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A Novel Frequency Hopping Prediction Model Based on TCN-GRU

Chen ZHONG†, Chegnyu WU††, Xiangyang LI†††, Ao ZHAN††a), Nonmembers,
and Zhengqiang WANG††††, Member

SUMMARY A novel temporal convolution network-gated recurrent
unit (NTCN-GRU) algorithm is proposed for the greatest of constant false
alarm rate (GO-CFAR) frequency hopping (FH) prediction, integrating
GRU and Bayesian optimization (BO). GRU efficiently captures the seman-
tic associations among long FH sequences, and mitigates the phenomenon
of gradient vanishing or explosion. BO improves extracting data features by
optimizing hyperparameters besides. Simulations demonstrate that the pro-
posed algorithm effectively reduces the loss in the training process, greatly
improves the FH prediction effect, and outperforms the existing FH se-
quence prediction model. The model runtime is also reduced by three-
quarters compared with others FH sequence prediction models.
key words: Frequency hopping prediction, constant false alarm rate, tem-
poral convolution network-gated recurrent unit, Bayesian optimization

1. Introduction

Frequency-hopping (FH) communication is widely
used in common anti-jamming communications due to its
strong anti-interference ability, ease of multi-access net-
working, and superior security[1]. Accurate tracking of in-
terference is achieved by identifying and distinguishing dif-
ferent FH code sequences, intelligently capturing FH se-
quences, projecting the FH center frequency at future mo-
ments[2]. How to improve FH sequence prediction is thus a
hot topic in academia and industry recently.

With the continuous development of deep neural net-
work, a long short-term memory (LSTM) model is proposed
to realize high-frequency sequence prediction, which pre-
dicts the frequency point by point based on historical high-
frequency frequency[3]. In [4], they perform phase space
reconstruction of FH sequences generated by three chaotic
maps, and then establish a TCN-based sequence prediction
model to realize FH sequence prediction in phase space.
However, the above works are researched under ideal en-
vironmental conditions.

Terrain, wind speed, humidity and other factors deteri-
orate the accuracy of FH signal detection in realistic scenar-
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ios. Constant false alarm rate (CFAR) detection algorithm
is proposed to detect FH for eliminating Non-stationary and
non-uniform complex clutter[5]. Deng et al.[6] employ
CFAR algorithm, and propose TCN modeling and BO for
predict FH sequences, which has noise tolerance, stable gra-
dients and faster training speed. The greatest of constant
false alarm rate detection (GO-CFAR) algorithm is proposed
as a well detecting mechanism for extracting targets in clut-
ter and noise[7]. The algorithm achieves good detection per-
formance in both clutter edges and uniform clutter environ-
ments. In this letter, we propose a novel temporal convo-
lution network-gated recurrent unit (NTCN-GRU) model,
employing the TCN model, integrating a gated recurrent
unit (GRU) for a based GO-CFAR FH system. In the pro-
posed NTCN-GRU, the GRU model learns the long-term
dependency and temporal dynamics of the sequence, and
Bayesian optimization (BO) is used to optimize the model
hyperparameters to improve the prediction accuracy. More-
over, self-attention mechanism captures the internal correla-
tion of FH data or features. Simulation results show that the
proposed algorithm model improves the FH prediction and
achieve large performance gain over other algorithms with
lower computational complexity.

2. System model

The total FH sequence is assumed to be x1:N with
length N, including input and predicted FH sequence, shown
in Fig.1. The system model is denoted as:

x̂(2i−1)T+1:2iT = Pred(x2(i−1)T+1:(2i−1)T )
i ∈ (1, 2, ..., ⌊N/2T ⌋)

(1)

where Pred(·) is the FH prediction method.

N

......
T T

: The input sequence of FH : The predicted sequence of FH

T

Fig. 1 System model

In Fig.1, the predicted FH sequences in duration T are
predicted per input FH sequence of duration T , and then
⌊N/2T ⌋ durations of pridicted FH are obtained.
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3. Proposed NTCN-GRU Model

As shown in Fig.2, NTCN-GRU is proposed for GO-
CFAR detection, which includes TCN, GRU, BO and self-
attention mechanism. The BO optimizes the hyperparam-
eters of the TCN-GRU model, i.e., kernel size, number of
kernels, dropout factor and number of stacks, the optimized
hyperparameters are organized into set s, S is the hyperpa-
rameter search space, sϵS. The self-attention mechanism
captures the internal correlation of data or features, reduc-
ing the dependence on external information.

FH Sequence

Predicted Sequence

Residual clock(k,d)

Residual clock(k,d)

Residual clock(k,d)

···

GRU

Self-Attention

BO 
s*=arg min loss

GO-CFAR 

NTCN-GRU

s

s*

Fig. 2 Model diagram of NTCN-GRU

3.1 TCN

TCN uses a 1-D fully convolution network and padding
to ensure that the duration of each hidden layer is equal to
that of the input layer. Causal convolution can ensure that
future information does not leak from the past[8]. The se-
quence model is requested to meet two principles, i.e., 1)
the output duration of the model is equal to the input dura-
tion; 2) when processing the current time step, the leaked
information of the future time step cannot be known.

Output

layer1

Input

layer2

layer3

Fig. 3 1D causal convolution
The input sequence x1:T includes FH data from moment

1 to T , where T is assumed to be the length of the input FH.
Without loss of generality, we also assume the length of the
predicted FH is T

As shown in Fig.4, in order to realize Eq.1 in this paper,
the T TCN models are run to obtain the predicted sequence
x̂T+1:2T .
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Fig. 4 TCN prediction process

For simplicity, we show the TCN process of getting the
prediction sequence x̂T+1:2T by using input sequence x1:T in
Fig.4, x̂T+1:2T and ek−1 = x̂k:T − xk:T are employed to input
the next TCN for more accurate prediction. The prediction
by using TCN are expressed as{

(e1, x̂T+1) = TCN(x1:T , e0) k = 1
(ek, x̂T+k) = TCN(xk:T , x̂T+1:T+k−1, ek−1) k ∈ [2,T ]

(2)

where e0 = 0.

3.2 GRU

Gated recurrent unit (GRU) is a commonly used gated
Recurrent Neural Network (GRNN) that controls the infor-
mation flow by means of learnable gates. The GRU learns
the long term dependencies and temporal dynamics of the
FH sequences, which can provide information about the fre-
quency changes. Meanwhile, GRU has fewer parameters
than LSTM, which usually requires less computation during
training[9].

For simplicity, we define xi:i as xi. The input of GRU
is the FH data xi and hi−1 , and the output is state hi, which
is denoted as{

hi = GRU(xi, hi−1) i ∈ (1, 2, ...,T )
hi = GRU(x̂i, hi−1) i ∈ (T + 1,T + 2, ..., 2T )

(3)

Fig.5 shows the GRU processing for input sequence
x1:T and predicted sequence x̂T+1:2T .

 

 

: The FH data

 

 

 : The hidden state

GRU GRU GRU GRU GRU GRUGRU GRU

Fig. 5 The GRU processing for x1:T and x̂T+1:2T

GRU consists of a reset gate Ri and an update gate
Zi, which is used to capture short-term dependencies in FH
sequences and capture long-term dependencies in FH se-
quences respectively. Ri and Zi are shown as follows
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Fig. 6 GRU model

Ri = σ
(
Wr · [hi−1:i−1, xi]

)
Zi = σ

(
Wz · [hi−1:i−1, xi]

) (4)

σ is a sigmoid function that changes the data to a value in
the range [0, 1]. Linear transformation of the matrix formed
by splicing xi and hi−1 by the weight matrix Wr and Wz.

As shown in Fig.6, h̃i is a candidate hidden state, which
is used to assist the hidden state calculation afterwards. The
candidate hidden state for time step i is

h̃i = tanh
(
Wh · [Ri ∗ hi−1, xi]

)
(5)

where Wh is the corresponding weight matrix and tanh
changes the data to values in the range [-1,1].

hi of the current time step can be obtained after the
above calculations.

hi = (1 − Zi) ⊙ hi−1 + Zi ⊙ h̃i (6)

The ⊙ operation multiplies the corresponding elements in
the matrix.

3.3 Bayesian Optimization

Then set s is input into the model for prediction. The
computed loss is finally returned to the BO module for iter-
ative optimization. The optimization is formulated as

s∗ = arg min loss (7)
loss = MSE(e) (8)

where Preds is the predicted sequence of the corresponding
set of hyperparameters. The BO process is shown as Algo-
rithm 1.

Algorithm 1 BO
1: Input:S,GP
2: D←InitSample(Pred,S)
3: for i← |D| do
4: p(losss|s,D)← FitModel(GP,D)
5: s∗ ← arg maxsϵSEI(s, p(losss|s,D))
6: losss∗ ← Pred(s∗)
7: D← D ∪ (s∗, losss∗ )
8: end for

Assume that the agent model for Bayesian hyperpa-
rameter optimization is GP (Gaussian Process)[10]. Enter

the set of hyperparameter intervals S as well as GP.Get the
initialization dataset D by InitSample(·). By randomly se-
lecting the hyperparameter values in S several times, and
evaluating each set of hyperparameters with Pred, we get
the corresponding evaluation result loss, deposit the combi-
nation of (s, loss) into D. The initial dataset D is given by
the following equation

D =
{
(s1, losss1 ), (s2, losss2 ), ...

}
(9)

Assume the loss obeys a Gaussian distribution[11]

losss ∼ N(µs, σ
2
s) (10)

In (10), we obtained the mean µs and variance σ2
s of

the loss by the following two equations

µs = k(s)T (k + σ2
N I)−1losss (11)

σ2 = k(s, s) − k(s)T (k + σ2
N I)−1k(s) (12)

where I is the unit matrix, k is the covariance function, and
k(s) is the Euclidean distance between the set of hyperpa-
rameters generated.

For reducing the amount of computational data, the
number of prescribed iterations for a given BO is calculated
with the following

p(losss|s,D)← FitModel(GP,D) (13)

The acquisition function is employed to equalize the
ratio between the mean and the variance to find the optimal
value of this hyperparameter. Capturing the ratio between
mean and variance by EI, which is given by the formula

EI(s) =
(
lossmin − µ(s)

)
Φ

(
lossmin − µ(s)
σ(s)

)
+σ(s)ϕ

(
lossmin − µ(s)
σ(s)

) (14)

µ(s) = max
(
0, lossmin − losss

)
(15)

where Φ(·) and ϕ(·) are the cumulative density (CDF) and
probability density (PDF) of the normal distribution.

Update the dataset D by depositing the trained hyper-
parameter combinations and corresponding metrics into the
dataset D.

3.4 Self-Attention Mechanism

Based on the self-attention mechanism, we achieve ma-
trix parallel computation using CUDA matrix multiplica-
tion, which can better utilize the hardware resources and
speed up the training of the model. The input matrix is di-
vided into multiple small matrices and assigned to different
threads for parallel computation.

The input FH sequence is linearly transformed to ob-
tain Q (query), K (key) and V (value) matrices, the formula
is as follows
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Fig. 7 CUDA matrix multiplication

Attention(Q,K,V) = S o f t max
(

QKT

√
dk

)
V (16)

where dk is the dimension size of K.

4. Simulation

The FH prediction simulation experiments were con-
ducted with servers equipped with 64GB of RAM, AMD
Ryzen 95950X 16-core processors, GeForce RTX 4060Ti
and GeForce RTX 3060.The core of FH technology is to
generate FH sequence that meet the requirements, Logistic
chaotic mapping is the simplest and most effective chaotic
system [12], which is widely used in most chaotic encryp-
tion algorithms. In this letter, we generate pseudo-random
FH sequence based on Logistic mapping, defined as

f (xi) = r · xi−1 · (1 − xi−1) (17)

where xi is the FH sequence value at moment i, and r is
a control parameter, when 3.5699456< µ ≤4, the Logistic
mapping has chaotic nature.

We use logistic mapping to generate FH sequence of
duration 5000, of which 80% is used as a training set and
20% as a test set.

Data analysis is affected by the fact that different as-
sessment indicators have various scales and units of mea-
surement. In order to eliminate the effect of scales between
indicators, it is necessary to standardize the data, i.e., nor-
malize the data to between [0, 1]. The Z-value standardiza-
tion method is adopted to scale the data. The standardization
formula is as follows

x′ =
x − µ
σ

(18)

The root mean square error (RMSE) between the pre-
dicted sequence and the original sequence is taken as a cri-
terion for prediction performance as below

RMS E =

√
1
N

∑Ntest

i=1
(TCNxi−1 − xi)2 (19)

The optimal set of hyperparameters s∗ obtained by BO
update optimization is input into the test set, and the mean
square error (MSE) is calculated to evaluate the model per-
formance, s∗ as shown in the Table 1.

Table 1 Model Optimal Hyperparameters

Hyperparameters Value
Kernel size 12

Number of kernels 37
Dropout factor 0.0411315

Number of stacks 2

Due to the fact that BO requires constant updating iter-
ations, the time cost required is high. In order to solve this
problem, we adopt the GRU structure. GRU is an improve-
ment of LSTM, which not only simplifies the structure, but
also improves the computational efficiency and better pre-
diction, solves the problem of local optimization to a certain
extent. As shown in Table 2 below, the running time of the
model rises significantly after adopting BO, while the GRU
structure can reduces the running time and improve the pre-
diction efficiency.

Table 2 Running time of different models

Model Runtime(s)
GRU 75.607924
TCN 32.321640

TCN+GRU 50.698445
TCN+BO 5051.98436

NTCN-GRU 1459.65561

Fig.8 shows the RMSE comparison results of the model
NTCN-GRU with other FH sequence prediction models.
With the same dataset, both the GRU and BO have an ef-
fect on FH sequence prediction. The NTCN-GRU model
training is the best, GRU can reduce the model training time
while ensuring the training efficiency and effectiveness.

GRU LSTM TCN TCN+BO TCN-GRU NTCN-GRU
Models

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
M

SE

Comparison of RMSE of different models

Fig. 8 Comparison of RMSE of different models

As shown in Fig.9, the actual target sequence is the red
solid line. The TCN+GRU model with orange dots predicts
the overall trend of the FH sequence more accurately, but
the prediction accuracy is not high; the TCN+BO shown in
dark blue outperforms the TCN+GRU, but the overall accu-
racy is still not high and the error is large; the NTCN-GRU
model shown in light blue is the most effective, and the over-
all trend is basically overlapped with the trend of the actual
FH sequence, and the accuracy is significantly higher than
the rest of the comparison models.

5. Conslusion

In this letter, a NTCN-GRU modeling algorithm is pro-
posed for the FH sequence prediction problem. First, the
FH sequences are detected by the GO-CFAR algorithm to
reduce the impact of interfering factors on FH prediction.
Then, some hyperparameters of the prediction model are op-
timized with BO. The self-attention mechanism is employed
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*
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Fig. 9 Comparison of different model predictions

for solves the long-distance dependence problem by calcu-
lating the interactions between hopping frequencies. Sim-
ulation results show that NTCN-GRU improves the predic-
tion accuracy compared to the comparison model, and re-
duces the loss in the training process effectively as well.
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