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LETTER
Search for 9-Variable Boolean Functions with the Optimal
Algebraic Immunity-Resiliency Trade-Off and High Nonlinearity

Yueying LOU†, Nonmember and Qichun WANG† ,††a), Member

SUMMARY Boolean functions play an important role in symmetric ci-
phers. One of important open problems on Boolean functions is determin-
ing the maximum possible resiliency order of n-variable Boolean functions
with optimal algebraic immunity. In this letter, we search Boolean functions
in the rotation symmetric class, and determine the maximum possible re-
siliency order of 9-variable Boolean functionswith optimal algebraic immu-
nity. Moreover, the maximum possible nonlinearity of 9-variable rotation
symmetric Boolean functions with optimal algebraic immunity-resiliency
trade-off is determined to be 224.
key words: Boolean function, algebraic immunity, resiliency, nonlinearity

1. Introduction

Boolean functions play an important role in designing ci-
phers. When designing a Boolean function, the most im-
portant criteria are resiliency, algebraic degree, nonlinearity,
algebraic immunity, etc. It is well-known that the algebraic
immunity of n-variable Boolean functions is upper bounded
by d n2 e. One of important open problems is determining
the maximum possible resiliency order of Boolean functions
with optimal algebraic immunity [1], [2]. According to the
Siegenthaler’s bound, given an n-variable Boolean function
of algebraic degree ≥ 2, the sum of its algebraic degree
and resiliency order is at most n−1. Moreover, the algebraic
immunity of a Boolean function is less than or equal to its al-
gebraic degree. Therefore, the resiliency order of a Boolean
function with optimal algebraic immunity is bounded above
by n− 1− d n2 e. Then, a natural question is whether there ex-
ist n-variable Boolean functions with the optimal algebraic
immunity d n2 e and the maximum possible resiliency order
n − 1 − d n2 e.

In [10], the authors studied the rotation symmetric
Boolean functions on 5, 6, 7 variables by computer search
and found some functions with very good cryptographic
properties. In [4], the authors tested the algebraic immu-
nity of these functions and found 7-variable Boolean func-
tions with the optimal algebraic immunity 4 and the max-
imum possible resiliency order 2. Moreover, the authors
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constructed an 8-variable Boolean function with the opti-
mal algebraic immunity 4, the maximum possible resiliency
order 3, and a high nonlinearity 112.

There are exactly 2512 9-variable Boolean functions,
and 260 of them are rotation symmetric. In [6], 9-variable
rotation symmetric Boolean functions with nonlinearity 241
were found which solved an open question for almost three
decades. In [7], Kavut and Y Üucel found 9-variable Boolean
functions with nonlinearity 242 in the generalized rotation
symmetric class. However, all these functions are not bal-
anced. Up until now, we still do not knowwhether there exist
9-variable Boolean functions with nonlinearity greater than
242, even cannot determine the existence of 9-variable bal-
anced Boolean functions with nonlinearity greater than 240.
As for higher order nonlinearities, a recent paper proved
that the covering radius of the third-order Reed-Muller code
RM(3, 7) is 20 which solved an open problem for around
four decades [5].

It is natural to ask whether there exist 9-variable
Boolean functions with the optimal algebraic immunity, the
maximum possible resiliency order and a high nonrearity.
In this letter, we search Boolean functions in the rotation
symmetric class, and find 9-variable Boolean functions with
the optimal algebraic immunity 5, the maximum possible
resiliency order 3 and a high nonlinearity 224 which is the
maximum possible nonlinearity of 9-variable rotation sym-
metric Boolean functions with optimal algebraic immunity-
resiliency trade-off.

2. Preliminaries

Let Fn2 be the n-dimensional vector space over the finite
field F2. We denote by Bn the set of all n-variable Boolean
functions, from Fn2 into F2.

Any Boolean function f ∈ Bn can be uniquely repre-
sented as a multivariate polynomial in F2[x1, · · · , xn],

f (x1, . . . , xn) =
∑

K⊆{1,2,...,n}
aK

∏
k∈K

xk,

which is called its algebraic normal form (ANF). The al-
gebraic degree of f , denoted by deg( f ), is the number of
variables in the highest order term with nonzero coefficient.
A Boolean function is affine if there exists no term of de-
gree strictly greater than 1 in the ANF. The set of all affine
functions is denoted by An.

Let 1 f = {x ∈ Fn2 | f (x) = 1} be the support of aBoolean
function f , whose cardinality |1 f | is called the Hamming
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weight of f , and will be denoted by wt( f ). The Hamming
distance between two functions f and g, denoted by d( f , g),
is the Hamming weight of f + g. We say that an n-variable
Boolean function f is balanced if wt( f ) = 2n−1.

The nonlinearity of f ∈ Bn is

nl( f ) = min
g∈An

d( f , g),

which is bounded above by 2n−1 − 2n/2−1, and a function is
said to be bent if it achieves this bound.

For any f ∈ Bn, define AN( f ) = {g ∈ Bn | g ,
0 and f ∗ g = 0}. The algebraic immunity of f , denoted by
AI( f ), is defined as

AI( f ) = min{deg(g) | g ∈ AN( f ) ∪ AN( f + 1)}.

It is known that the algebraic immunity of an n-variable
Boolean function is bounded above by d n2 e [3], [8].

The Walsh transform of a given function f ∈ Bn is the
integer-valued function over Fn2 defined by

W f (ω) =
∑
x∈Fn2

(−1) f (x)+ω ·x,

where ω · x is the usual inner product. It is easy to see that
a Boolean function f is balanced if and only if W f (0) = 0.

Let f ∈ Bn. f is called resilient of order d if and only
if ∑

x∈Fn2

(−1) f (x)+w ·x = 0,

for any w ∈ Fn2 satisfying 0 ≤ wt(w) ≤ d [1], [2], [9], [12].
f ∈ Bn is a rotation symmetric Boolean function

(RSBF) if for each input x ∈ Fn2 , f (ρ(x)) = f (x), where
ρ(x1, x2, . . . , xn) = (x2, . . . , xn, x1). A partition of inputs can
be generated by Gn(x) = ρk(x) (k = 1,2, . . . ,n), and the
number of partitions is denoted by gn. Let ϕ(k) be Euler’s
function. It is known that the number of n-variable RSBFs
is 2gn , where

gn =
1
n

∑
k |n

ϕ(k)2n/k .

A partition can be represented by its representative el-
ement Λn,i , which is the lexicographically first element be-
longing to the partition. The rotation symmetric truth table
(RSTT) of an RSBF f is denoted by the string

[ f (Λn,0), f (Λn,1), . . . , f (Λn,gn−1)].

The ANF of an RSBF can be divided into some par-
titions which can also be represented by its representative
element Λn,i associated with a monomial. If there is a ‘1’ in
the corresponding position of Λn,i = (x1, . . . , xn), then the
variable is present in the monomial.

The gn×gnmatrix nA for an n-variableRSBF is defined
as [11]

nAi, j =
∑

x∈Gn(Λn ,i )

(−1)x ·Λn , j .

The Walsh spectra of an RSBF can be calculated from the
RSTT as

W f (Λn, j) =

gn−1∑
i=0
(−1) f (Λn ,i )

nAi, j .

Moreover, the gn × gn matrix nB is defined as

nBi, j =
⊕

h∈Gn(Λn , j )

h(Λn,i),

where Λn,i = (x1, . . . , xn) is a representative element,
Gn(Λn, j) is a partition whose elements are monomials and
Λn, j is the representative monomial. This matrix can be
used to deduce the RSTT of an RSBF.

3. Search for 9-Variable Boolean Functions with the
Optimal Algebraic Immunity-Resiliency Trade-Off
and High Nonlinearity

Let f ∈ B9. It is well known that AI( f ) ≤ 5, and the sum of
deg( f ) and the resiliency order is at most 8, according to the
Siegenthaler’s bound. Since AI( f ) ≤ deg( f ), if AI( f ) = 5,
then deg( f ) ≥ 5 and the resiliency order of f is at most
3. In the following, we will search for 9-variable 3-resilient
Boolean functions f with AI( f ) = 5 and a high nonlinearity
in the RSBF class. In this case, 5 = AI( f ) ≤ deg( f ) ≤
8− 3 = 5. That is, f must be of degree 5. Since the constant
term of f has no effect on the considered properties, we
always set it to be 0.

Clearly, there exist 1 partition of Hamming weight one,
4 partitions of Hamming weight two, 10 partitions of Ham-
mingweight three, 14 partitions ofHammingweight four and
14 partitions of Hammingweight five. Since deg( f ) = 5, the
search space of our RSBFs on 9 variables is of size around
21+4+10+14+14 = 243.

We sort the rows and columns of 9B60×60 by the Ham-
ming weight of the representative terms, and consider the
sub-matrix 9B60×43 whose columns correspond to the rep-
resentative terms in the ANF of degree between 1 and 5,
which can be used to compute the RSTT for a RSBF of de-
gree 5. We divide the matrix vertically into 3 parts: the first
15 columns (corresponding to the representative terms in the
ANF of degree between 1 and 3), the next 14 columns (cor-
responding to the representative terms of degree 4) and the
last 15 columns (corresponding to the representative terms
of degree 5). A randomly chosen 9-variable RSBF of de-
gree 5 corresponds to some columns of 9B60×43 which can
be represented by a vector of integers (b0, b1, b2), where
0 ≤ b0 ≤ 215 − 1, 0 ≤ b1 ≤ 214 − 1 and 1 ≤ b2 ≤ 214 − 1.
We divide the matrix horizontally into 4 equal parts and
pre-compute the xor of each section for each input which is
stored in the three-dimensional array B[3][4][215]: 3 verti-
cal sections, 4 horizontal sections and all the possible chosen
columns (15 or 14 bits).
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The matrix 9A60×60 is divided horizontally into 4 sec-
tions, each of 15 rows, which can be represented by a vector
of integers (a0, a1, a2, a3), where 0 ≤ ai ≤ 215−1. The sum
of the rows is pre-computed for each section and is stored
in the three-dimensional array A[4][215][60]: 4 sections, 215

possible inputs and 60 columns. We then search for the
9-variable RSBFs satisfying the following condition

Walf (i) =
{

0 if 0 ≤ i ≤ 15,
≤ M if 16 ≤ i ≤ 59,

where M is the least number such that there exists a 9-
variable RSBF satisfying the condition. We design a search
algorithm as the following Algorithm 1 to find 9-variable
RSBFs with the resiliency order 3 and a high nonlinearity.

Using Algorithm 1, we perform an exhaustive search

in 48 hours on a 3.2GHz computer with 8GB of RAM,
and find that there does not exist any 9-variable RSBF with
the resiliency order 3 and the nonlinearity greater than 224.
Moreover, there are exactly 235362 9-variable RSBFs with
the resiliency order 3 and the nonlinearity 224. Algebraic
immunity is an easy-control criterion and many functions
among them are with the optimal algebraic immunity. We
choose randomly a function from them and find that it has
the optimal algebraic immunity 5. We provide the truth table
of it as follows, where the numbers are in hexadecimal (e.g.
7=0111).

7B8A849D847597E285747A63976AB80D
85767A617A89691E966A698D9A9545F2
D0272F783EC978433EC9C196689347BC
C33C69C9699685B6969996366566BA49

Though there exist many cryptographically significant
RSBFs, its ratio to the whole space is very low. We do not
know whether there exist a 3-resilient 9-variable Boolean
function with optimum algebraic immunity and a nonlinear-
ity > 224, which we leave as an open problem.

Open problem: Does there exist a 3-resilient 9-variable
Boolean function with optimum algebraic immunity and a
nonlinearity > 224?

4. Conclusion

In this letter, we search Boolean functions in the rotation
symmetric class, and find 9-variable Boolean functions with
the optimal algebraic immunity 5 and the maximum pos-
sible resiliency order 3. Moreover, the maximum possible
nonlinearity of 9-variable rotation symmetric Boolean func-
tions with optimal algebraic immunity-resiliency trade-off is
determined to be 224.

A natural open question iswhether there exist 9-variable
Boolean functions with optimal algebraic immunity 5, re-
siliency order 3 and a nonlinearity greater than 224, which
we leave as an open problem.
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