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Deep Learning-Based CSI Feedback for Terahertz Ultra-Massive
MIMO Systems

Yuling LI†, Student Member and Aihuang GUO†a), Nonmember

SUMMARY Terahertz (THz) ultra-massive multiple-input multiple-
output (UM-MIMO) is envisioned as a key enabling technology of 6G
wireless communication. In UM-MIMO systems, downlink channel state
information (CSI) has to be fed to the base station for beamforming. How-
ever, the feedback overhead becomes unacceptable because of the large
antenna array. In this letter, the characteristic of CSI is explored from the
perspective of data distribution. Based on this characteristic, a novel net-
work named Attention-GRU Net (AGNet) is proposed for CSI feedback.
Simulation results show that the proposed AGNet outperforms other ad-
vanced methods in the quality of CSI feedback in UM-MIMO systems.
key words: CSI feedback, UM-MIMO system, terahertz communication,
deep learning, channel characteristic

1. Introduction

Terahertz (THz) band communication is envisioned as a
key enabling technology, promising to provide Terabits-per-
second data rates in 6Gwireless communications [1]. Never-
theless, the high propagation loss at THz band limits the cov-
erage range [2]. To combat the shortcoming, ultra-massive
multiple-input multiple-output (UM-MIMO) systems with
an array-of-subarray (AoSA) structure have been proposed
[3]. In the AoSA structure, a large antenna array is divided
into multiple subarrays (SAs), and each SA is powered by a
single radio frequency (RF) chain. Based on this structure,
the highly directional hybrid beamforming can be performed
to enhance the capacity of UM-MIMO systems [4].

Retrieval of accurate downlink channel state informa-
tion (CSI) in the base station (BS) is critical for beamform-
ing design [5]. In frequency division duplex (FDD) systems,
the downlink CSI has to be fed back from user equipment
(UE). However, a dramatically increasing feedback overhead
is foreseen due to the unprecedented massive number of an-
tennas, which makes the feedback extremely challenging [6].

Recently, various techniques have been proposed for
CSI feedback in massive MIMO systems. In [7], a state-
of-the-art compressed sensing (CS)-based method named
TVAL3 has been proposed. In [8]–[10], deep learning (DL)-
based methods that borrow the idea of autoencoder archi-
tecture have been proposed. CsiNet proposed in [8] first
demonstrates the advantages of DL in CSI feedback. CRNet
proposed in [9] introduces a multi-resolution architecture

Manuscript received October 3, 2023.
Manuscript revised November 14, 2023.
Manuscript publicized December 1, 2023.
†Dept. of Information and Communication Engineering, Tongji

University, Shanghai, 201804 China.
a) E-mail: tjgah@tongji.edu.cn
DOI: 10.23919/transfun.2023EAL2089

and an advanced training scheme. TransNet proposed in
[10] adopts a two-layer Transformer architecture and greatly
improves the accuracy. ForCSI feedback in THzUM-MIMO
systems, the CS-based methods rely on channel sparsity that
is difficult to meet practically, while the DL-based methods
also encounter some challenges. First, the commonly used
convolutional neural network (CNN) is difficult to extract the
multi-domain correlation of CSI since the convolution oper-
ations are performed locally [6]. Second, common methods
of concatenating the real and imaginary parts of CSI as in-
put will result in enormous network parameters due to the
huge channel dimensions, which impede the practical de-
ployment. Third, existing works typically exploit dedicated
sparsity in the far-field to design networks. In fact, the far-
and near-field paths co-exist and together form the hybrid-
field channel in UM-MIMO systems [12]. The changeable
channel conditions have to be considered in CSI feedback.

In this letter, a novel NN named Attention-GRU Net
(AGNet) is proposed to tackle the CSI feedback problem
in THz UM-MIMO systems. The hybrid-field THz UM-
MIMO channel model is developed to generate CSI sam-
ples. The distribution characteristic of CSI is measured by
the distance-based separability index (DSI) [11]. Based on
this characteristic, a one-part training scheme is proposed
to reduce the network size. The fusion of Gate Recurrent
Unit (GRU) and attention mechanism is designed to flexi-
bly extract the correlation and the changeability features of
UM-MIMOCSI. Simulation results demonstrate that AGNet
achieves better feedback accuracy compared to representa-
tive methods based on CS, CNN, and Transformer.

The remainder of this letter is organized as follows. The
THz UM-MIMO systemmodel is established in Sect. 2. The
distribution characteristic of CSI and the design of AGNet
are explained in Sect. 3. The simulation results are presented
in Sect. 4, and the conclusion is given in Sect. 5.

2. System Model

We consider a THz UM-MIMO FDD system as shown in
Fig. 1. The BS adopts a planar AoSA with

√
Q×
√

Q SAs for
hybrid beamforming, while each SA is fed by one RF chain
and contains

√
Q̄×

√
Q̄ uniformly arranged antenna elements

(AEs). The total number of antennas is Nt = Q × Q̄. We
construct a three-dimensional Cartesian coordinate system
with the origin being the first AE in the first SA and deploy
the AoSA on the x-y plane. The UE is equipped with a
single antenna for simplicity. Orthogonal frequency division
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Fig. 1 A typical THz UM-MIMO FDD system.

multiplexing with Nc subcarriers is adopted, the downlink
CSI matrix can be defined as

H =
[
h1 · · · hNc

]T
∈ CNc×Nt (1)

where hk ∈ C
Nt×1 denotes the channel response of the k-th

subcarrier, (·)T denotes the transpose operation.
In THz UM-MIMO systems, the main components of

the channel are line-of-sight (LoS) and reflected paths, while
the other multi-path effects such as scattering and diffraction
can be ignored due to the high propagation loss [4]. Thus hk

can be denoted as

hk =

L∑
l=1

αl ( fk,rl) a (φl, θl,rl) e−j2π fkτl (2)

where fk is the frequency of the k-th subcarrier, a(·) is the
antenna array response, αl is the path loss of the l-th path. φl ,
θl , rl , and τl are azimuth angle of departure (AoD), elevation
AoD, communication distance, and time delay of the l-th
path, respectively. Assuming that l = 1 denotes the LoS
path, l > 1 denotes reflected paths.

The path loss is composed of the spread loss and the
molecular absorption loss, i.e.

αl ( fk,rl) = |Γl |
(

c
4π fkrl

) γ
2

e−
1
2 Kabs ( fk )rl (3)

where c is the speed of light, Γl is the reflection factor, γ is the
path loss exponent and Kabs( fk) is the frequency-selective
molecular absorption loss [12].

Considering the notable near-field spherical propaga-
tion characteristic of the UM-MIMO channel [12], the array
response adopts the hybrid-field assumption. The far-field is
defined as the region where rl is greater than or equal to the
Rayleigh distance D; otherwise, it is the near-field. In the
far-filed, the array response is

afar (φl, θl) =
[
afar

1,1, · · · ,a
far
q,q̄, · · · ,a

far
Q,Q̄

]T
(4)

afar
q,q̄ = e−j2π

fk
c pT

q , q̄ tl (5)

where tl = (sinθlcosϕl, sinθlsinϕl, cosθl)T is the unit vec-
tor in the AoD direction of the l-th path, pq,q̄ is the three-
dimensional coordinate of the q̄-th AE in the q-th SA. In the

Fig. 2 Schematic diagram of AGNet aided CSI feedback workflow.

Table 1 DSI of the real and imaginary sets.

near-filed, the array response depends on the exact distance
between the AE and the UE and can be denoted as

anear (φl, θl,rl) =
[
anear

1,1 , · · · ,a
near
q,q̄ , · · · ,a

near
Q,Q̄

]T
(6)

anear
q,q̄ = e−j2π

fk
c ‖pq , q̄−rl tl ‖

2
2 (7)

where ‖·‖2 is the Euclidean norm.

3. Channel Characteristic and Design of AGNet

In this section, we explain the design of the proposed AGNet,
which exploits the inherent nature of the CSI and introduces
the GRU network and attention mechanism.

3.1 UM-MIMO CSI Distribution Characteristic

For complex-valued CSI, it is natural to speculate that there
exists certain internal similarity between the real and imag-
inary parts. From the perspective of data distribution, we
adopt DSI to measure this similarity. DSI is a robust sepa-
rability measure that can indicate whether data belonging to
different classes have the same distribution. DSI value ranges
from 0 to 1, and the lower value means the greater similarity
between two datasets in terms of their distributions.

In order to compute DSI, we generate 12000 CSI sam-
ples. The details of simulation parameters are provided in
Sect. 4. We separate the real and imaginary parts of CSI as
sets R and I, respectively. The intra-class distance (ICD) set
of R is computed as {dx} =

{xi − xj


2

��xi, xj ∈ R; xi , xj
}
.

The ICD set of I,
{
dy

}
, is similarly computed. The between-

class distance (BCD) set between R and I is computed as{
dx,y

}
=

{xi − yj


2

��xi ∈ R; yj ∈ I
}
. The similarities be-

tween the ICD and BCD sets are then computed using the
Kolmogorov–Smirnov (KS) test: sx = KS({dx} ,

{
dx,y

}
)

and sy = KS(
{
dy

}
,
{
dx,y

}
). Details of the KS calculation

are in [11]. DSI is the average of the two KS statistics:
DSI({R, I}) = (sx + sy)/2.

Table 1 presents the measure results. DSI({R, I}) is
close to 0, indicating that R and I have extremely similar
distributions.

3.2 The Design of AGNet

The distribution similarity between the real and imaginary
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Fig. 3 Encoder and decoder design of the proposed AGNet.

parts of CSImentioned abovemakes it feasible to utilize only
the real part for training and apply the trained network to the
imaginary part directly. Based on this finding, we design
AGNet for CSI feedback.

As shown in Fig. 2, AGNet consists of an Encoder and
a Decoder. The former is deployed at the UE and the latter at
the BS. At the UE, both the real part HR and imaginary part
HI of H share the same Encoder to generate the compressed
codewords vR and vI. At the BS, both the two codewords
share the same Decoder for reconstruction. The whole feed-
back process can be concluded as

ĤR = fde ( fen (HR)) and ĤI = fde ( fen (HI)) (8)

where fen(·) and fde(·) denote the Encoder and the Decoder
of AGNet, respectively. The reconstructed complex-valued
CSI matrix Ĥ can be obtained by combining ĤR and ĤI.

The detailed design of AGNet is shown in Fig. 3. In the
Encoder, we employ GRU for feature extraction and further
employ a fully connected (FC) layer for dimension com-
pression. The real/imaginary part of the CSI is fed into
GRU to generate a Nc×N t feature map, then compressed
by the FC layer and further reshaped into an M-dimensional
codeword. Defining N = Nc×N t , the compression ratio is
η = M/N . GRU has excellent memory function that can
sensitively extract the inherent spatial correlation between
adjacent antennas.

In the Decoder, the received codeword is reshaped into
a Nc×ηN t matrix and then fed into the FC layer to recover
the dimension. The initial recovered matrix is further refined
by two AGBlocks for deep feature reconstruction. AGBlock
is the key design of the Decoder, which contains two layers
of GRU and embeds an attention module in both layers. The
CSI feature maps of far- and near-field paths are significantly
different. The goal of the attention module is to generate
a vector that describes the importance of different feature
maps. A global average pooling is first used to generate an
Nc ×1 vector, and then two FC layers are used to reconstruct
the importance vector. The generated vector is scaled to the
range (0,1) using the sigmoid activation function and then
multiplied by the input feature maps. The information of far-
and near-field paths is given correspondingweights by fusing
the attention module, which enhances the network capacity
of adapting the variable channel conditions. Additionally,
an identity path is added to each AGBlock based on the idea

of residual learning, which can avoid the vanishing gradient
problem and remain more effective information.

If stacking the real and imaginary parts of CSI as a real-
valued input, as in the common scheme, the sizes ofGRUand
the FC layer are 24N2 + 12N and 4N M + 2M , respectively.
By utilizing the distribution characteristic, the sizes of GRU
and the FC layer are reduced to 6N2 + 6N and N M + M ,
respectively. Moreover, comparedwithLSTM,GRUreduces
one gate mechanism, namely, 2N2 + 2N parameters, under
the condition of achieving comparable performance.

4. Simulation Results

In our simulation, we consider a typical AoSA setting where
the BS is equipped with Q = 4 SAs while each SA con-
tains Q̄ = 256 AEs, and the total number of AEs at the
BS is Nt = 1024 [3]. Considering to avoid the peak re-
gions of molecular absorption loss, the center frequency is
set as fc = 0.325 THz [12]. The number of subcarriers is
Nc = 128 and the bandwidth of the sub-band is B = 1 GHz.
Since the multi-path effects such as scattering and diffraction
can be ignored in the THz band, the number of paths is set
as L = 5, of which 1 is the LoS path and 4 is the reflec-
tion path. The propagation distance of the LoS path is set
as r1 = 30 m. The geometric channel parameters including
the Azimuth AoD ϕl , Elevation AoD θl , and NLoS paths
propagation distance rl(l > 1) are generated in a distribution
of U(−π, π), U(−π/2, π/2), and U(10 m, 25 m). The time
delay τl can be determined based on the distance. Specifi-
cally, the Rayleigh distance is set as D = 20 m, and rl is set
randomly spanning both the far-field and near-field regions
to simulate the hybrid-filed propagation.

A total of 12,000 CSI samples are generated, of which
60%, 20%, and 20% are selected as training, validation, and
testing datasets, respectively. The AGNet is trained for 100
epochs usingAdamoptimizer with a constant learning rate of
1×10−3. We use the normalized mean square error (NMSE)
defined in Eq. (9) to evaluate the network accuracy.

NMSE = E
{ĤR(I) −HR(I)

2
2 /

HR(I)
2

2

}
(9)

Figure 4 presents the comparison of the feedback accu-
racy by TVAL3 [7], CRNet-cosine [9], TransNet [10], and
AGNet, where the NMSE of three other methods is tested
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Fig. 4 NMSE comparison between AGNet and other methods at different
compression ratios. We reproduce TVAL3, CRNet-cosine, and TransNet
following the open source codes given in [7], [9], and [10], respectively.

Table 2 NMSE comparison under different test sets.

Table 3 Total number of trainable parameters.

under H, and the NMSE of AGNet is the average NMSE
tested for both HR and HI. AGNet considerably outperforms
CS-based TVAL3. Compared with CRNet-cosine, AGNet
improves the feedback accuracy by over 58.15% under all
compression ratios. Compared with TransNet, AGNet ex-
hibits significant superiority at low compression ratios and
improves accuracy by 87.99% and 62.51% at η = 1/8 and η
= 1/16, respectively. This result is mainly attributed to the
design of integrating GRU with the attention mechanism.
The channel spatial correlation can be inherently retained by
GRU. The distinct CSI features of the far- and near-field paths
are assigned different attention weights through the attention
mechanism, thereby the relevant information from different
paths can be highlighted and extracted. As the compression
ratio increases, the NMSE gap between AGNet and TransNet
gradually narrows. In practical deployment, a simple AGNet
is sufficient to meet the accuracy requirements for low com-
pression ratios, while a more sophisticated network such as
TransNet can be considered for high compression ratios.

Furthermore, the NMSE tested under HR and HI are
summarized in Table 2. AGNet achieves similar reconstruc-
tion performance for both HR and HI, independent of the
compression ratio. It justifies the validity of our finding of
the CSI distribution characteristic.

Finally, the number of parameters of AGNet-routine,
ALNet, and AGNet at different compression ratios are pro-
vided in Table 3. AGNet-routine refers to adopting the
common method of concatenating the real and imaginary
parts as input, and ALNet refers to replacing GRU in AGNet

with LSTM. Compared with AGNet-routine and ALNet,
AGNet reduces the number of parameters by over 74.95%
and 24.72% at all compression ratios, respectively. It vali-
dates that our one-part training strategy and the selection of
GRU contribute to reducing memory consumption.

5. Conclusion

In this letter, a novel NN named AGNet is proposed for CSI
feedback in THz UM-MIMO systems. The distribution sim-
ilarity between the real and imaginary parts of CSI is verified
using DSI, which is then utilized in AGNet and proven to
be effective. The fusion of GRU and attention mechanism is
designed to reconstruct the features of CSI. Simulation re-
sults show that the proposed AGNet significantly improves
the reconstruction accuracy compared with other advanced
DL approaches, especially at low compression ratios. More-
over, the distribution characteristic of CSI can be useful for
other wireless communication designs in THz UM-MIMO
systems, such as channel estimation and hybrid precoding.
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