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LETTER
Triangle Projection Algorithm in ADMM-LP Decoding of LDPC
Codes

Yun JIANG†, Huiyang LIU†, Xiaopeng JIAO††, Ji WANG†, and Qiaoqiao XIA†a), Nonmembers

SUMMARY In this letter, a novel projection algorithm is proposed in
which projection onto a triangle consisting of the three even-vertices closest
to the vector to be projected replaces check polytope projection, achieving
the same FER performance as exact projection algorithm in both high-
iteration and low-iteration regime. Simulation results show that compared
with the sparse affine projection algorithm (SAPA), it can improve the FER
performance by 0.2 dB as well as save average number of iterations by 4.3%.
key words: alternating direction method of multipliers (ADMM), low-
density parity-check (LDPC) codes, check polytope projection, triangle
projection algorithm

1. Introduction

Linear programming (LP) decoding of low-density parity
check (LDPC) codes was first proposed by Feldman in [1].
Limited by its high decoding complexity, LP decoding al-
gorithm was not widely used in the early days. Recently,
inspired by the idea of the alternating direction multiplier
method (ADMM) [2], Barman et al. proposed a linear pro-
gramming decoding algorithm based on the alternating di-
rection multiplier method (ADMM-LP) [3], reducing the
complexity of LP decoding algorithm to a certain extent.
However, compared with the belief propagation (BP) de-
coding algorithm [4], ADMM-LP has poor decoding perfor-
mance at low signal-to-noise-ratios (SNRs). To enhance its
decoding performance, Liu et al. proposed an ADMM de-
coding algorithm using aweighted penalty function [5]. Ref-
erences [6] and [7] introduced deep learning into ADMM-
based decoder and provided a new idea forADMMdecoding.
Despite these improvements, a major drawback of ADMM-
LP decoding is that its decoding complexity is still high.

Simplifying the Euclidean projection onto check poly-
tope is an efficient way to reduce the computational complex-
ity of ADMM-LP. Zhang et al. proposed a simplification of
the Euclidean projection using cut search algorithm (CSA)
in [8]. G. Zhang et al. [9] transformed the complex pro-
jection onto a check polytope to projection onto a simplex.
Gensheimer et al. presented a reduced-complexity projection
algorithm relying on the findings that some components of
the input can be fixed to 0 or 1, while the remaining compo-
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nents have to be projected onto a smaller-dimensional even
or odd parity polytope [10].

Although the above exact projection algorithms have re-
duced the decoding complexity of ADMM-LP, there is still a
lot of room for improvement. Recently, approximate projec-
tion algorithms with lower complexity have been proposed
by scholars. Xia et al. proposed the even-vertex projection
algorithm (EVA) [11], [12] and the line-segment algorithm
(LSA) [13], [14], respectively projecting onto the closest
even-vertex and the line-segment consisting of the two clos-
est vertices of the polytope. Asadzadeh et al. proposed the
sparse affine projection algorithm (SAPA) [15], projecting
onto the affine hull of a small number of vertices of the poly-
tope. However, experiments show that these approximate
algorithms lose their accuracy in low-iteration regime.

In this work, by replacing line segment projection
with projection onto a triangle consisting of the three even-
vertices closest to the vector to be projected, we will pro-
pose a fast and highly accurate projection algorithm based
on LSA. Simulation results show that compared with LSA,
the proposed algorithm can improve the FER performance
by 0.5 dB as well as save average number of iterations by
11.0%, and compared with SAPA, the proposed algorithm
can improve the FER performance by 0.2 dB as well as save
average number of iterations by 4.3%.

2. Preliminaries

Consider an LDPC code C defined by an m × n parity
check matrix H. Let i ∈ I = {1,2,3 . . . ,n} and j ∈ J =
{1,2,3 . . . ,m} be the indexes of the columns and rows of
check matrix H, respectively. The degree of variable node
vi (check node cj) is denoted by di (dj). Let Nv(i) (Nc( j))
denotes the set of check nodes (variable nodes) adjacent to
variable node vi (check node cj).

Suppose a codeword x = {xi ∈ {0,1}|i ∈ I} is
transmitted over memoryless binary input output-symmetric
(MBIOS) channel and y = {yi |i ∈ I} is the received vector.
The LP decoding model based on ADMM with L2 penalty
is described as follows:

min
x
γT x − α ‖x − 0.5‖22

s.t . Pj x = z j, z j ∈ Pd j ,∀ j ∈ J
(1)

where γ = {γi |i ∈ I} represents the log-likelihood ratios
(LLRs) vector, the i-th entry of which is γi = log(Pr(yi |xi=0)

Pr(yi |xi=1) ).
Pj is a dj ×n transfer matrix and Pd j is the convex hull of all
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permutations of a length-dj binary vector with even number
of 1s, and it is called the check polytope. z j is the auxiliary
vector.

The augmented Lagrangian function corresponding to
formulation (1) and the update rule for z are as follows:

Lµ(x, z,λ) = γT x+
∑
j∈J

λ j
T (Pj x− z j)+

µ

2

∑
j∈J

Pj x− z j
2

2

− α ‖x − 0.5‖22

(2)

z j
k+1 =

∏
Pdj

(Pj x
k+1 + λkj /µ) (3)

where λ j ∈ R
d j denotes the Lagrangian multiplier, µ > 0

is a positive penalty parameter, α > 0 is a positive penalty
parameter of L2 penalty, k ≥ 0 is the iteration number, and∏

Pdj
is the check polytope projection operation.

3. ADMM-LP Decoding Algorithm with Triangle Pro-
jection Algorithm

Recently, a large number of scholars have carried out research
on the Euclidean projection onto check polytope, proposing
various exact projection algorithms and approximate projec-
tion algorithms and improving the decoding performance of
ADMM-LP. In this section, we will propose TPA inspired
by LSA and illustrate it in detail.

3.1 LSA

Even-vertex algorithm (EVA) is the simplest way to replace
Euclidean projection with approximate projection but has
poor FER performance. To improve this defect, Xia et al.
proposed LSA, replacing check polytope projection with line
segment projection. For a given vector v , the odd-vertex
closest to v can be solved in accordance with the indica-
tor vector θV (referred in [8, Algorithm 2]), which can be
calculated as Algorithm 1, line 2-6, as follows:

Oi =

{
1, θV ,i = 1
0, θV ,i = −1

(4)

After identifying the odd-vertex closest to v , the two
even-vertexes closest to v can be obtained as follows:

A =

{
Oi, i , p
1 −Oi, i = p

B =

{
Oi, i , q
1 −Oi, i = q

(5)

where p and q are the indexes of the two elements closest to
0.5 in the vector v.

We can calculate the projection of v onto the line seg-
ment LAB by Algorithm 2 in [13].

3.2 TPA

Simulation results show that when combined with over-
relaxation method, LSA performs poorly in FER in low-
iteration regime. This is because that as an approximate

projection algorithm, the result of LSA is far away from
the accurate projection, and LSA requires more iterations to
converge.

Asadzadeh et al. proposed SAPA, projecting onto the
affine hull of a small number of vertices of the polytope.
Although SAPA has a similar FER performance as that of
CSA in high-iteration regime, it loses its accuracy in low-
iteration regime as the projection result of SAPA may not be
on the check polytope, creating some errors.

In order to make the projection more accurate, we try to
replace the line segment projection with the triangle projec-
tion. Similar to LSA, to determine a triangle only needs to
determine its three vertices, that is, to solve the three even-
vertices on the check polytope that are closest to v. They can
be obtained as follows:

A =

{
Oi, i , p
1 −Oi, i = p

B =

{
Oi, i , q
1 −Oi, i = q

C =

{
Oi, i , r
1 −Oi, i = r

(6)

where p, q, and r are the indexes of the three elements closest
to 0.5 in the vector v. Since A, B and C are only different
at p, q, and r , the projection on the triangle ABC can be
considered as the projection in 3D space.

The specific process of TPA algorithm is shown in Al-
gorithm 1. Above all, initialize the indicator vector θV . Then
determine the odd-vertex closest to v and subsequently ob-
tain the three even-vertices. Afterward we refer to the CSA
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Table 1 Number of operations required by four projection algorithms for
Pd j

.

algorithm in [8] to solve the projection coefficient η. Finally,
we obtain the elements at p, q, r in Algorithm 1, line 16 and
get the projection z.

The solution of η is shown in Algorithm 2.
Table 1 describes the number of comparisons, additions

and multiplications for CSA, LSA, SAPA and the proposed
TPA, respectively. The number of comparisons, additions
and multiplications for CSA, LSA and SAPA can be found
in the references [13] and [15]. There, d and λ respectively
denote the dimension of the polytope, and the number of
elements in set T (referred in [8, Algorithm 3, Line 1]). In
conclusion, the complexity of LSA, SAPA, and TPA are all
O(d), and the complexity of the proposed TPA is slightly
higher than that of LSA and SAPA while much lower than
that of CSA.

It should be noted that the dimension of v ′ in Algo-
rithms 2 is 3, and the sorting elements in T = {ti} only
requires 3 comparisons at most. Additionally, the loop oper-
ation introduced by Algorithm 2 can be expanded into three
separate computational processes, that is, there is no loop in
the proposed algorithm and the parallelization capability of
the proposed algorithm is almost the same with LSA.

4. Simulation Results

In our simulations, all the algorithms are implemented in
C programming language and run on a computer with Intel
Core i9 CPU (10 cores and 3.7GHz), 64GB main memory.
The additive white Gaussian noise (AWGN) channel with
binary phase shift keying (BPSK) modulation is supposed.
We consider four LDPC codes with different rates: the regu-

Table 2 The µ and α for each code.

Fig. 1 Frame error rate for CSA, LSA and SAPA for C2 for both low-
iteration (maximum set to 20) and high-iteration (maximum set to 100).

lar (1920, 640) rate-1/3 Gallager code C1, the regular (2640,
1320) rate-1/2 Margulis code C2, the irregular (576, 432)
rate-3/4 code C3 from IEEE 802.16e standard [16], and 5G-
NR LDPC code C4 with information length K = 320 and
rate R = 8/9. The check node degrees of C1-C4 are 4, 6,
{14,15}, and {3, 19}, respectively.

The ADMM-LP decoding algorithm with L2 penalty
combined with over-relaxation technique is adopted in the
simulations, and the relaxation coefficient is 1.9. Consider-
ing that CSA is an exact projection algorithm, we optimize
the parameters of CSA and apply them to all algorithms. The
parameters for each code are shown in Table 2, where µ > 0
is a positive penalty parameter of the augmented Lagrangian
function and α > 0 is a positive penalty parameter of L2
penalty function [5].

Figure 1 shows the comparison of the FER performance
of approximate projection algorithmsLSA, SAPAand the ex-
act projection algorithm CSA for C2 in low-iteration regime
and high-iteration regime, respectively. As shown in the
figure, BP algorithm has poor performance in the high-SNR
regime, that is it suffers from an “error floor” phenomenon at
high SNRs (occurs at about 2.2 dB), and although the FER
performance of LSA and SAPA are quite close to CSA in
the high-iteration regime, significant gaps are present in the
low-iteration regime. Specifically, when FER = 2×10−4, the
FER performance of SAPA is worse than that of CSA about
0.1 dB, and the FER performance of LSA is worse than that
of CSA about 0.25 dB.

In order to solve this problem, we propose TPA, whose
decoding performance can be almost the same as that of CSA
even in the low-iteration regime.

Figure 2 plots the FER performance for different pro-
jection algorithms for C1 − C4 for low-iteration. Obviously,
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Fig. 2 Frame error rate for CSA, LSA, SAPA and TPA for C1 −C4 for
low-iteration (maximum set to 20).

Fig. 3 The average number of iterations for CSA, LSA, SAPA and TPA
forC1 −C4 for low-iteration (maximum set to 20).

the proposed TPA outperforms LSA and SAPA, and its FER
performance is almost the same as that of the exact projection
algorithm CSA. For instance, for C1, when FER = 2× 10−5,
the FER performance of SAPA is worse than that of TPA
about 0.2 dB.

Figure 3 shows the average number of iterations for

Fig. 4 Average decoding time for CSA, LSA, SAPA and TPA forC1−C4.

different projection algorithms for C1 −C4 for low-iteration.
All data are acquired by generating at least 100, 000 frames
and average number of iterations is obtained by (total number
of iterations)/(total number of frames). Figure 3 suggests
that the average number of iterations of the decoder with the
proposed TPA is almost the same as that of the decoder with
CSA and less than that of the decoder with other algorithms,
which means that the proposed algorithm converges quickly.
For example, the average number of iterations is saved by
11.01% that of LSA, and 4.3% that of SAPA forC2 at 2.0 dB.

The comparison of average decoding time is plotted in
Fig. 4. It is noteworthy that although CSA has the fewest
iterations, its average decoding time is the longest because
of its much higher complexity than approximate projection
algorithms. Figure 4 shows that the average decoding time of
TPA is slightly more than that of SAPA and significantly less
than that of CSA. Specifically, for C2, the average decoding
time of TPA is 6.7% more than that of SAPA while 55.1%
less than that of CSA.

5. Conclusion

By replacing check polytope projection with projection onto
a triangle consisting of the three even-vertices closest to the
vector to be projected, we proposed a fast and efficient pro-
jection algorithm. While most of the existing approximate
projection algorithms sacrifice some decoding performance
in exchange for decoding efficiency, losing their accuracy
at low iterations, the FER performance of TPA is almost
the same as that of the exact projection algorithm for low-
iteration. Compared with SAPA, the proposed algorithm
can improve the FER performance by 0.2 dB as well as save



1368
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

average number of iterations by 4.3%.
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