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PAPER
Operational Resilience of Network Considering Common-Cause
Failures

Tetsushi YUGE†a), Member, Yasumasa SAGAWA†, Nonmember, and Natsumi TAKAHASHI†, Member

SUMMARY This paper discusses the resilience of networks based on
graph theory and stochastic process. The electric power network where
edges may fail simultaneously and the performance of the network is mea-
sured by the ratio of connected nodes is supposed for the target network.
For the restoration, under the constraint that the resources are limited, the
failed edges are repaired one by one, and the order of the repair for several
failed edges is determined with the priority to the edge that the amount of
increasing system performance is the largest after the completion of repair.
Two types of resilience are discussed, one is resilience in the recovery stage
according to the conventional definition of resilience and the other is steady
state operational resilience considering the long-term operation in which
the network state changes stochastically. The second represents a compre-
hensive capacity of resilience for a system and is analytically derived by
Markov analysis. We assume that the large-scale disruption occurs due to
the simultaneous failure of edges caused by the common cause failures in
the analysis. Marshall-Olkin type shock model and α factor method are
incorporated to model the common cause failures. Then two resilience
measures, “operational resilience” and “operational resilience in recovery
stage” are proposed. We also propose approximation methods to obtain
these two operational resilience measures for complex networks.
key words: resilience, common-cause failure, Markov analysis, electric
power network

1. Introduction

Modern society depends on various critical infrastructures
such as energy, water, communication and transportation
systems and so on. An increasing number of high-impact
and unpredictable events are affecting these systems with se-
vere consequences to our society. The disaster of Fukushima
Daiichi nuclear power plant in 2011 is the representable. The
traditional approach to reliability and risk analysis relies on
the identification of hazards and the development of subse-
quent scenarios, and cannot manage to the unknown threats
or unpredictable events. In contrast, the concept of resilience
focuses on the recovery action after a severe disruption both
predictable and unpredictable, in addition to conventional
reliability analysis.

Resilience is first defined by the ecologist Holling as the
measure of persistence that result from the ability of a system
to absorb change [1]. For the engineering system, Bruneau et
al. proposed a seminal definition of resilience as the ability
of a system to reduce the chances of a shock, to absorb a
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Fig. 1 Conceptual definition of resilience.

shock if it occurs and to recover quickly after a shock [2].
More specifically, a resilient system is the one that shows
(i) reduced failure probabilities, (ii) reduced consequences
from failures, (iii) reduced time to recovery.

A broad measure of resilience that capture these key
features can be expressed by the concept illustrated in Fig. 1.
The measure P(t) is defined for the performance of the in-
frastructure, such as the number of normally operating com-
ponents within the infrastructure system. Specifically, per-
formance can range from 0% to 100%, where 100% means
no degradation in service and 0%means no service available.

The performance response process in Fig. 1 can be di-
vided into three different stages [3]. The first stage is disaster
prevention stage with a range (0, t0) in Fig. 1. The resistant
capacity of the system to prevent any possible hazards and
maintain 100% system performance is an important aspect
in this stage. The conventional reliability techniques such as
robustness and redundancy can be conducted to improve the
resilience in this stage [4]. The second stage, (t0, t1), is the
damage propagation stage. If a shock, such as an earthquake,
occurs at time t0, it could cause damage to the system such
that the performance decreases to 50% at time t1. The ability
to absorb the impacts of initial damage and to minimize the
consequence is required in this stage. The maximum degra-
dation level, 100%–50% in Fig. 1, is used to measure the
absorptive capacity of the system. The third stage, (t1, t2),
is the recovery process. During the period, the information
of system damage is collected and the recovery resources
are allocated to restore performance. Resourcefulness and
rapidity of recovery action are the main properties. Recov-
ery time and recovery cost represent the restoration capacity
and help characterizing resilience in this stage. “R4 frame-
work” is a framework to comprehensively evaluate the four
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key properties, robustness, redundancy, resourcefullness and
rapidity [2].

The three stages constitute a typical system response
cycle to disruptions. To enhance system resilience, the im-
provement strategies should be conducted for three different
stages [3]. Even though reliability engineering has been
used to enhance resilience of first and second stages, the
resilience of third stage has not been focused. To improve
resilience in the third stage, several strategies, such as estab-
lishing efficient communication channels and coordinating
rapid recovery response [5], and improving decision support
platforms to quickly and accurately identify feasible recovery
strategies [6], are proposed.

For the measure of resilience in the third stage, Caputo
et al. [7] defined the resilience subjected to restoration as
follows,

R =
1

t2 − t0

∫ t2

t0

P(t)dt. (1)

It defined as themean performance of the system between the
shock occurrence and the completion of restoration. Here
P(t) in the restoration period depends on the resourcefulness
that the capacity to identify problem, establish priorities and
mobilize resources (material and human resources). Under
the condition that the useful resources are limited, the mean
repair time t2− t0 is mainly decided by the initial degradation
level. In this case, the strategies of restoration, especially to
establish priority for restoration, play a significant role to
increase resilience in Eq. (1). The black line in Fig. 1 shows
the recovery process following a standard restoration strategy
and the blue (red) line is that of a superior (inferior) strategy.
The total recovery times for three strategies are same because
of limited repair resources but the performance levels during
the restorations are different.

Many studies have been conducted to quantify or eval-
uate the resilience of engineering systems based on the def-
inition in [2], [7]. Many of them evaluate the resilience of
the system by simulation under the occurrence of a specific
disaster. As a representative example, Guzs et al. used a
concrete example of a power grid that is not connected to
other networks to obtain resilience under several scenarios
of disaster occurrence and restoration [8]. Ziwei et al. eval-
uated the resilience of a train operation management system
when the repair time follows a log-normal distribution [9].
Ganin et al. calculated the number of operating nodes using a
graph theory approach and calculated resilience [10]. As an
example of multiple hazard, Cimellaro defined resilience as
the area under the system’s performance curve for a specified
period of time [11]. In addition, Ouyang et al. calculated the
average resilience of a power grid network for one year con-
sidering failures of substations in the network due tomultiple
types of disasters [3]. Here, they assumed that the arrival of
each disaster follows a Poisson distribution, and five types
of damage occur according to the pre-determined probabil-
ities of the occurrence of the disaster. In addition, the time
to completion of repair, which greatly affects the average
resilience, was determined by random numbers following a

normal distribution. Other researches on resilience involve
mathematical recovery process modelings, that is, determin-
ing the performance curve under the restoration as a function
[12], [13]. The past researches on resilience analysis have
focused on analysis based on simulation study, even if some
researches include stochastic process for the deterioration.
No analytical solution for resilience has been proposed. The
reason for this is the difficulty to model the occurrence of
large-scale disasters, the difficulty to define the relationship
between equipment failure and system performance and the
difficulty to model the restoration process with various fac-
tors as a stochastic process. Another problemwith resilience
study is that the resilience in each three stage is evaluated
separately, and there is no comprehensive measure to evalu-
ate the total system resilience.

This paper discussed the resilience of infrastructure net-
work. The electric power network where only edges may fail
and the performance of the network is measured by the ratio
of connected nodes, nodes (vertices) that have a pass from
source node, is supposed for the target network.

The modeling of restoration is a key factor to analyze
resilience. We assume that the resources for restoration are
limited and the failed edges are repaired one by one. In
addition, as a restoration strategy, a priority repair policy is
adopted to determine the order of the repair when several
edges failed. The order of repair is determined with the
priority to the edge that the amount of increasing system
performance is the largest after the completion of repair.

Two types of resilience are discussed in this paper, one
is the resilience in the recovery stage and other is the re-
silience that integrates resilience capacities of three stages.
The first is resilience based on Eq. (1), focusing on resilience
in recovery process after a single disruption. The resilience
is easily formulated under the assumptions that the deterio-
ration of network performance is given and the restoration
is conducted for all failed edges one by one. It is presented
in Sect. 3. The second is realized by considering long-term
operation in which the network state changes stochastically.
In this case, the resilience measure should take into account
the resilience capabilities of the first and second stages, not
only the third stage. The main feature of this paper is to pro-
pose a stochastic process model that represents the outbreak
of large-scale disruption and can be solved analitically. The
common-cause failure (CCF) is incorporated to represent the
occurrence of disruption stochastically. CCF is one of pri-
mary factors of large-scale disruption. It is widely studied
in the field of reliability and risk engineering [14]–[16]. It
invalidates the redundancy of a system by the occurrence of
the single root cause event. The Marshall-Olkin type shock
model is one of the mathematical models to evaluate CCF
[17], [18]. CCF is assumed to occur as the result of the oc-
currence of an external shock in the model. Two measures,
“operational resilience” and “operational resilience in re-
covery stage” are introduced to evaluate the resilience under
the long-term operation in Sect. 4. Operational resilience
in recovery stage shows the resilience in the recovery pe-
riod within the entire operational period. It is a natural
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extension of the resilience in Eq. (1) considering the long-
term operation. On the other hand, operational resilience is
a new comprehensive resilience measure. It evaluates the
ability of network resilience during the entire operational
period containing the ability that maintains 100% network
performance. Markov process is used to obtain analytical
solution for both operational resilience measures under the
assumption that the occurrence rate of CCFs and repair rate
are constant. We also propose two approximation methods
for the complex network. We verify the applicability and
accuracy of the approximation method.

The rest of this paper is organized as follows: In Sect. 2,
the target networks are clarified and the performance mea-
sure and the repair strategy are defined. Section 3 discusses
the resilience in recovery process when networks are suffered
a large scale disruption. The resilience in this section focuses
only on restoration from the simultaneous failures that deter-
ministically inflicted. In this case, we show that resilience
can be formulated mathematically. The effect of priority re-
pair strategy is verified in this section. Section 4 discusses
the resilience when the large scale disruption occurs prob-
abilitically. The operational resilience and the operational
resilience in recovery stage are defined. The two operational
resilience measures are derived by both Monte Carlo sim-
ulation and Markov analysis. The exact solution and two
approximation methods for Markov analysis are proposed.
The accuracy of approximations are verified by numerical
examples. We summarize our work in Sect. 5.

2. Model Description

2.1 Network

We define G = (V,E) as a given network, where V =
{v1, v2, . . . , vn} is a set of nodes, E = {e1, e2, . . . , em} is a set
of edges and n (m) is the number of nodes (edges). Node v1 is
a source node. Each edge is directional or bidirectional. To
simplify the explanation, we focus on edge failures, though
the concept may be extended to include node failures. Then
the state of network is described by an m-dimensional vec-
tor whose element is the state of each edge given in binary
(except for Sect. 4.4 where the definition of state is changed
for approximation).

2.2 Performance Measure

The measure P(t) is the ratio of operational nodes in total
n nodes, where operational node means at least one path to
node v1 exists. If the states of every edges are fixed, the
performance measure P(t) is derived by using the reacha-
bility matrix of the network. Let G′(t) be a subgraph that
the unfunctional edges and nodes are removed from G at
time t, and A(t) be the adjacent matrix of G′(t), whose entry
ai j(t) is binary: if node i is adjacent or directly connected to
node j at time t, then ai j(t) = 1; otherwise ai j(t) = 0. The
reachability matrix Ar (t) is given as follows by conducting
Boolean operation,

Ar (t) = (I + A(t))n−1, (2)

where, I is the n× n identity matrix. Ar (t) is a binary matrix
and the first row of the matrix represents the reachability
from node v1 to other nodes. Then P(t) is given as follows,

P(t) =
π0 Ar (t)uT

n
, (3)

where π0 = (1,0, . . . ,0),u = (1,1, . . . ,1). Obtaining P(t)
by Eq. (3) is inefficient because it is necessary to calculate
the (n − 1)th power of the adjacent matrix. Therefore, the
following simple recursive algorithm is useful.

Algorithm 1 (number of connected nodes)
Input: Adjacent matrix, A(t)
Output: number of connected nodes, s(t)

1. Let S(t) be an empty array and add source node.
2. Choose one node in S(t), say node i
3. Add node j to S(t) if the (i, j) element of A(t) equals to

1 and j < S(t).
4. Repeat 2 and 3 for all nodes in S(t).
5. s(t) = |S(t)|.

2.3 Restoration of Edge by Priority Repair Policy

For the restoration, the restoration begins as soon as edges
fail, i.e., t0 = t1 in Fig. 1. Under the constraint that the
resources are limited, the failed edges will be repaired one
by one. The distribution of restoration is exponential with
parameter µ. Therefore, the performance curve in recovery
stage is a step function as shown in Fig. 1. The order of the
repair of several failed edges is determined with the priority
to the edge that the amount of increasing system performance
is the largest after the completion of repair. Let Q(t) be a
set of failed edges at time t. The optimal repair edge e∗ is
selected as follows,

e∗ = arg max
e∈Q(t)

P(t ′), (4)

where, t ′ is a time that the restoration of edge e is completed.

3. Resilience for a Specific Disruption

This section discusses the resilience when a specific d edges
have failed by a large scale disruption. Note that the occur-
rence of disruption is deterministic and we discuss only the
recovery process after a given simultaneous failure in this
section.

Let state i be the network state that the i-th repair (i =
1,2, . . . , d) of edge is in progress and pi(t) be the probability
of the state at time t, where t is the elapsed time from the
disruption. The initial state is state 1 and it is one of (m

d
) states

that the network has d failed edges. The state numbers i are
explicitly named as continuous integers for the network states
transitioned from t = 0, although i represents the number of
repairs from the beginning in this case. The counting process
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i(t) follows a birth process with parameter µ in our model
and the probability is given as,

pi(t) =
(µt)i−1

(i − 1)!
e−µt for i = 1, . . . , d (5)

Note the performance P(t) at time t is piecewise constant and
depends only on the network state. Let Pi be the performance
of state i. The expected repair time of all d edges is d/µ.
The mean resilience in recovery stage, R̄, is given as follows,

R̄ =
µ

d

d∑
i=1

Pi

∫ ∞

0
pi(t)dt =

1
d

d∑
i=1

Pi . (6)

The last equation in Eq. (6) is derived by the property of Er-
lang distribution. Equation (6) shows the resilience does not
depend on parameter µ and is given by themean performance
during the process.

Equation (6) suggests that the resilience does not depend
on the distribution of restoration if the capacity of restoration
is limited and failed edges are repaired one by one. It depends
only on the performance level decided by the restoration
order. In general, let M(t) be the distribution of restoration
with mean τ, the mean duration of state i (i = 1,2, . . . , d) is
τ, then the mean resilience after the disruption of d failed
edges is

R̄ =
1
τd

d∑
i=1

τPi =
1
d

d∑
i=1

Pi . (7)

Example 1

The power network in Fig. 2 is analyzed as a sample network.
This network has 9 nodes and 14 edges. The edges are
bidirectional. Node v1 are connected to a power plant and
the line between the plant and v1 is assumed to be reliable.
Even if one edge goes down by an accident, all nodes have
at least one path from node v1. Such a redundant structure is
called N-1 security in power system [4].

Let 8 edges e1, e2, e4, e5, e6, e7, e11, e14 failed simulta-
neously at t = 0. Table 1 shows the repair edge and the
performance for each state following the priority repair.

State 1 is an initial state with the performance 2/9.
First, e7 is selected by the priority repair policy, because

Fig. 2 Example of power network [19].

the performance will be recovered up to 6/9 after the repair
completion. State 1 is also a state that the restoration of e7
is undergoing. After the completion of repair of e7, all the
other failed edges does not have priority in this example. In
this case, an edge is randomly selected and repaired. The
resilience for the restoration order in Table 1 is (2+6+7+8+
9+9+9)/(9×8) = 0.8194 by Eq. (6). If the order of edges to
be repaired first and second is upside down, i.e., e1 is first, e7
is second, the resilience is (2+3+7+8+9+9+9)/(9×8) =
0.6528. The mean resilience is decided only by order of
repair.

Next, let confirm the effectiveness of priority restora-
tion. We performed the Monte Carlo simulation to obtain
the resilience of the network in Fig. 2, where both the num-
ber of simultaneous failures and the combination of failed
edges are selected randomly. Figure 3 shows the resilience
values for 1,000 samples when the priority restorations are
conducted. Figure 4 shows the resilience without priority
restoration for comparison. In this case, the repair edge is
randomly selected one by one. In both figures, “x” in blue or
red shows the resilience of one sample. For examples, if the
number of simultaneous failures equals to one, any one edge
fails, the mean resilience during the restoration is 1 because
of the N − 1 security. In this case, no difference between the
priory and the random repair policies. However, when more
than one edge failed, resilience depends on both the combi-
nation of failed edges and the repair policies. Figure 5 shows
the mean values of resilience for the two repair strategies.
The effect of priority restoration increases as the number of
simultaneous failures increases.

Table 1 Repair edge and performance measure.

Fig. 3 Resilience of simultaneous failure (priority restoration).
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Fig. 4 Resilience of simultaneous failure (random restoration).

Fig. 5 Mean resilience for priority and random restoration.

4. Operational Resilience

This section discusses network resilience as a stochastic pro-
cess (a finite-state Markov chain). First, the occurrence of
disruption as the result of the occurrence of simultaneous
failure of edge is defined. Then resilience measures under
long-term operation are defined. The Monte Carlo sim-
ulation results following the definitions are demonstrated.
Finally, Markov chain solution and its approximations are
presented.

4.1 Failure of Edge

All nodes are fully operational, but each edge may fail in-
dependently or simultaneously. Marshall-Olkin type shock
model and α factor method are applied to model CCF, as
follows.

1. Edge may fail independently or simultaneously with
other edges as the result of CCF following an external
shock.

2. There are 2m − 1 kinds of shocks. The shocks are in-
dependent each other and the magnitude of shock is
divided into m types. If level r (r = 1,2, . . . ,m) shock
occurs, the randomly selected r edges fail simultane-
ously. Note that the external shocks arrive indepen-
dently of the state of edges, i.e., the edges affected by

Fig. 6 Conceptual diagrams of resilience measures.

a shock may be selected even if the edge has already
failed.

3. The distribution of shock arrival time is exponential.
The total shock occurrence rate for a given network is
λ. The CCF occurrence rate of level r shocks, λr , is
αrλ. Here, αr is called an α parameter of CCF. The
CCF occurrence rate of a specific combination of r
edges, λ′r , is, λr/(

m
r
).

4.2 Operational Resilience

Operational availability is defined as Eq. (8) in reliability
engineering.

AO =
MUT

MUT +MDT
, (8)

where, MUT and MDT are the mean up time and the mean
down time of the system, respectively. In the infrastruc-
ture systems, their up time means no degradation in service,
i.e., P(t) = 100%, otherwise down time. Figure 6(a) is an
example of time transition of P(t) and show the concept
of operational availability. If we consider the time process
that repeating the occurrence of shock and the restoration,
MUT is the expectation of duration that P(t) = 100% and
the MDT is the expectation of duration that P(t) < 100%.
MDT corresponds to mean repair time and it depends only
on the capacity of repair resources for the system without
the redundant structure, otherwise depends on both the re-
sources and the strategy of restoration. AO is the percentage
of up time within long life time considering the robustness
and redundancy of the system.
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We propose a new resilience measure named opera-
tional resilience in this section. Operational resilience is the
resilience experienced under an actual condition of operation
and restoration. Let EPDT be the expectation of P(t) during
down time, (Fig. 6(b)). Operational resilience is the average
performance measure for a long period of time (Fig. 6(c))
and given as follows;

RO =
MUT +MDT · EPDT

MUT +MDT
(9)

= 1 −
EDDT

MUT +MDT
,

where EDDT = 1 − EPDT is the expectation of degradation
during down periods. In the Monte Carlo simulation, EPDT

can be obtained by measuring the elapsed time of each step
of simulation and by calculating the performance of the state
that corresponds to P(t) in Eq. (3), i.e., by obtaining the
sum of areas under the actual performance curve during the
restoration period. The operational resilience is a measure
to represent the comprehensive capacity of resilience for a
system. It enables us to evaluate a system considering the re-
silience not ony in the restoration stage (third stage in section
1), but also in the disaster prevention and damage propaga-
tion stages (first and second stages). In order to increase the
resilience, we have to increase MUT and to decrease EDDT .
Increasing MUT is realized by improving robustness, redun-
dancy and absorptive capacity of the system. These are the
measures in the first and second stages. Decreasing EDDT

is the main subject in the third stage.
Note that the resilience in Eq. (1) is defined as the mean

performance between the occurrence of disruption and the
completion of restoration, assuming that the initial degrada-
tion is given and no further system degradation occurs during
the restoration. EPDT is a natural extension of the resilience
in Eq. (1) considering the actual experience of restoration for
a long time period. Here we redefine EPDT as operational
resilience in recovery stage and denote it as ROR. ROR is
given as follows;

ROR =
RO − AO

1 − AO
. (10)

Equation (10) is directly given by Eq. (9), i.e., RO = AO +

(1 − AO)ROR.

Example 2

For the network in Fig. 2, we set λ1=0.01 and λr=λr−1/1.4
for r = 2, · · · ,14, and µ=0.1. We implemented a discrete
event-driven simulation until t =1,000,000. Figure 7 shows
the time transition for two restoration strategies until t= 800.
Table 2 shows the result. The calculations were conducted
by using a PCwith Intel Core i7 3.5GHz and the C program-
ing language. Although the computational cost of priority
restoration is large, All measures for the priority strategy
increase because of the redundant structures in this system.

Next, we consider a network that edges e3, e4, e7, e8, e10

Fig. 7 Example of discrete event-driven simulation.

Table 2 Operational resilience and operational availability.

Table 3 Operational resilience and operational availability without re-
dundant structure.

and e12 are removed from the original network. The redun-
dancy in the original network is removed and if at least one
edge fails, this network fails. Table 3 shows the results when
the shock occurrence rates and restoration rate are same to the
previous experiment. The operational resilience is improved
by the priority strategy whereas the difference of operational
availabilities for both strategies is small.

4.3 Operational Resilience by Markov Analysis

The state transition of the network system is described by
the continuous-time Markov chain with 2m states. The
performance P(t) depends on the state at t. Let pi be the
steady state probability, and Pi be the performance of state i
(i = 1, . . . ,2m). Note there is a one-to-one relation between
a state and the performance. The performance Pi for given
state i is derived by Eq. (3) or Algorithm 1 given in Sect. 2.2.
Let A be the state transition matrix and p = (p1, p2, . . . , p2m )

be the state probability vector. The elements of A are ob-
tained considering the CCF and priority repair. For instance,
the transition from state i to state j by CCF is

ai j =
fj∑

d= fj− fi

(
fi

d − ( fj − fi)

)
λ′d (11)

if the transition from state i to j is possible, otherwise 0.
Here, fi , fj are the number of failed edges of state i and state
j, respectively. Note that state i ( j) indicates a specific state
that is one of the combinations where fi ( fj) edges failed.
Therefore, the transitions from state i to state j by CCF
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should be limited to the CCFs of maximum fj simultaneous
failures including all the difference between state i and state
j. This is the reason that Eq. (11) does not depend on m− fi ,
the number of functioning edges in state i. For restoration
from state i to state j,

ai j = µ/|e∗i | (12)

for selected state j that satisfied fj = fi − 1, otherwise 0,
where e∗i is the selected edges within the failed edges of state
i given by Eq. (4).

The steady state probability is obtained by the following
simultaneous equations.

p = pA (13)∑
i

pi = 1. (14)

Then the operational resilience RO for a long operating
period, that corresponds to Eq. (9) in simulation study, is
obtained by the expectation of Pi as follows,

RO =

2m∑
i=1

Pipi . (15)

Note that the time-wise integral expression of resilience in
Eq. (1) is transformed to the expectation of network perfor-
mance in Eq. (15). The operational resilience in recovery
stage ROR is given by Eq. (10), where AO is given by

AO =
∑

i;Pi=1
pi . (16)

4.4 Approximation

The steady state probability pi in Eq. (15) is derived by the
multidimensional Markov analysis with the number of edges
m as the dimension. The number of states increases exponen-
tially as the network size increases, then the calculation be-
comes difficult accordingly. For this problem, we propose an
approximate method where the dimension of Markov anal-
ysis is reduced to one by considering the number of failed
edges as the state. In this case, the number of states equals to
m + 1. Let p′i , P′i be the steady state probability and the per-
formance measure of i failed edges. Then the approximated
operational resilience R′O for a long operating period is

R′O =
m∑
i=0

P′i p′i . (17)

The approximated operational resilience in recovery stage,
R′OR, is given as the same way in Eq. (10).

The probability p′i in Eq. (17) is easily obtained by one
dimensional Markov chain but P′i is not. In state i, there

are Mi =
(m

i

)
substates. P′i is the expected performance

measure of these substates, and decided by the performance
measure and the probability of each substate. These are dif-
ferent because of the priority repair. For the probability of

substate, we propose two approximations as follows.

Approximation 1:
This approximation gives P′i as themean of all substates with
i failed edges, i.e.,

P′i =
1

Mi

Mi∑
k=1

Pi,k, (18)

where, Pi,k is the performance of a substate k in state i. It is
given by assuming all the substates have the same probabil-
ities. Then it corresponds to the random repair. Therefore,
this approximation gives the lower bound of the operational
resilience. This approximation is based on the fact that for
complex networks, the more complex, the less the effect
of priority repair strategy. The approximated operational
resilience and the approximated operational resilience in re-
covery stage with approximation 1 are denoted by R′

O1 and
R′
OR1, respectively.

Approximation 2:
This approximation assumes that the probability of a sub-
state is proportional to the number of connected nodes. P′i
is given as follows,

P′i =
Mi∑
k=1

si,k
si

Pi,k, (19)

where, si,k is the number of connected nodes of a substate k
in state i and si =

∑
k si,k . It based on the idea that the prob-

ability of a substate with high connectivity becomes large
because of the priority repair strategy. The approximated
operational resilience and the approximated operational re-
silience in recovery stage with approximation 2 are denoted
by R′

O2 and R′
OR2, respectively.

By using these approximations, it becomes possible
to calculate the operational resilience and the operational
resilience in recovery stage by using one dimensionalMarkov
chain.

Example 3

The Gauss-Seidel method is used to solve the steady state
probabilities, pi in Eqs. (13), (14) and p′i in Eq. (17). Ta-
ble 4 (5) shows RO (ROR) and their approximations R′

O1,
R′
O2 (R′

OR1, R′
OR2) for several networks. If m = n − 1,

these are minimal edge graphs. Else if m = n(n − 1)/2,
complete graphs with bidirectional edges. The values show
the average of 100 randomly generated networks [20] ex-
cept for complete graphs. The parameters are λ1 = 0.1,
λr+1 = λr/5 (1 ≤ r < m), µ = 0.5. RO and ROR are
given by Eq. (15), Eq. (10), respectively. However, the val-
ues with asterisk show the results of Monte Carlo simu-
lation, because of the limitation of our computational re-
sources (memory storage requirements). The coefficient
matrix A in Eq. (13) is dense due to CCFs and the size
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Table 4 Operational resilience for networks.

Table 5 Operational resilience in recovery stage for networks.

Table 6 Operational resilience and operational resilience in recovery
stage without CCF.

is 220 × 220 when m = 20. Diffs shows the relative dif-
ference (%), i.e., Diff 1 =(R′

O1 − RO)/RO × 100, Diff 2
=(R′

O2 − RO)/RO × 100, Diff 3 =(R′
OR1 − ROR)/ROR × 100

and Diff 4 =(R′
OR2 − ROR)/ROR × 100.

In Table 4, the errors are relatively small in every case
and Approximation 2 has small errors compared with Ap-
proximation 1. However the difference is rather small espe-
cially for the complete graph. Also we can confirm that the
Approximation 1 gives the lower bound. From Table 5, the
error becomes large compared to Table 4. And we can see
Approximation 1 is superior than Approximation 2 for dense
graphs (complete graphs).

To verify the influence of CCF, Table 6 shows the results
without considering CCF. Although the total failure rate λ

of each network is same to the previous example, failures are
restricted to the independent failures. Namely, α1 = 1, αr =
0 for r ≥ 2, λ1 = λ, λr = 0 for r ≥ 2 in every case. We can
see both the operational resilience and operational resilience
in recovery stage have increased compared with Tables 4 and
5. The analysis ignoring CCF overestimates resilience.

5. Conclusion

This study discussed the resilience of network systems,
where the electric power networks was supposed for the
target networks and the priority restoration was conducted.
Two types of resilience were discussed, one (I) was resilience
in the recovery stage according to the conventional resilience
definition and the other (II) was steady state operational re-
silience considering the long-term operation in which the
network state changes stochastically. For the first type re-
silience, we showed that the resilience was easily formulated
under the assumptions that (1) the deterioration of network
performancewas given, (2) the restorationwas conducted for
all failed edges one by one with a designated order and (3)
the distribution of repair time was i.i.d. with known mean.
In this case, mean resilience was decided only by the order
of repair. The second resilience gave a comprehensive ca-
pacity of resilience for a system and was derived by Markov
analysis. This is the most notable achievement of this paper.
In the analysis, the common-cause failure was incorporated
to represent the occurrence of large-scale disruption. Two
resilience measures, (II-a) operational resilience and (II-b)
operational resilience in recovery stage, were newly proposed
to estimate the resilience of a network for a long operational
period. The operational resilience of II-b was a measure that
applied the conventional resilience to the long-term opera-
tion. For the analytical method for type II resilience, two
approximations were proposed for complex networks. The
occurrence of common-cause failures decreases the network
resilience drastically. The effectiveness of the restoration
strategy was verified. The analysis in this paper was based
on the condition that a network had only one source, the net-
work performance was measured by the connectivity from
the source, restoration capacity was limited and both the
distributions of shock occurrence and restoration were expo-
nential. (The last condition is used only for the mathematical
framework based onMarkov analysis.) To relax these condi-
tions is interesting for future study. Furthermore, obtaining
a more effective approximation method for more complex
networks is required to advance the research of resilience
engineering.
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