussian noise (WGN) with N(0,0.1481).
The measurement noise is zero-mean additive WGN with
variance σ2

m = 10−3. The signal-to-noise ratio SNR defined
as 10log10(E[x2(k)]/E[m2(k)] = σ2

x/σ
2
m) is 30 dB in all

simulations. The symmetric IR used in all simulations has
length N = 65. In simulations 1 through 4, the computa-
tional complexities in terms of the number of multiplications
of ENLMS and APA are set to almost the same values for
fair comparison. All compared algorithms are set to initially
converge to nearly the samemisalignment in each simulation.

The first simulation (Fig. 1) shows the convergence rate
performance of ENLMS at L = 3 as compared with other
algorithms. ENLMS converges by ∼ 2500 steps faster than
NLMS, but slower than RLS and APA. In the second simula-
tion (Fig. 2), ENLMS can be observed to converge faster than
its counterpart algorithms APA and NLMS by ∼ 1000 and
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Fig. 1 MSD convergence rate: ENLMS with L=3; APA with L=3, µo =
0.125; NLMS with µo = 0.9; RLS with δ = 0.001, λ = 0.9995.

Fig. 2 MSD convergence rate: ENLMS with L=12; APA with L=6,
µo = 0.0212; NLMS with µo = 1.24; RLS with δ = 4.7, λ = 0.999.

Fig. 3 MSD convergence rate: ENLMS with L=21; APA with L=8,
µo = 0.016; NLMS with µo = 1.38; RLS with δ = 3.9, λ = 0.9987.

∼ 5500 steps, respectively, even though RLS still converges
faster than ENLMS. This performance enhancement occurs
when the number of data-reuse of ENLMS is increased to
L = 12. In the third simulation (Fig. 3), it can be observed
that the convergence rate of ENLMS is approximately the
same as that of RLS. Although RLS initially converges fast
in the transient state, it starts slowing close to the steady-
state convergence, whereas ENLMS initially converges slow
in the transient state, but converges fast as it approaches the

Fig. 4 MSD convergence rate: ENLMS with L=33; APA with L=10,
µo = 0.136; NLMS with µo = 1.45; RLS with δ = 3.2, λ = 0.9984.

Fig. 5 MSD convergence rate: ENLMS with L=15; ρ = 264.9, ρ =
1025.2, ρ = 2159.5; RLS with δ = 2.6, λ = 0.999 for ρ = 2159.5,
δ = 3.9, λ = 0.9989 for ρ = 1025.2, δ = 3.0, λ = 0.9965 for ρ = 264.9.

steady-state. Consequently, ENLMS and RLS converge with
nearly the same speeds at the beginning of the steady-state
conditions. However, when the number of data-reuse of
ENLMS is L = 21, ENLMS is superior to RLS in terms
of computational complexity, since the number of multipli-
cations of ENLMS is 5655, which is significantly less than
8580 multiplications of RLS. In general, for L < N/2, the
number of multiplications of ENLMS is less than that of
RLS. This simulation shows that when L is sufficiently in-
creased and L < N/2, ENLMS exhibits close convergence
performance to that of RLS, and operates with less compu-
tational complexity than RLS. In addition, ENLMS can be
observed to converge faster than its counterpart algorithms
APA and NLMS in this setting, as well. In the fourth sim-
ulation (Fig. 4), when the number of data-reuse of ENLMS
is drastically increased to L = 33, ENLMS can be observed
to converge to steady-state at k ' 1500, which is ∼ 1200
and ∼ 6700 steps faster than APA and NLMS, respectively.
The performance of ENLMS at increased L = 33 is close to
that of the benchmark RLS algorithm. In the fifth simulation
(Fig. 5), the ENLMS and RLS algorithms are compared ac-
cording to varying eigenvalue spreads. When the input signal
used is AR(4) process: x(k) = 1.352x(k − 1) − 1.338x(k −
2) + 0.662x(k − 3) − 0.24x(k − 4) + vo(k), the eigenvalue
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spread ρ = 264.9. When the input signal used is the AR(4)
process: x(k) = 1.79x(k − 1) − 1.85x(k − 2) + 1.27x(k −
3) − 0.41x(k − 4)+ vo(k), the eigenvalue spread ρ = 1025.2,
and when the input signal used is AR(4) process: x(k) =
1.70x(k−1)−1.95x(k−2)+1.27x(k−3)−0.41x(k−4)+vo(k),
the eigenvalue spread ρ = 2159.5. In all cases, vo(k) is white
Gaussian noise (WGN) withN(0,0.1481), the measurement
noise is zero-mean additive WGN with variance σ2

m = 10−3,
and the SNR is 30 dB. The simulation shows that at the
relatively low eigenvalue spread ρ = 264.9, the convergence
speed ofRLS is slightly faster than that of ENLMS.Yet, it can
be observed that the convergence rate of ENLMS approaches
that of RLS as the eigenvalue spread ρ is increased. It can be
observed in Fig. 5 that, the convergence rate of ENLMS at
ρ = 1025.2 becomes equivalent to that of RLS, and slightly
higher at ρ = 2159.5 than that of RLS. Note that, for fair
comparison of convergence rates, both methods are made to
converge to almost the same misalignment as the eigenvalue
spread is changed.

Overall, it can be observed that, as L is increased, the
convergence rate of ENLMS becomes enhanced, however,
with increased misalignment which also occurs with the
other algorithms in comparison. Additionally, the simu-
lations show that, as L is increased, the relative convergence
rate difference between ENLMS and the compared algo-
rithms alters in favour of ENLMS.

3. Conclusion

A new extended NLMS algorithm based on the data reuse of
the tap-input and of the desired response is proposed. Anovel
non-linear time-varying step-size formula is derived. The
new ENLMS algorithm is analyzed theoretically and shown
to be stable. The convergence speed of ENLMS is illustrated
by simulations to become faster than that of its counterpart
algorithms, and comparable to that of RLS, as the number
of data-reuse is increased, when the impulse response is
symmetric as in channel equalization applications.
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