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A New Construction of Three-Phase Z-Complementary Triads
Based on Extended Boolean Functions∗

Xiuping PENG† ,††, Yinna LIU†, Nonmembers, and Hongbin LIN†††a), Member

SUMMARY In this letter, we propose a novel direct construction
of three-phase Z-complementary triads with flexible lengths and various
widths of the zero-correlation zone based on extended Boolean functions.
The maximum width ratio of the zero-correlation zone of the construction
can reach 3/4. And the proposed sequences can exist for all lengths other
than powers of three. We also investigate the peak-to-average power ratio
properties of the proposed ZCTs.
key words: Z-complementary triad, aperiodic correlation, extended Boolean
functions, zero-correlation zone

1. Introduction

A pair of sequences is known as a Golay complementary
pair (GCP), if their aperiodic autocorrelation sums are zero at
each non-zero time shift. TheGCPwas first proposed byGo-
lay in 1951 [1]. Complementary sequences have been found
several applications in radar [2], peak-to-average power ra-
tio (PAPR) control in orthogonal frequency division mul-
tiplexing (OFDM) [3]–[5] and channel estimation [6], [7].
However, binary GCP only exists in length 2α10β26γ, where
α, β, γ ∈ Z+. So the binary GCP was extended to com-
plex GCP [8], Golay complementary set (GCS) [9] and
Z-complementary sequences [10], [11]. Unlike GCPs, Z-
complementary pairs (ZCPs) can have various lengths. Bi-
nary ZCPs were introduced in [12]. In [13], a construction
of optimal binary ZCPs of length 2m ± 1 was proposed.

In [14], binary GCP was extended to Golay comple-
mentary triad (GCT) over three-phase alphabet

{
1,ω,ω2},

where ω = e2π
√
−1/3. A three-phase GCT consists of three

sequences, whose aperiodic autocorrelations sum-up to zero
except at zero shift. The three-phase alphabet has been at-
tracted tomultiple appplications because of its existancewith
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flexible length and smaller number of phase, which guaran-
tees its identifiability at the receiver. For example, binary
GCPs up to 10 have lengths of 2 and 10, while three-phase
GCTs with lengths of 2, 3, 5, 6, 7, 8 and 9 exist. In [15],
Avis gave the first complete counts of three-phase GCTs of
length up to 22 and conjectured that there is no three-phase
GCT with the length of N ≡ 4 (mod 6). In [16], Avis et
al. proved this conjecture. In order to find three-phase tri-
ads of length N ≡ 4 (mod 6), three-phase Z-complementary
triads (ZCTs) were proposed. In [17], three-phase ZCT and
almost-complementary triad (ACT)were constructedmainly
by indirect construction methods.

The construction method based on Boolean functions is
a direct construction and it is helpful for the rapid generation
used in several fields. In [18], a construction of GCP over
Z2k =

{
0,1, . . . ,2k − 1

}
for k ≥ 1 was provided based on

generalized Boolean functions. The q-ary Z-complementary
pairs (ZCPs) for q is even based on generalized Boolean
functions were constructed in [19], [20]. The construction
of Golay ZCZ sequence sets based on extended generalized
Boolean functions were proposed, in which the sequence
length and q were flexlible for q ≥ 2 [21]. In this letter,
we propose a direct construction of three-phase ZCTs with
flexible lengths based on extended Boolean functions. Our
construction can obtain the sequences of all lengths other
than powers of three.

The rest of this letter is organized as follows. Some
necessary definitions are introduced in Sect. 2. In Sect. 3,
a construction of ZCTs is proposed. Finally, concluding
remarks are drawn in Sect. 4.

2. Preliminaries

Definition 1 ([20]): Let a = (a0,a1, . . . ,aN−1) be a se-
quence of Zq values of length N , where ak is in the alphabet
Zq . The aperiodic autocorrelation function R of a at shift τ
is defined as

R(a; τ) =

{∑N−1−τ
k=0 ωak+τ−ak , 0 ≤ τ ≤ N − 1∑N−1+τ
k=0 ωak−ak−τ , −N + 1 ≤ τ < 0

(1)

where ω = e2π
√
−1/q .

Definition 2 ([17]): Let a, b and c be three sequences of
length N . The (a, b, c) is said to be a Z-complementary triad
denoted by (N, Z)-ZCT, if

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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R(a; τ) + R(b; τ) + R(c; τ) =

{
0, 0 < τ < Z
3N, τ = 0

(2)

where Z is zero correlation zone (ZCZ)width. When Z = N ,
the triad (a, b, c) is known as a GCT.

Definition 3 ([23]): For a sequence a = (a0,a1, . . . ,aN−1)
over Z3, the OFDM signal of N subcarriers is the real part
of

Sa(t) =
N−1∑
k=0

ωak e2π
√
−1kt,0 ≤ t < 1.

The instantaneous-to-average power ratio (IAPR) of a is

IAPRa(t) = |Sa(t)|2/N .

And the PAPR of sequence a is defined to be

PAPR(a) = max
0≤t<1

IAPRa(t).

Let G = (a, b, c) be a three-phase complementary triad with
length N . The PAPR of G is given by

PAPR(G) = max{PAPR(a),PAPR(b),PAPR(c)}.

Then we can obtain

PAPR(G) ≤ 3 +
2
N

N−1∑
τ=1
|R(a; τ) + R(b; τ) + R(c; τ)|.

Definition 4 ([22]): An extended Boolean function (EBF)
is a function f : Znq → Zq defined on n variables
(x1, x2, . . . , xn) where xi ∈ Zq for i = 1,2, . . . ,n. The prod-
uct of s distinct variables is defined as a monomial of de-
gree s. Let f =

(
f0, f1, . . . , fqn−1

)
be a sequence of length

qn related to an extended Boolean function f by letting
fi = f (i1, i2, . . . , in) where (i1, i2, . . . , in) is the representa-
tion of integer i =

∑n
h=1 ihqh−1 and i1 is the least significant

bit. Additionally, we denote the first N elements of the trun-
cated sequence f by f (N ). For simplicity, we do not write
the superscript of f (N ) in the following when the length N
of the sequence has been specified.

In this letter, we set q = 3.

3. Proposed ZCTs Based on EBF

In this section, we will introduce two lemmas firstly, which
are important in proving Theorem 1.

Lemma 1: With an integer k, 3n−1 +
∑n−1
µ=h+1 pµ3µ−1 ≤

k ≤ 3n−1 +
∑n−1
µ=h+1 pµ3µ−1 + 3s where 1 ≤ s ≤ n − 2, pµ ∈

{0,1,2}, n ≥ 2 and h > s, let (k1, k2, . . . , kn) be the ternary
representation of k. If k ′ is an integer with ternary rep-
resentation as (k1, k2, . . . , ku−1, β + ku, ku+1, . . . , kn), where
β ∈ {1,2} and u ≤ s, thenwe obtain 3n−1+

∑n−1
µ=h+1 pµ3µ−1 ≤

k ′ ≤ 3n−1 +
∑n−1
µ=h+1 pµ3µ−1 + 3s − 1.

Proof: Let (l1, l2, . . . , ln) be the ternary representation of

l and l = k−3n−1−
∑n−1
µ=h+1 pµ3µ−1. Therefore, 0 ≤ l ≤ 3s−1

which implies lr = 0 for r ≥ s + 1. Let
(
l ′1, l
′
2, . . . , l

′
n

)
be the ternary representation of l ′ and l ′ = k ′ − 3n−1 −∑n−1
µ=h+1 pµ3µ−1. Due to the fact that k and k ′ vary in only

one position u ≤ s, l and l ′ are also differ in only one position
u. Thenwe can obtain l ′r = lr = 0 for r ≥ s+1, which implies
0 ≤ l ′ ≤ 3s − 1. Hence, we have 3n−1 +

∑n−1
µ=h+1 pµ3µ−1 ≤

k ′ ≤ 3n−1 +
∑n−1
µ=h+1 pµ3µ−1 + 3s − 1.

Lemma 2: For the nonnegative integers s < h < n, let
(k1, k2, . . . , kn) and (l1, l2, . . . , ln) be the ternary representa-
tions of k and l, respectively. Suppose kr = 0, lr = β
(β ∈ {1,2}) for some r > h and ki = li for i = 1,2, . . . , s, h,
and r+1,r+2, . . . ,n. Therefore, we obtain l−k ≥ 2·3h−1+3s .

Proof: The result that we obtain is l − k = β · 3r−1 +∑r−1
i=s+1,i,h (li − ki)3i−1 ≥ 3r−1−

∑r−1
i=s+1,i,h 2 · 3i−1 = 3r−1−

3r−1 + 3s + 2 · 3h−1 ≥ 3s + 2 · 3h−1.

Theorem 1: For the integers s < h < n, let π be a permu-
tation of {1,2, . . . , h} with π(s + 1) = h. Then we have the
extended Boolean function

f =
h−1∑
k=1

dk xπ(k)xπ(k+1) +

n−1∑
k=s+1

ck ,3xk xn

+

n∑
k=1

ck ,2x2
k +

n∑
k=1

ck ,1xk + c′,

(3)

where dk ∈ {1,2} and ck ,1, ck ,2, ck ,3, c′ ∈ Z3. If s = 0 or
{π(1), π(2), . . . , π(s)} = {1,2, . . . , s} for a given integer s ≤
n−2, then the triad (a = f , b = f + xπ(1), c = f +2xπ(1)) is a
three-phase ZCT of length N = 3n−1 +

∑n−1
µ=h+1 pµ3µ−1 + 3s

with ZCZ width Z = 2 · 3h−1 + 3s , where pµ ∈ {0,1,2}.

Proof: For a ZCT (a, b, c)with ZCZ width 2 ·3h−1+3s ,
we have to show that for 0 < τ < 2 · 3h−1 + 3s ,

R(a; τ) + R(b; τ) + R(c; τ)

=

N−1−τ∑
k=0

ωak+τ−ak + ωbk+τ−bk + ωck+τ−ck = 0.
(4)

For an integer k, let l = k + τ, and set (k1, k2, . . . , kn)
and (l1, l1, . . . , ln) to the ternary representation vectors of k
and l, respectively. Four cases are considered to show that
R(a; τ) + R(b; τ) + R(c; τ) = 0 within the ZCZ width. For
the convenience of proof, we begin the discussion with the
length of N = 3n−1 +

∑n−1
µ=h+1 2 · 3µ−1 + 3s .

Case 1: Suppose kπ(1) , lπ(1), we obtain (ωal−ak+ωbl−bk+

ωcl−ck )/ωbl−bk = ω−lπ(1)+kπ(1) +ωlπ(1)−kπ(1) + 1 = ω0 +ω1 +
ω2 = 0. Therefore, we have ωal−ak + ωbl−bk + ωcl−ck = 0.

Case 2: Assume kπ(1) = lπ(1), kn = ln = 1 and kh+µ =
lh+µ = 2 for all µ = 1,2, . . . ,n − h − 1. Then we have
kr = 0 for r = s + 1, s + 2, . . . , h. Let u be the smallest
integer that makes kπ(u) , lπ(u) and we get π(u − 1) ≤ s.
Let k ′ and k ′′ be two integers different from k in only one
position, i.e., k ′

π(u−1) = 1 + kπ(u−1), k ′′
π(u−1) = 2 + kπ(u−1).
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Similarly, we let l ′ and l ′′ differ from l in only one position,
i.e., l ′

π(u−1) = 1+ lπ(u−1), l ′′
π(u−1) = 2+ lπ(u−1). Then we have,

l ′ = k ′+τ and l ′′ = k ′′+τ. According toLemma1, we obtain
k ′, k ′′, l ′, l ′′ ≤ 3n−1 +

∑n−h−1
µ=1 2 · 3h+µ−1 + 3s − 1 ≤ N − 1.

Then we have

ak′ − ak =du−2(kπ(u−2)k ′π(u−1) − kπ(u−2)kπ(u−1))

+ du−1(k ′π(u−1)kπ(u) − kπ(u−1)kπ(u))

+ cπ(u−1),2((k ′π(u−1))
2
− (kπ(u−1))

2)

+ cπ(u−1),1(k ′π(u−1) − kπ(u−1))

=du−2kπ(u−2) + du−1kπ(u) + cπ(u−1),1

+ cπ(u−1),2(1 + 2kπ(u−1)).

Threrfore, ak − al − ak′ + al′ = du−2(lπ(u−2) − kπ(u−2)) +
du−1(lπ(u)−kπ(u))+2cπ(u−1),2(lπ(u−1)−kπ(u−1)) = du−1(lπ(u)−
kπ(u)) and ak − al − ak′′ + al′′ = 2du−1(lπ(u) − kπ(u)).
Since du−1(lπ(u) − kπ(u)) =1 or 2 (mod 3) and 2du−1(lπ(u) −
kπ(u)) = 2 or 1 (mod 3). We obtain (ωal−ak +

ωal′−ak′ + ωal′′−ak′′ )/ωal−ak = 1 + ωal′−ak′−(al−ak ) +

ωal′′−ak′′−(al−ak ) = ω0 + ω1 + ω2 = 0 implying ωal−ak +

ωal′−ak′ + ωal′′−ak′′ = 0. Similarly, we have ωbl−bk +

ωbl′−bk′+ωbl′′−bk′′ = 0 andωcl−ck +ωcl′−ck′+ωcl′′−ck′′ = 0.
Then we get

ωal−ak + ωal′−ak′ + ωal′′−ak′′ + ωbl−bk + ωbl′−bk′

+ ωbl′′−bk′′ + ωcl−ck + ωcl′−ck′ + ωcl′′−ck′′ = 0.
(5)

Case 3: Assume kπ(1) = lπ(1), kh+µ = lh+µ for all µ =
1,2, . . . ,n − h except for those µ with kh+µ = lh+µ , 2. Let
µ′ be the largest number that kh+µ = lh+µ , 2 except for
µ = n − h. We set u, k ′, k ′′, l ′ and l ′′ to be the integers
in Case 2. We can obtain π(u − 1) < h + µ′ − 1. If kn =
ln = 0, it is obvious that k ′, k ′′, l ′, l ′′ < N − 1. When
kn = ln = 1, 3n−1 +

∑n−h−1
µ=µ′+1 2 · 3h+µ−1 ≤ k, l ≤ 3n−1 +∑n−h−1

µ=µ′+1 2 · 3h+µ−1+3h+µ′−1−1. According to Lemma 1, we
obtain k ′, k ′′, l ′, l ′′ ≤ 3n−1 +

∑n−h−1
µ=µ′+1 2 · 3h+µ−1 + 3h+µ′−1 −

1 = N −
∑µ′−1
µ=1 2 · 3h+µ−1 − 3h+µ′−1 − 3s − 1 < N . Hence,

Eq. (5) is also valid.

Case 4: Assume kπ(1) = lπ(1), kr = 0, lr = β, β ∈ {1,2}
and kr+1 = lr+1, . . . , kn = ln for some r > h. Let u, k ′,
k ′′, l ′ and l ′′ be the integers in Case 2. Hence, we obtain
u ≤ s + 1. Otherwise, if u > s + 1, then kr = lr for
r = 1,2, . . . , s, h. And then l − k ≥ 2 · 3h−1 + 3s according to
Lemma 2, which is contrary to the assumption. Hence, we
obtain u ≤ s + 1. As {π(1), π(2), . . . , π(s)} = {1,2, . . . , s},
we have π(u − 1) ≤ s. According Lemma 1, we obain
k ′, k ′′, l ′, l ′′ ≤ 3n−1 +

∑n−1
µ=h+1 2 · 3h+µ−1 + 3s − 1 = N − 1.

Therefore, Eq. (5) also holds.

Through Case 1 to Case 4 above, we can obtain that
(a, b, c) is a ZCT of length 3n−1 +

∑n−1
µ=h+1 2 · 3µ−1 + 3s

with ZCZ width 2 · 3h−1 + 3s . For the proof of length
3n−1 +

∑n−1
µ=h+1 pµ3µ−1 + 3s , where pµ is some other value, a

similar proof can be made by modifying the corresponding
values in Case 2 and Case 3 accordingly.

Remark 1: The ZCT constructed in Theorem 1 can exist
for all lengths other than powers of three. Additionally, in
order to obtain a larger ZCZwidth, we set h = n−1, s = n−2
and pµ = 0, for µ = 0,1, . . . ,n − 1 in Theorem 1. Thus, we
can obtain ZCTs of length N = 3n−1 + 3n−2 with ZCZ width
Z = 3n−1. And the width ratio of ZCZ can reach a maximum
of 3/4.

Corollary 1: When h = n − 1 and pµ = 0, for all µ, the
PAPR upper bound for the ZCTs obtained through Theorem
1 is 5.

Proof: According to the proof of Theorem 1, Case 4 is
the only case that needs to be considered here. In Case 4, we
need to make π(u − 1) ≤ s. Since {π(1), π(2), . . . , π(s)} =
{1,2, . . . , s}, we have u − 1 ≤ s and u ≤ s + 1. It can be
obtained R(a; τ) + R(b; τ) + R(c; τ) , 0 while kπ(i) = lπ(i)
for i = 1,2, . . . , s + 1. So the number of τ is 3n−s−2 such
that R(a; τ) + R(b; τ) + R(c; τ) , 0. Additionally, when
R(a; τ) + R(b; τ) + R(c; τ) , 0, the maximum value for
|R(a; τ) + R(b; τ) + R(c; τ)| is 3s+1. Therefore,

PAPR(G) ≤ 3 +
2
N

N−1∑
τ=1
|R(a; τ) + R(b; τ) + R(c; τ)|

≤ 3 +
2
N
· 3s+1 · 3n−s−2 = 3 + 2 ·

3n−1

N
≤ 5.

Example 1: Taking n = 4, h = 3, s = 2, π = (2,1,3),
d1 = 2, d2 = 1, ck ,1 = 0, ck ,2 = 0, ck ,3 = 0 and pµ = 0 for
all k and µ, by the construction in Theorem 1 the extended
Boolean function is f = 2x2x1+ x1x3. Since we have a three
phase (36,27)-ZCT. And the PAPRs of a, b and c are 4.000,
4.019 and 4.020, respectively. We illustrate their IAPRs in
Fig. 1.

Table 1 illustrates the comparisons of our construction
with existing constructions about 3-phase ZCTs and binary
ZCPs. Our proposed EGBF direct construction methods
achieve the advantages of more flexible lengths and larger
ZCZ ratios simultaneously.

Fig. 1 The IAPRs of a, b, and c given in Example 1.
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Table 1 A comparison of the main parameters.

4. Conclusion

In this letter, a construction based on extended Boolean func-
tions has been presented for the three-phase ZCTs with all
lengths other than powers of three. The width ratio of ZCZ
can also reach the value 3/4, which is a relatively large value
obtained through existing direct methods in the literature. In
addition, the upper bound of the PAPR for the constructed
ZCTs has been obtained in Corollary 1.
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