
DOI:10.1587/transfun.2023EAL2116

Publicized:2024/06/19

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x
1

LETTER
Attributed Graph Clustering Network with Adaptive Feature Fusion

Xuecheng SUN†, Nonmember and Zheming LU†∗, Member

SUMMARY To fully exploit the attribute information in graphs and dy-
namically fuse the features from different modalities, this letter proposes
the Attributed Graph Clustering Network with Adaptive Feature Fusion
(AGC-AFF) for graph clustering, where an Attribute Reconstruction Graph
Autoencoder (ARGAE) with masking operation learns to reconstruct the
node attributes and adjacency matrix simultaneously, and an Adaptive Fea-
ture Fusion (AFF) mechanism dynamically fuses the features from different
modules based on node attention. Extensive experiments on various bench-
mark datasets demonstrate the effectiveness of the proposed method.
key words: graph clustering, community detection, Graph Neural Network,
Graph Autoencoder

1. Introduction

Graph clustering involves grouping nodes in a graph into
clusters or communities based on their attributes and connec-
tivity patterns. It is a research area with increasing practical
value [1], and has been widely used in various practical ap-
plications, such as community detection in recommendation
systems [2], social networks [3] and protein-protein interac-
tion (PPI) networks [4]. However, the unsupervised nature
of graph clustering presents greater challenges compared to
the supervised tasks. Without the guidance of ground-truth
labels, it requires an appropriate loss function and carefully
designed network modules to capture the intrinsic clustering
patterns of the graph.

Recently, there has been a growing popularity in com-
bining Graph Neural Networks (GNNs) with autoencoders
for graph clustering, due to GNNs’ powerful capability in
capturing the interaction between graph nodes. The first
work in this category SDCN [5] trained a fully connected
autoencoder to reconstruct the node features, and propagated
the features learned by the autoencoder to a Graph Convo-
lutional Network (GCN) module using a weighted summa-
tion. The autoencoder features and GCN features were then
unified by a dual self-supervised optimization objective to
produce consistent prediction results. The following work
DFCN [6] proposed a dynamic fusion mechanism to tune the
weight for fusing features from different modalities, and a
triplet self-supervised strategy to exploit the cross-modality
information for a robust target distribution. In R-DGAE
[7], the authors presented a graph autoencoder architecture
that learned to reconstruct the adjacency matrix, a sampling

†The author is with the School of Aeronautics and Astronautics,
Zhejiang University, Hangzhou, China.

∗Corresponding author: zheminglu@zju.edu.cn.

operator that dropped out the noisy clustering assignments,
and a correction mechanism that forced the model to learn
clustering-oriented features from the reconstruction task.

However, we observe that most existing GNN-based
graph clustering approaches only considering reconstruct-
ing the adjacency matrix, leaving the task of reconstructing
the node attributes with GNNs unexplored. Also, there is
a lack of effective fusion mechanism that integrates the au-
toencoder features and GNN features. To tackle with these
problems, in this letter we propose the Attributed Graph
Clustering Network with Adaptive Feature Fusion (AGC-
AFF), in which we

• design an Attribute Reconstruction Graph Autoencoder
(ARGAE) that simultaneously learns to reconstruct the
node attributes and adjacency matrix, and a masking
operation that masks the input nodes for the decoder of
ARGAE to make the encoded features more robust;

• present an Adaptive Feature Fusion (AFF) mechanism
that dynamically fuses the features from different mod-
ules based on node attention;

• conduct extensive experiments on various benchmark
datasets to demonstrate the effectiveness of the pro-
posed method.

2. Related Work

2.1 Deep Clustering

Deep clustering refers to the technique where deep neural
networks are used to perform clustering tasks. Due to the
lack of guidance of ground-truth labels, many deep clustering
methods focus on designing appropriate optimization objec-
tives for the unsupervised learning process. For example,
[8] utilized the loss function of K-means to learn clustering-
friendly features, DEC [9] designed a KL divergence loss
to increase the cohesion of the predicted clusters, and IDEC
[10] improved DEC by adding a reconstruction loss to help
the autoencoder learn better embeddings. However, these
methods ignore the structure information of the data, thus
cannot deal with graph clustering tasks.

2.2 Graph Neural Networks

Recently, Graph Neural Network (GNN) models have be-
come popular for their advantage in capturing the intricate re-
lations within graphs. Graph Convolutional Network (GCN)

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

L L

G

G

Q P

Q’’

Q’

L L L

L P Q Q' Q''

L L L L

L

l L

l

Fig. 1 The pipeline of the proposed AGC-AFF. X is the input node feature
matrix, X̂ is the reconstructed node feature matrix by AE, X̃ is the recon-
structed node feature matrix by ARGAE, A is the input adjacency matrix,
Ã is the reconstructed adjacency matrix by ARGAE, H is the representa-
tion encoded by AE, and Z is the representation encoded by ARGAE. The
purple solid line represents soft assignment (SA) generation using Student’s
t-distribution, the blue solid line represents target distribution generation,
and the red dotted line represents the self-supervised training mechanism.

[11] is the most representative GNN model. It leverages
the graph structure to perform message passing operations
to capture the information across the graph nodes. Graph
Attention Network (GAT) [12] extends GCN by incorpo-
rating the attention mechanism to enable different weights
for different neighbors during node aggregation. Graph Au-
toencoder (GAE) [13] is designed to learn low-dimensional
node representations in a graph by reconstructing the adja-
cency matrix. In graph clustering, GCN is combined with
fully connected autoencoder by SDCN [5] as a regularizer,
and GAE is utilized by DGAE [7] for better unsupervised
representation learning.

3. Method

In this section, we introduce our Attributed Graph Clus-
tering Network with Adaptive Feature Fusion (AGC-AFF),
whose overall framework is shown in Figure 1. AGC-AFF
can be divided into four major parts, i.e., autoencoder (AE)
module, Attribute Reconstruction Graph Autoencoder (AR-
GAE) module, Adaptive Feature Fusion (AFF) module and
self-supervised training module.

3.1 Autoencoder

The autoencoder (AE) learns representations from the node
attributes X. We assume that the encoder of AE consists of
𝐿 stacked fully connected (FC) layers. Let H(𝑙) denote the
output of the 𝑙-th layer, then

H(𝑙) = 𝜙(W(𝑙)
𝑎 H(𝑙−1) + b(𝑙)

𝑎), (1)

where 𝜙 is an activation function, W(𝑙)
𝑎 and b(𝑙)

𝑎 are the weight
matrix and bias of the 𝑙-th layer, respectively, and H(0) = X
is the input data. The decoder is the inverse of the encoder,
and it takes H(𝐿) as input and outputs the reconstructed node
attributes X̂ also using 𝐿 stacked FC layers. We can obtain

the reconstruction loss of AE by computing an MSE loss:

𝐿AE = 𝐿mse (X, X̂) = 1
𝑁
| |X − X̂| |2F, (2)

where 𝑁 is the total number of nodes and | | · | |F represents
the Frobenius norm.

3.2 Attribute Reconstruction Graph Autoencoder

To fully exploit the attribute information in graphs, we design
the Attribute Reconstruction Graph Autoencoder (ARGAE).
Let A denote the adjacency matrix of the graph and A = A+I,
the output of the 𝑙-th layer of the encoder Z(𝑙) can then be
obtained by

Z(𝑙) = 𝜙(D− 1
2 AD− 1

2 Z(𝑙−1)W(𝑙)
𝑔), (3)

where W(𝑙)
𝑔 is the weight matrix of the 𝑙-th layer, D is a

diagonal matrix with D𝑖𝑖 =
∑
𝑗 A𝑖 𝑗 , and Z(0) = X is the

input data. It has been observed that masked autoencoding is
beneficial to self-supervised tasks [14], [15], thus we propose
a masking operation, which makes the reconstruction target
more difficult and helps the model learn more robust features.
Specifically, assume Z(𝐿) is an 𝑁 × 𝑑 matrix, we introduce a
learnable vector a ∈ R𝑑 to compute the score of each node:

s = sigmoid(Z(𝐿)a). (4)

Then we select 𝑘 (𝑘 is set to ⌈0.1𝑁⌉ in this work) nodes
with the smallest scores and mask their features to 0. For the
unmasked nodes, we multiply their features with s to allow
the gradients to flow through a:

Z𝑚 = Z(𝐿) ⊙ (s1𝑇), (5)

where ⊙ denotes the Hadamard product and 1 ∈ R𝑑 is an
all-ones vector. The decoder is also the inverse of the en-
coder, and it takes Z𝑚 as input and outputs the reconstructed
node attributes X̃ and adjacency matrix Ã = sigmoid(X̃X̃𝑇).
Note that the masking operation may influence the informa-
tion propagation, thus we adapt the adjacency matrix for the
first GCN layer of the decoder to increase the connectivity.
Specifically, let 𝑖𝑑𝑥 be the indices of the unmasked nodes, we
compute the adapted adjacency matrix by A′ = A2 (𝑖𝑑𝑥, 𝑖𝑑𝑥).
In other words, A′ is the 2nd graph power of A(𝑖𝑑𝑥, 𝑖𝑑𝑥) that
is obtained by performing row and column extractions with
𝑖𝑑𝑥 on the original A. Finally, we can obtain the reconstruc-
tion loss of ARGAE by computing an MSE loss and a binary
cross-entropy (BCE) loss:

𝐿GAE = 𝐿mse (X, X̃) + 𝛾 · 𝐿bce (A, Ã), (6)

where 𝛾 is a strength hyperparameter, and we set it to 0.1 in
this work to make the attribute reconstruction loss dominant.

3.3 Adaptive Feature Fusion

To connect the features generated by AE and ARGAE, we

LETTER
3

propose the Adaptive Feature Fusion (AFF) mechanism to
dynamically fuse the features. Let w 𝑓 ∈ R2𝑑 be a weight
vector, we first concatenate H(𝐿) and Z(𝐿) and compute the
attention score for each node:

m = softmax(𝜙([H(𝐿) | |Z(𝐿)]w 𝑓)). (7)

Then we can adaptively fuse the features by

F = H(𝐿) ⊙ (m1𝑇) + Z(𝐿) ⊙ ((1 − m)1𝑇). (8)

Note that our AFF can be viewed as an improved version of
the FAFGC proposed by [16], where we remove the normal-
ization operation and impose the regularization rule that the
sum of the attention scores for H(𝐿) and Z(𝐿) equals to 1.
The advantage of AFF is that it has fewer parameters and is
thus less sensitive to overfitting, and in experiments we will
show that AFF is the best-performing fusion mechanism in
our investigation.

3.4 Self-supervised Training

Following [5], [6], [16], we adopt a Kullback-Leibler (KL)
divergence loss between the soft assignments and target dis-
tribution to increase the cohesion of the predicted clusters
in a self-supervised manner. Let 𝐾 denote the number of
clusters, we first generate the soft assignments Q ∈ R𝑁×𝐾

using the Student’s t-distribution:

𝑞𝑖 𝑗 = SA(f𝑖 , 𝝁 𝑗) =
(1 + ||f𝑖 − 𝝁 𝑗 | |2/𝑣)−

𝑣+1
2∑

𝑗′ (1 + ||f𝑖 − 𝝁 𝑗′ | |2/𝑣)−
𝑣+1
2
, (9)

where f𝑖 is the 𝑖-th row of F, 𝝁 𝑗 is the 𝑗-th cluster center
initialized by K-means on representations learned by a pre-
trained model, and 𝑣 is the number of degrees of freedom
which is set to 1.0 in this work. Similarly, we can compute
𝑞′𝑖 𝑗 = SA(h𝑖 , 𝝁 𝑗) and 𝑞′′𝑖 𝑗 = SA(z𝑖 , 𝝁 𝑗) using the features of
AE and ARGAE, respectively. The target distribution can be
obtained by squaring and normalizing the assignments in Q:

𝑝𝑖 𝑗 =
𝑞2
𝑖 𝑗/

∑
𝑖 𝑞𝑖 𝑗∑

𝑗′ 𝑞
2
𝑖 𝑗′/

∑
𝑖 𝑞𝑖 𝑗′

. (10)

Since P has higher confidence, we can minimize the KL
divergence between P and the soft assignments to increase
the cohesion of the predicted clusters:

𝐿clu =
∑
𝑖

∑
𝑗

𝑝𝑖 𝑗 log
𝑝𝑖 𝑗

(𝑞𝑖 𝑗 + 𝑞′𝑖 𝑗 + 𝑞′′𝑖 𝑗)/3
, (11)

and the overall loss is

𝐿 = 𝐿AE + 𝐿GAE + 𝐿clu. (12)

3.5 Computational Complexity Analysis

Let 𝑑0 denote the dimension of the input data, 𝑑1, 𝑑2, ...𝑑𝐿
denote the output dimensions of the encoding layers of AE

and ARGAE, and |𝐸 | denote the number of edges of the
input graph. The complexity is 𝑂 (∑𝐿

𝑖=1 𝑁𝑑𝑖−1𝑑𝑖) for AE,
𝑂 (∑𝐿

𝑖=1 |𝐸 |𝑑𝑖−1𝑑𝑖+𝑁2𝑑0) for ARGAE (𝑂 (𝑁2𝑑0) is imposed
by the computation of the predicted adjacency matrix), and
𝑂 (𝑁𝐾 + 𝑁 log 𝑁) for the computation of the soft assign-
ments. Therefore, the overall computational complexity is
𝑂 (∑𝐿

𝑖=1 𝑁𝑑𝑖−1𝑑𝑖 +
∑𝐿
𝑖=1 |𝐸 |𝑑𝑖−1𝑑𝑖 + 𝑁2𝑑0 + 𝑁𝐾 + 𝑁 log 𝑁).

4. Experiments

4.1 Datasets

We select five standard graph datasets DBLP, CITE, ACM,
CORA and AMAP to evaluate the effectiveness of the pro-
posed method. The detailed statistics can be found in [16].

4.2 Evaluation Metrics

We adopt standard unsupervised evaluation metrics for eval-
uations and comparisons to other algorithms. Specifically,
we use the following four metrics: Accuracy (ACC) [17],
Normalized Mutual Information (NMI) [17], Adjusted Rand
Index (ARI) [18] and macro F1-score (F1) [19]. ACC can
be obtained by calculating the ratio of correctly predicted
samples to the total number of samples, and it is a simple
and straightforward measure of an algorithm’s performance
in terms of assigning samples to the correct clusters. NMI
is the normalized mutual information between the clustering
assignments and the ground truth clusters, and it can provide
an understanding of how close the predicted cluster assign-
ments are to the ground truth clustering. ARI is a measure of
the similarity between the true and the predicted clusterings,
it considers all pairs of samples and counts pairs that are as-
signed in the same or different clusters in the two clusterings,
and adjusts the result by accounting for the chance group-
ing of samples, which provides a robust evaluation metric
for clustering algorithms. F1 is the harmonic mean of the
metrics of Precision and Recall, and thus it takes into ac-
count the balance between correctly predicting the samples
and avoiding misclassification. By using these four metrics
together, the effectiveness of the clustering algorithms can
be comprehensively demonstrated.

4.3 Implementation Details

The encoders of AE and ARGAE both have four layers with
the dimensions of 128, 256, 512 and 20, respectively. AE
and ARGAE are pretrained independently for 30 iterations
first, and then integrated to a single model and pretrained
for another 100 iterations. The integrated model is used to
initialize the cluster centers in Eq. (9) and then trained for
200 iterations with the loss in Eq. (12). The learning rate is
set to 1e-3 for AMAP, 1e-4 for DBLP, CITE and CORA, and
5e-5 for ACM. The proposed model is implemented by the
PyTorch framework and trained on a single NVIDIA RTX
3090 GPU.

4
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Table 1 Comparison with state-of-the-art methods on five datasets. The
best results are highlighted with bold and the second-bests are underlined.

Dataset Metric SDCN AGCN DFCN GC-SEE AGC-AFF

DBLP

ACC 68.05 73.26 76.00 79.23 80.31
NMI 39.50 39.68 43.70 48.04 50.85
ARI 39.15 42.49 47.00 53.51 54.14
F1 67.71 72.80 75.00 78.55 80.15

ACM

ACC 90.45 90.59 90.90 91.67 92.30
NMI 68.31 68.38 69.40 70.83 72.53
ARI 73.91 74.20 74.90 76.89 78.45
F1 90.42 90.58 90.80 91.66 92.34

CITE

ACC 65.96 68.79 69.50 70.90 71.06
NMI 38.71 41.54 43.90 44.00 55.69
ARI 40.17 43.79 45.50 46.47 50.94
F1 63.62 62.37 64.30 63.12 67.44

CORA

ACC 50.70 53.70 56.87 73.58 74.04
NMI 33.78 33.97 38.81 53.02 54.39
ARI 25.76 24.72 29.79 51.22 48.47
F1 44.13 46.27 55.92 71.48 74.51

AMAP

ACC 53.44 54.60 76.88 77.34 77.50
NMI 44.85 49.13 69.21 64.15 70.14
ARI 31.21 36.26 58.98 56.76 60.16
F1 50.66 38.44 71.58 74.58 74.70

4.4 Results

We perform K-means on the fused features F to obtain the
final clustering results. The baseline methods are SDCN [5],
AGCN [20], DFCN [6] and GC-SEE [16]. Each experiment
is repeated for 10 times, and due to the space limitation
we omit the standard deviations and only report the average
values of the metrics. The results are shown in Table 1, and
we can observe that the proposed AGC-AFF achieves the best
performance on all the metrics across all the datasets (except
the ARI metric on CORA, where AGC-AFF achieves the
second-best performance†), which suffices to demonstrate
its effectiveness.

4.5 Ablation Study

We also conduct ablation study to evaluate the effectiveness
of each proposed module. Specifically, we design the follow-
ing variants of AGC-AFF: 1) AGC-AFF w/o Attrib. in which
ARGAE only learns to reconstruct the adjacency matrix, 2)
AGC-AFF w/o Mask in which we remove the masking oper-
ation from ARGAE, 3) AGC-AFF w/ CMDFM in which we
replace AFF with the fusion mechanism CMDFM proposed
by [5] (in CMDFM all the nodes share the same learnable
weights) and 4) AGC-AFF w/ FAFGC in which we replace
AFF with the fusion mechanism FAFGC proposed by [16].
The results are shown in Table 2. From the results obtained
by w/o Attrib., it can be observed that when the model is
only trained to reconstruct the adjacency matrix, there is a
significant decrease in its performance, indicating the effec-
tiveness of the attribute reconstruction loss. Also, from the
results obtained by w/o Mask, when the masking operation

†The ARI metric ignores the ground truth labels of the samples
and only considers whether or not any pair of samples are grouped
together in the true and the predicted clusterings, and this can
explain why AGC-AFF does not achieve the highest ARI but obtains
the highest ACC, NMI and F1 on the CORA dataset.

Table 2 Ablation study. The best results are highlighted with bold.

Dataset Metric AGC-AFF w/o w/o w/ w/
Attrib. Mask CMDFM FAFGC

DBLP

ACC 80.31 77.10 79.06 79.37 78.68
NMI 50.85 45.58 48.99 50.26 49.38
ARI 54.14 48.21 50.68 52.45 51.30
F1 80.15 76.98 79.15 79.14 78.27

ACM

ACC 92.30 91.14 92.24 92.27 92.27
NMI 72.53 70.08 72.46 72.38 72.38
ARI 78.45 75.68 78.32 78.36 78.36
F1 92.34 91.11 92.26 92.30 92.30

CITE

ACC 71.06 68.68 71.03 71.03 70.91
NMI 55.69 42.62 55.68 55.77 55.51
ARI 50.94 44.78 50.93 50.91 50.74
F1 67.44 64.82 67.41 67.41 67.36

CORA

ACC 74.04 59.75 73.71 74.00 74.04
NMI 54.39 46.42 53.18 54.31 54.37
ARI 48.47 35.93 47.31 48.46 48.58
F1 74.51 60.21 73.70 74.45 74.45

AMAP

ACC 77.50 74.60 75.26 67.93 68.25
NMI 70.14 62.40 67.66 65.28 65.51
ARI 60.16 49.92 56.20 47.25 47.67
F1 74.70 69.02 72.78 67.82 68.05

is removed from the model, there is a certain degree of de-
crease in its performance, demonstrating the effectiveness
of the proposed masking operation. Lastly, from the results
obtained by w/ CMDFM and w/ FAFGC, we can observe
that the proposed AFF performs the best among the three
fusion mechanisms, especially showing significant improve-
ment on the AMAP dataset. To sum up, the model with
the full ARGAE and the AFF mechanism achieves the best
overall performance.

5. Conclusion

In this work, we propose AGC-AFF for graph clustering, in
which the graph autoencoder ARGAE simultaneously learns
to reconstruct the node attributes and adjacency matrix of
the graph and the fusion mechanism AFF dynamically fuses
the features from AE and ARGAE based on node attention.
Additionally, we design a masking operation for ARGAE,
which makes the reconstruction target more difficult and
helps the model learn more robust features. Through exten-
sive experiments, we show the superiority of AGC-AFF and
demonstrate the effectiveness of each proposed module.

Acknowledgments

This work is supported by the Special Fund of Huanjiang
Lab, Zhejiang, China.

References

[1] X. Su, S. Xue, F. Liu, J. Wu, J. Yang, C. Zhou, W. Hu, C. Paris,
S. Nepal, D. Jin, Q.Z. Sheng and P.S. Yu, “A comprehensive survey
on community detection with deep learning,” IEEE Transactions on
Neural Networks and Learning Systems, pp.1–21, Mar. 2022.

[2] R. Levie, F. Monti, X. Bresson and M.M. Bronstein, “CayleyNets:
Graph convolutional neural networks with complex rational spectral
filters,” IEEE Transactions on Signal Processing, vol.67, no.1, pp.97–
109, Jan. 2019.

[3] R. Cazabet, R. Baccour and M. Latapy, “Tracking bitcoin users
activity using community detection on a network of weak signals,”

LETTER
5

Proc. 6th Int. Conf. on Complex Networks and Their Applications,
pp.166–177, Nov. 2017.

[4] J. Chen and B. Yuan, “Detecting functional modules in the yeast
protein-protein interaction network,” Bioinformatics, vol.22, no.18,
pp.2283–2290, Sept. 2006.

[5] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu and P. Cui, “Structural
deep clustering network,” Proc. 29th Int. World Wide Web Conf.,
pp.1400–1410, Apr. 2020.

[6] W. Tu, S. Zhou, X. Liu, X. Guo, Z. Cai, E. Zhu and J. Cheng, “Deep
fusion clustering network,” Proc. 35th AAAI Conf. on Artificial
Intelligence, pp.9978–9987, Apr. 2021.

[7] N. Mrabah, M. Bouguessa, M.F. Touati and R. Ksantini, “Rethinking
graph auto-encoder models for attributed graph clustering,” IEEE
Transactions on Knowledge and Data Engineering, vol.35, no.9,
pp.9037–9053, Sept. 2023.

[8] B. Yang, X. Fu, N.D. Sidiropoulos and M. Hong, “Towards K-means-
friendly spaces: Simultaneous deep learning and clustering,” Proc.
34th Int. Conf. on Machine Learning, pp.3861–3870, Aug. 2017.

[9] J. Xie, R.B. Girshick and A. Farhadi, “Unsupervised deep embedding
for clustering analysis,” Proc. 33rd Int. Conf. on Machine Learning,
pp.478–487, June 2016.

[10] X. Guo, L. Gao, X. Liu and J. Yin, “Improved deep embedded
clustering with local structure preservation,” Proc. 26th Int. Joint
Conf. on Artificial Intelligence, pp.1753–1759, Aug. 2017.

[11] T.N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” Proc. 5th Int. Conf. on Learning
Representations, Apr. 2017.

[12] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò and Y.
Bengio, “Graph attention networks,” Proc. 6th Int. Conf. on Learning
Representations, Apr. 2018.

[13] T.N. Kipf and M. Welling, “Variational graph auto-encoders,” NIPS
2016 Workshop on Bayesian Deep Learning, Dec. 2016.

[14] J. Devlin, M. Chang, K. Lee and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” Proc.
2019 Conf. of the North American Chapter of the Association for
Computational Linguistics, pp.4171–4186, June 2019.

[15] K. He, X. Chen, S. Xie, Y. Li, P. Dollár and R.B. Girshick, “Masked
autoencoders are scalable vision learners,” Proc. IEEE/CVF Conf.
on Computer Vision and Pattern Recognition, pp.15979–15988, June
2022.

[16] S. Ding, B. Wu, X. Xu, L. Guo and L. Ding, “Graph clustering
network with structure embedding enhanced,” Pattern Recognition,
vol.144, pp.109833, July 2023.

[17] D. Cai, X. He and J. Han, “Locally consistent concept factorization
for document clustering,” IEEE Transactions on Knowledge and Data
Engineering, vol.23, no.6, pp.902–913, June 2011.

[18] K.Y. Yeung and W.L. Ruzzo, “Details of the adjusted rand index and
clustering algorithms, supplement to the paper an empirical study on
principal component analysis for clustering gene expression data,”
Bioinformatics, vol.17, no.9, pp.763–774, Sept. 2001.

[19] J.O. Palacio-Niño and F. Berzal, “Evaluation metrics for unsuper-
vised learning algorithms,” arXiv preprint arXiv:1905.05667, May
2019.

[20] Z. Peng, H. Liu, Y. Jia and J. Hou, “Attention-driven graph clustering
network,” Proc. 29th ACM Int. Conf. on Multimedia, pp.935–943,
Oct. 2021.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

