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LETTER
Video Reflection Removal by Modified EDVR and 3D Convolution∗

Sota MORIYAMA†, Student Member, Koichi ICHIGE†a), Yuichi HORI††, and Masayuki TACHI††, Members

SUMMARY In this paper, we propose a method for video reflection re-
moval using a video restoration framework with enhanced deformable net-
works (EDVR). We examine the effect of each module in EDVR on video
reflection removal and modify the models using 3D convolutions. The
performance of each modified model is evaluated in terms of the RMSE be-
tween the structural similarity (SSIM) and the smoothed SSIM representing
temporal consistency.
key words: video reflection removal, video restoration, machine learning,
convolutional neural network, deformable convolutions, 3D convolutions

1. Introduction

Analysis of video images captured by cameras and sensors
has attracted attention in recent research on automated driv-
ing systems and traffic monitoring systems. One of the prob-
lems in analyzing videos is undesirable reflections. Thus,
reflection removal using methods of deep learning like con-
volutional neural networks (CNN) has been studied to re-
move reflections and restore natural images. In the field of
single-image reflection removal, several methods have been
proposed [1]–[3] and have shown a certain level of accuracy
on real images.

On the other hand, for videos, a method without using
deep learning has been proposed for video reflection removal
[4]. However, this conventional method has the following
problems.

• The single scale method has difficulty with flow esti-
mation and frame alignment when the motion is large.

• The estimation method for a center frame does not
take into account temporal features from neighboring
frames.

In frame alignment, a fusion of temporal features is effective
in aggregating temporal information of neighboring frames
[5], [6]. We consider deep learning methods to extract tem-
poral features in video reflection removal to address these
problems.

A Recent work on high-resolution video processing
(e.g., video de-blurring) using deep learning contains ex-
plicit motion estimation with flow-based motion compen-
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sation modules to perform frame alignment [7]. However,
it is more effective for reflection removal to segment re-
flection regions as well as frame alignment as in [4]. Thus,
we focus on video restoration with enhanced deformable net-
works (EDVR) [9], [10], which has been proposed as a video
restoration framework for super-resolution and de-blurring.
We chose EDVR as a video processing method using deep
learning for the following reasons.

• The multi-scale pyramid structure enables flow esti-
mation and frame alignment even for large motion of
reflection.

• Deformable convolutions in EDVR have been applied
to object detection [8] and semantic segmentation [14].
They are effective for reflection removal to capture re-
flection regions dynamically and segment them implic-
itly.

In this paper, we apply EDVR to reflection removal [11]
and create our own synthetic reflection video dataset from
the realistic and dynamic scenes (REDS) dataset [12]. We
compare the usefulness of each module through ablations.
Furthermore, we propose modified EDVR models using 3D
convolutions. The performance of each model is evaluated
not only in terms of structural similarity (SSIM) [13] but
also in terms of the RMSE between the smoothed SSIM and
the original SSIM, which represents temporal consistency.

2. Video Restoration with Enhanced Deformable Net-
works (EDVR) [10]

EDVR is a video restoration framework for video super-
resolution and de-blurring. It consists of four modules: a
pre-deblur module, pyramid cascading deformable (PCD)
align module, temporal and spatial attention (TSA) fusion
module, and reconstruction module. In the case of super-
resolution, the input is transmitted directly to these modules,
whereas in the case of de-blurring, it is transmitted in the
low-resolution domain through the downsampling layer.
Pre-deblur module. The pre-deblur module has a pyramid
structure with residual blocks, which enables global and
local features to be extracted by processing in high- and
low-resolution regions. This module is applicable only for
de-blurring.
PCD align module. The pyramid cascading deformable
align module consists of deformable convolutional networks
(DCN) [14], [15] with a pyramid structure. Deformable con-
volutions implicitly align the neighbor frames (feature maps)
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Fig. 1 EDVR network architecture [10].

to the center frame by using the channel-directed combina-
tion of the neighbor frame and the center frame as an offset
[16]. Furthermore, it is expected to detecting reflection re-
gions for reflection removal.
TSA fusion module. The temporal and spatial atten-
tion module focuses on temporal and spatial attention, and
aligned feature maps are fused by dynamically aggregating
neighboring frames on a pixel-by-pixel basis to interpolate
areas not aligned in the previous PCD align module.
Reconstruction module. The reconstruction module con-
sists of a series connection of residual blocks and some
upsampling layers. A pixel shuffler is used for upsampling.

3. Proposed Approach

We apply a de-blurring flow using EDVR to remove reflec-
tions due to the high resolution of inputs. TheEDVRnetwork
for reflection removal is shown in Fig. 1. Note that the pre-
deblur module, PCD align module, and TSA fusion module
are hereafter shortened to PD, PCD, and TSA, respectively.

3.1 Ablation of Each EDVR Module

We examine the effect of each EDVR module on reflection
removal. To this end, we create several EDVR models with-
out PD, PCD, and TSA and perform ablation experiments.
The reconstruction module is not subject to ablation because
it is necessary for upsampling frames.

3.2 Modified Models Introducing 3D Convolution

3D convolutional neural networks are widely used for 3D
data such as 3D images and videos [17] although all EDVR
convolutions are 2D convolutions including deformable con-
volutions. Thus, we propose two models introducing 3D
convolutions to extract temporal features between frames:
a pre-3D convolution (P3DC) model and 3D convolutional
alignment (3DCA) model. The 3D convolution is effective
in restoring sharp pixels in neighboring frames by extract-
ing temporal features in video processing [18]. We verify
the effectiveness of extracting temporal features as an aux-
iliary process to deformable convolution by introducing 3D
convolution before and after the PCD module.
P3DC model. The pre-3D convolution model replaces the
PD module of EDVR with 3D convolutional layers to aggre-
gate temporal features before aligning frames.

Table 1 Modified EDVR models.

3DCA model. The 3D convolutional align model replaces
the PCDmodulewith 3D convolutional layers to align frames
instead of deformable convolutions.
We do not consider replacing the TSA module extracting
spatial features with 3D convolutions because we examine
the effect of 3D convolutions on temporal features in this
paper. Table 1 lists our modified EDVR models.

3.3 Metrics for Evaluating Temporal Consistency

It is important to consider the temporal consistency of neigh-
boring frames in order to improve the quality of video re-
flection removal. Flicker-like noise usually occurs between
frames if temporal consistency is not maintained. Therefore,
we propose a metric that evaluates the intensity of flickering
between frames in order to quantitatively express temporal
consistency.

We consider SSIM [13] oscillation through frames to
evaluate the intensity of flickering. This is based on the as-
sumption that SSIM oscillates from frame to frame if an out-
put video is flickering due to temporal inconsistency. Next,
we consider smoothed SSIM using a moving average filter
with a filter size of 3. The difference between the original
SSIM and the smoothed SSIM becomes small when the orig-
inal SSIM has only slight oscillations. Therefore, we also
propose using the RMSE between the original and smoothed
SSIM calculated by:

RMSE =

√√√
1
T

T∑
t=1
(yt − ȳt )2 (1)

yt = SSIM(Ôt,Ot ) (2)
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Fig. 2 Examples of oscillating SSIM (T = 100).

ȳt =
yt−1 + yt + yt+1

3
(3)

where T represents the last frame, and SSIM(Ôt,Ot ) repre-
sents the SSIM between the t-th estimated frame Ôt and the
t-th GT imageOt . In (2) and (3), the SSIM and the smoothed
SSIMare represented by yt and ȳt , respectively. Examples of
{yt } and { ȳt } for T = 100 are shown in Fig. 2. A large value
for RMSE indicates that the SSIM has large oscillations and
flickers, i.e., temporal consistency is not maintained. On the
other hand, a small value indicates that the SSIM is smooth
and does not flicker, meaning that temporal consistency is
maintained. Therefore, the RMSE reflects relative temporal
inconsistency. In this paper, we use the RMSE of (1) to
compare the accuracy of the temporal consistency of each
proposed model.

4. Experiments

We evaluated the performance of the modified EDVR mod-
els for reflection removal through simulation. We created
a synthetic reflection video dataset by combining two natu-
ral images from the REDS dataset and used this dataset to
train each modified model. The training results were eval-
uated in terms of the mean of the SSIM and the RMSE of
the smoothed SSIM, which represents temporal consistency.
Table 2 shows the various parameters for each model in this
experiment. We used Charbonnier loss [19].

4.1 Example of Estimation Results

We estimated 20 test videos for each model that had been
trained. Figure 3 shows the SSIM through 100 frames of a
test video. Figure 4 shows estimation results for frame #44 in
Fig. 3, where the red, blue, and yellow regions respectively
show remarkable artifacts and remaining reflections.

From Fig. 3, we confirmed that P3DC had a higher
SSIM overall, which means that the outputs were restored
to a higher quality. At around frame #44, the SSIM was
generally depressed due to remaining reflections in the lower
part of the image, but P3DC and woPD_TSA were able to
maintain a high level of SSIM. From Fig. 4, we can see that
some modified models failed to restore partially better than
EDVR. In particular, the SSIM is degraded for woTSA and
woPD_PCD in Fig. 3, which is due to residual red reflection

Table 2 Parameter specifications.

Fig. 3 SSIM through 100 frames.

in the yellow region. On the other hand, woPD_TSA and
P3DC could well reduce reflections both in the yellow and
blue regions. In addition, detailed results (red region) for
EDVR and P3DC are shown in Fig. 5. At first glance, both
EDVR and P3DC seem to be accurate in Fig. 4, but Fig. 5
shows that EDVRhad artifacts and color degradation. This is
due to EDVR trying to remove reflections excessively, which
is why EDVR had a lower SSIM.

4.2 Overall Test Results

We also evaluated the average results across all of the test
data. Table 3 shows a quantitative evaluation of all test
data and the results of STDANet [7] as a comparison of
a recent method for video processing using deep learning.
The first column shows the average of the 100-frame SSIMs
averaged over 20 test videos, the second column shows the
average RMSE of the smoothed SSIM over 20 test videos,
and the third column shows the number of parameters for
each model. The best values in each column are shown in
bold, and the second best values are underlined.

Table 3 confirms that the latest STDANet has the high-
est accuracy and is temporally consistent, comparing EDVR
with the latest method. However, STDANet has a large
amount of parameters and the disadvantage of high model
cost for the accuracy. In EDVR and its modified models,
woPD_TSA had the best SSIM accuracy for all of the test
data. This indicates that this model with only the PCD mod-
ule is the most effective for reflection removal. Additionally,
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Fig. 4 Qualitative results for frame #44.

Fig. 5 Detailed comparison of EDVR [10] and P3DC.

Table 3 Quantitative results for all test data.

a comparison of the proposed P3DC and 3DCA showed bet-
ter accuracy for P3DC and worse accuracy for 3DCA. This
indicates that 3D convolutions can be an alternative for PD
with strong effects but are not a sufficient alternative for
alignment by PCD. From RMSE, although there was gener-
ally an inverse correlation with the accuracy of SSIM, the
woTSA model had the best temporal consistency accuracy.
This is because the TSAmodule fuses the temporal attention

followed by the spatial attention, which makes it difficult to
maintain temporal consistency in the final output. Therefore,
we have to remove the spatial fusion of TSA when we place
emphasis on maintaining temporal consistency. From the
number of parameters, woPD_PCD_TSA has the smallest
number of parameters, but the number increases for models
that include PD and PCDmodules due to the large size of the
modules. Therefore, PCD has a large number of parameters,
although not as large as STDANet.

In short, all of the models that tended to have higher
SSIMs for all test data included PCD. Therefore, frame
alignment by deformable convolutions in PCD is also ef-
fective. The results of this experiment demonstrate that the
woPD_TSAmodel including only PCD is the most effective.
However, our proposed P3DC model that replaces the PD
module with 3D convolutions is also partially effective since
incorporating all EDVR modules would result in excessive
artifacts.

5. Conclusion

In this paper, we proposed modified EDVR models with 3D
convolutions for video reflection removal. We performed
comparative experiments and found the alignment frames
by deformable convolutions included in the PCD module
to be the most effective. We also found our P3DC model
that introduces 3D convolutions to the suppression of arti-
facts to be effective. In addition, we proposed metrics for
evaluating temporal consistency using the RMSE between
the smoothed SSIM and the original SSIM. Future prospects
include proposing new networks using deformable convolu-
tions and 3D convolutions.
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