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PAPER
Efficient Realization of an SC Circuit with Feedback and Its
Applications

Yuto ARIMURA†a), Nonmember and Shigeru YAMASHITA†b), Senior Member

SUMMARY Stochastic Computing (SC) allows additions and multi-
plications to be realized with lower power than the conventional binary
operations if we admit some errors. However, for many complex functions
which cannot be realized by only additions and multiplications, we do not
know a generic efficient method to calculate a function by using an SC
circuit; it is necessary to realize an SC circuit by using a generic method
such as polynomial approximation methods for such a function, which may
lose the advantage of SC. Thus, there have been many researches to con-
sider efficient SC realization for specific functions; an efficient SC square
root circuit with a feedback circuit was proposed by D. Wu et al. recently.
This paper generalizes the SC square root circuit with a feedback circuit;
we identify a situation when we can implement a function efficiently by an
SC circuit with a feedback circuit. As examples of our generalization, we
propose SC circuits to calculate the n-th root calculation and division. We
also show our analysis on the accuracy of our SC circuits and the hardware
costs; our results show the effectiveness of our method compared to the
conventional SC designs; our framework may be able to implement a SC
circuit that is better than the existing methods in terms of the hardware cost
or the calculation error.
key words: Stochastic Computing, feedback circuit, square root, n-th root,
division

1. Introduction

Stochastic Computing (hereafter, SC) was proposed in
1960 [1] as a low power computing paradigm for appli-
cations which can allow some calculation errors such as
machine learning and pattern recognition [2]–[9].

SC uses a Stochastic Number (hereafter, SN) which
represents the ratio of 1’s in a bit string; it can perform the
multiplication of two SNs by using only a single AND gate.
Also we can perform an addition of two SNs by using only a
single multiplexer (MUX). Thus, complex arithmetic poly-
nomial functions consisting of only additions and multipli-
cations can be realized with a very small hardware overhead
which leads to low power computations.

However, ifwewant to realize a complex functionwhich
cannot be realized by onlymultiplications and additions (e.g.,
division and square root operations), we need to approximate
the target function by a Bernstein polynomial [10]. We can
realize any function by this approximation method [2], but
this methodmay need large hardware overhead and increases
calculation errors for some cases. There have been pro-
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posed another polynomial approximation method called the
Horner’s method [11] which uses the Taylor expansions. The
polynomial approximation method based on the Horner’s
method may be better than the one based on Bernstein poly-
nomials for many cases, but still suffers from some hardware
overhead and calculation errors.

Therefore, a specific efficient realization of a specific
SC calculation have been studied intensively in the re-
search community of SC. Among such researches, an ef-
ficient realization of SC calculation for square root has
been proposed [12] recently. The method proposes an SC
square root circuit called Bit-Inserting Square Root (here-
after, BISQRT) [12]; the idea of BISQRT is to increase the
number of 1’s in the input bit-stream by using a feedback
circuit.

Our contribution.
In this paper we generalize the idea of BISQRT so that it
can be applied to many functions other than a square root
function. More precisely, the contributions of this paper can
be summarized as follows.

• We identify a situation when we can implement a func-
tion efficiently by an SC circuit with a feedback circuit.

• We show two such situations, and show how to realize
SC circuits to calculate the n-th root calculation and the
division.

• We show the comparison of the calculation errors and
the hardware costs between our proposed SC cubic root
circuit and the ones by the conventional polynomial ap-
proximationmethod based on theHorner’smethod [11];
our proposed circuit can be realized with smaller hard-
ware cost that the conventional method.

• We also show the comparison of the calculation errors
and the hardware costs between our proposed SC di-
vision circuit and the conventional Correlated Division
(CORDIV) [13] circuit to show the effectiveness of our
method.

This paper is organized as follows. After providing nec-
essary information for SC in Sect. 2, we propose our idea to
generalize BISQRT in Sect. 3; we identify a situation when
a function can be realized efficiently by an SC circuit with a
feedback circuit. Then, Sect. 4 shows our analysis on the ac-
curacy and the hardware cost of SC cubic root circuits by our
proposed framework and by the conventional polynomial ap-
proximation method based on the Horner’s method. We also
show the same analysis for SC division circuits where we
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compare our proposed circuit with the conventional SC divi-
sion circuit called Correlated Division [13] by Te-Hsuan et
al. and In-Stream Correlation-based Division [12] by D. Wu
et al. Finally, Sect. 5 concludes the paper with our future
work.

2. Stochastic Computing

In Stochastic Computing (SC), the probability of “1” in the
bit string is treated as a value. For example, a bit string
“11101011” represents 3/4 because there are six “1” in the
8 bit-length. Thus, the probability of the presence of 1’s in
a bit string is called “Stochastic Number (SN).” This means
that the values of two SNs can be equal even though the two
bit strings are different. For example, both “11001001” and
“10101001” represent 1/2. In addition, the accuracy of the
values increases with the length of the bit string.

SN can be generated by comparing a binary constant
with a random number generated by the Linear Feedback
Shift Register (hereafter, LFSR), as shown in Fig. 1. The SN
generator as shown in Fig. 1 is called a Stochastic Number
Generator (hereafter, SNG). Since SN takes as its value the
probability of the presence of 1’s in a bit string, the range of
representable values is [0,1]. Therefore, appropriate scaling
of the outputs is necessary when dealing with values outside
this range. For example, if the maximum input number is
100, we generate all the input SNs scaled by a factor of
1/100, and we scale the result of the SC calculation by a
factor of 100 to get the correct result.

2.1 SC Calculation

In SC, some operations can be performed with very simple
logic gates. For example, multiplication can be realized
with a single AND gate as shown in Fig. 2. Addition can be
realized with a single MUX, as shown in Fig. 3. However,
the output is scaled by 1/2. Also, if the two inputs has
negative correlation, saturation addition without scaling can
be realized with a single OR gate as shown in Fig. 4.

2.2 The Effect of Correlation Between Input SNs

In SC calculation, the calculated result may have errors if
there are correlations between the input SNs. For exam-
ple, if the same bit string is given as the two inputs for the
multiplication with a single AND gate, the output will be
the same bit string as the input as shown in Fig. 5. Thus,
multiplying with a single AND gate may not produce correct
output if there is a strong correlation between the inputs.
Such arithmetic errors due to correlation also exist in other
SC calculations [14], [15].

On the other hand, there are operations that use corre-
lations [14]. For example, when the correlation between the
inputs is maximal, the minimum value of the two inputs can
be found by a single AND gate. Therefore, in SC calcula-
tion, in order to perform the intended calculation, it may be
necessary to manipulate the correlations [16], [17].

Fig. 1 A Stochastic Number Generator.

Fig. 2 Multiplication with a single AND gate.

Fig. 3 Addition with a single MUX.

Fig. 4 Addition with a single OR gate.

Fig. 5 Example when the same bit string as inputs give to a single AND
gate.

3. Realization of SC Calculation with Feedback

In this paper we propose an efficient method to realize SC
complex functions by using feedback circuits. Our method
is a generalization of the method proposed by D. Wu et
al. for realizing SC square root circuits using so called Bit-
Inserting Square Root (BISQRT) [12]; we generalize the idea
of BISQRT so that it can be applied to many functions other
than a square root function. More precisely, we identify a
situation when we can implement a function efficiently by an
SC circuit with a feedback circuit. Then, we show two such
situation.

3.1 Realization of SC Square Root Circuits Based on
BISQRT

The output value of the square root calculation should exceed
the input value. Thus BISQRT tries to increase the number
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Fig. 6 The circuit of BISQRT.

of 1’s in the input SN so that the output value becomes
the square root function. The circuit of BISQRT proposed
in [12] can be shown in Fig. 6. This circuit uses Non-Scale
Addition (hereafter, NSAdd) to insert 1’s into the input only
when the input is 0, depending on the output of Feedback
Block.

We adjust the output of this Feedback Block such that
the output of the entire circuit becomes the square root of
the input value. Let PIn, POut and PFeedback be the prob-
abilities that the input In, the output Out and the output of
the Feedback Block in Fig. 6 become 1, respectively. Then
POut can be expressed as Eq. (1). Here we want POut to be
the square root of PIn, which means that PIn = P2

Out . Thus,
we replace PIn with P2

Out to get Eq. (2). By solving Eq. (2),
we obtain PFeedback as Eq. (3). Thus, we can realize an SC
square root circuit by replacing the Feedback Block in Fig. 6
with a circuit that produces PFeedback as Eq. (3). Indeed,
it is verified in [12] that the circuit as shown in Fig. 6 can
realize the SC square root function.

POut = PIn + PFeedback (1)
= P2

Out + PFeedback (2)
PFeedback = POut × (1 − POut ) (3)

3.2 Generalization of BISQRT

In this paper, we generalize the framework used in the above-
mentioned BISQRT; we consider what kinds of target func-
tions can be realized easily by this framework in the follow-
ing.

Let Px , POut and PFeedback be the probabilities that
the input In, the output Out and the output of the Feedback
Block in Fig. 6 become 1, respectively. Then POut can be
expressed as Eq. (4). By transforming Eq. (4), we obtain
PFeedback as Eq. (5).

Similar to the case of BISQRT, we have Eq. (1) which
can be transformed into Eq. (4).

PFeedback = POut − Px (4)

PFeedback = POut × (1 −
Px

POut
) (5)

Then, by rewriting Eq. (4) to Eq. (5), we can observe the
following:
Our Observation.
We can easily realize a multiplication of two SNs by a single
AND gate, and also (1− X) can be realized by a single NOT

Fig. 7 The circuit that produces less correlated SNs by changing the order
of 1’s in a SN.

gate for an SN X . Thus, from Eq. (5), our conclusion is as
follows: If Px

POut
can be easily realized by an SC circuit, we

can design a low-cost SC circuit to calculate POut .
Thus, our new proposal is to use an SC circuit with

feedback if Px

POut
can be easily realized by an SC circuit.

We will explain how this framework is used in the following
section.

3.3 How to Use Our Proposed Framework

In the following, we explain how to use our proposed frame-
work by using two examples; one is n-th root calculation
(n = 3,4,5 . . . ), and the other is division.

3.3.1 SC n-th Root Circuit Based on the Proposed Frame-
work

When the target function F(x) = x
1
n , we obtain Eq. (6)

from Eq. (5). By transforming Eq. (6) to Eq. (7), we can
observe that (x1/n)n−1 can be easily realized from POut (=

x1/n) because multiplication operations are easy in SC.
When we perform a multiplication operation between

two SNs, the error becomes large if the two SNs are highly
correlated. Therefore, we use a depth-d shift register (here-
after, SR), MUX and random numbers (R) to change the
order of 1’s in a SN to produce less correlated SNs as shown
in Fig. 7. In the following figures, this circuit is represented
by a box labeled with “SR.” Note that the input R is omitted.
Indeed we can improve the accuracy of the SC multiplica-
tion by using this circuit [12]. Thus, the circuit can be used
to generate Pn−1

Out
as shown in Fig. 8. In the following fig-

ures, this circuit is represented by a box labeled with “Pn−1
Out

.”
In conclusion, we can realize POut (= x

1
n ) by replacing the

Feedback Block of Fig. 6 with the circuit as shown in Fig. 9.

PFeedback = x
1
n (1 −

x

x
1
n

) (6)

= x
1
n (1 − (x

1
n )n−1) (7)

3.3.2 SC Division Circuit Based on the Proposed Frame-
work

When the target function F(x) = x/k, we obtain Eq. (8)
from Eq. (5). Let n be the precision level of the input SN,
where k is a value in the range (max( 1n , x) ≤ k ≤ 1). This
is because the value of an SN should be between 0 and 1.
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Fig. 8 The circuit that produces Pn−1
Out

.

Fig. 9 Feedback Block for SC n-th root.

Fig. 10 The Feedback Block for SC division.

Fig. 11 The proposed SC division circuit.

Then, by transforming Eq. (8) to Eq. (9), we can observe that
POut (= x/k) is realized by replacing the Feedback Block
with the circuit as shown in Fig. 10. Therefore, the division
circuit based on the proposed framework can be shown in
Fig. 11.

PFeedback =
x
k
(1 −

x
x
k

) (8)

=
x
k
(1 − k) (9)

4. Experimental Results

We have performed an analysis on the accuracy of the SC
cubic root circuit by our proposed framework and that by the
conventional polynomial approximationmethod based on the
Horner’s method [11]. Also, we have performed the same
analysis for divisor circuits; we compared our SC division
circuit with Correlated Division (hereafter, CORDIV) [13]
circuit by Te-Hsuan et al. and In-Stream Correlation-based
Division (hereafter, ISCBDIV) [12] by D. Wu et al. The
results are shown in the following.

Fig. 12 An SC cubic root circuit by our proposed framework.

Fig. 13 An SC cubic root circuit by the Taylor expansion at a = 1.

Fig. 14 An SC cubic root circuit by the Taylor expansion when n = 3.

4.1 SC Cubic Root Circuits by Our Proposed Framework

We show the SC cubic root circuit generated by our proposed
framework in Fig. 12. The circuit is the power-root circuits
proposed in Sect. 3 when n = 3.

In our implementation, we need to calculate P2
Out . In

SC, we can multiply two SNs by only a single AND gate.
However, if the two SNs have some correlation, the result
of the multiplication may have large errors. So when the
two SNs are correlated partially, we use an SR as mentioned
in Sect. 3. Thus we use an SR before we calculate P2

Out
as shown in Fig. 12, where a box labeled with “SR” before
an AND gate is an SR. In addition, we adopt the design
proposed in [18] for non-scaled additions to achieve high
accuracy.

4.2 SC Cubic Root Circuits by a Polynomial Approxima-
tion Method

Equation (10) is the Taylor series of a general function. By
using this equation, we obtain the Taylor expansion of f (x) =
3√x as follows. We cannot perform the Taylor expansion of
the function at a = 0, because when n ≥ 1, the denominators
in Eq. (11) become 0. Thus, we use Eq. (12) to realize SC
cubic root circuits. When a = 1, to perform the Taylor
expansion, we obtain Eq. (12). Furthermore, by deforming
this equation to Eq. (13), we obtain Eq. (14). This formula
can be realized very efficiently in SC by using only AND,
NOT gates and NSAdds.

From the above Taylor expansion, we generate an SC
cubic root circuit as shown in Fig. 13. This circuit needs n−1
NSAdds whose hardware cost is relatively large [18]. Thus,
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Fig. 15 MAE for each input precision about SC cubic root circuits.

Fig. 16 MAE for each input precision about SC division circuits.

if n increases, the hardware cost of this circuit becomes
very large. Therefore, for a fair comparison in terms of
the hardware overhead, we consider the case when n = 3;
we realize the circuit by using Eq. (14) which is the Taylor
expansion of 3√x when a = 1 and n = 3. Accordingly,
Fig. 14 shows the SC cubic root circuit by the conventional
polynomial approximation method for our comparison.

f (x) =
∞∑
n=0

f (n)(a)
n!
(x − a)n (10)

f (x) = a|a=0 +
x

3a
2
3

����
a=0
−

x2

9a
5
3

����
a=0

. . . (11)

f (x) = 1 +
x − 1

3
−
(x − 1)2

9
+

5(x − 1)3

81
. . . (12)

f (x) = 1 +
x − 1

3
−
(x − 1)2

9
+

5(x − 1)3

81
. . .

= 1 + (x − 1)
(1
3
− (x − 1)

(1
9
− (x − 1)

( 5
81

. . .

(13)

f (x) = 1 − (1 − x)
(1
3
+ (1 − x)

(1
9
+ (1 − x)

( 5
81

. . .

(14)

Ecr =
1

N − 1

N−1∑
n=1
|Pn − Tn | (15)

Ediv =
2

(N − 2)(N − 1)

N−1∑
i=2

i−1∑
j=1

��Pi, j − Ti, j
�� (16)

4.3 Experimental Results

4.3.1 Accuracy Comparison

We implemented a simulation program to compare the arith-
metic errors and the mean absolute error (hereafter, MAE)
between the circuits by our proposed framework and that
by the conventional Taylor expansion-based method or the
existing division circuit. First, in order to examine the
change in MAE by the variation of the precision level of
SNs, we consider the precision levels of SNs are N bits
(N = 8,16,32, · · · ,1024) in this order. For each precision
level N , we calculated the error values of the function from
x = 1/N to x = (N − 1)/N . For the division circuit, for
each x, we calculated the error value for all k satisfying
(x ≤ k ≤ 1).

In our simulation, we consider the behavior of NSAdd
based on [18]. The simulation results should depend on
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Fig. 17 Comparison between the output of SC cubic root by Taylor expansion and the correct value.

Fig. 18 Comparison between the output of SC cubic root by proposed method and the correct value.

the random numbers used for the LFSRs, thus we calculate
MAE at each precision level by using different 100 random
numbers for the LFSRs.

When we denote the output value and the correct value
as P andT , we calculate the average error values by Eqs. (15)
and (16) for the SC cubic root circuits and the division cir-
cuits, respectively. Note that the number of inputs for the SC
cubic root circuits is N − 1, and so we calculate the average
of N −1 combinations of inputs by Eq. (15). For the division
circuits, we have two inputs (divisor and dividend) and the
number of combinations to be considered is (N−2)(N−1)

2 be-
cause we consider the cases where the dividend is less than
the divisor which is 1

N to N−1
N . Thus Eq. (16) is obtained

by the average of (N−2)(N−1)
2 combinations. Then, we try

different 100 random numbers for the LFSRs in the above
simulations, and we report the average of the 100 trials in
the following. We also calculate all the error values when
the precision level is 256 bits for SC cubic root circuits. In
our comparison, we used depth-5 SRs for shift registers.

By observing most applications of SCs in literature, it
would be enough to consider the precision level is 256. Also
it is pointed out that if the precision level becomes large, SC
would not be energy-efficient [19]. Thus, in the following,
we consider that the precision level is 256.

Table 1 Area of each module.

Figures 15 and 16 show how MAE of each method
differs for the different precision levels. An SC cubic root
circuit based on Taylor expansion has a lower MAE than
the one based on our proposed framework. An SC division
circuit based on our proposed framework has a lower MAE
thanCORDIV.Note thatwe did not compare ourmethodwith
ISCBDIV because CORDIV has better arithmetic accuracy
than ISCBDIV [12].

Figures 17 and 18 show the comparison between the
correct value and the output value of each method when the
input is from x = 1/N to x = (N − 1)/N where the precision
level N is 256. In each figure, the correct value of the cubic
root is plotted as cbrt(x).

The SC cubic root circuit based on the Taylor expansion
outputs the values more than the correct values when the
input is between 1/256 to 46/256. The maximum difference
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Table 2 Comparison of hardware costs for SC division circuits.

from the correct value is 0.338603869. When the input
is more than 46/256, the output value is sometimes more
and sometimes less than the correct value. The SC cubic
root circuit by our proposed framework does not output a
value exceeding the correct value for most input values. The
maximum difference from the correct value is 0.202898136.

From these results, we could observe that the error
values of the SC cubit root circuit by our method is not
so bad for most inputs, and also our method is even better
than the Taylor expansion-based method when the input x
is very small although MAE of our method is worse than
that of the Taylor expansion-based method. Note that the
maximum difference between the output of a circuit based
on our proposed framework and the correct value is lower
than that of the conventional Taylor expansion basedmethod.

As we will show, our method is better in terms of the
hardware cost than the conventional Taylor expansion based
method. Thus, we would conclude that our framework can
provide a new type of SC circuits which may be better than
the known SC circuits in some aspects.

4.3.2 Hardware Comparison

We implemented major modules used in the SC cubic root
and SC diviosion circuits based on our proposed framework
and the conventional methods for the case of 256-bit SNs.
Table 1 shows the hardware cost for each module measured
by Synopsys Design Compiler with Rohm 0.18µm library.
“Area” and “Area_ref” in the table represent the circuit area
and the number of NAND2 gates, respectively.

First, by observing Figs. 12 and 14 for the SC cubic
root circuit, it can be seen that the design with the Taylor
expansion has one more NSAdd and one more NAND gate
than our method. Thus, by observing that the cost of NSAdd
is relatively large compared to other modules in Table 1, it
is obvious that the circuit based on our proposed framework
can be realized at a lower cost than Taylor expansion based
method.

Next, let us consider the hardware costs for the SC di-
vision circuits based on CORDIV, ISCBDIV and our frame-
work. CORDIV requires positive correlation between in-
puts, therefore it needs SN re-generation, and thus we need
an additional LSFR and a comparator. ISCBDIV uses a
Skewed Synchronizer (hereafter, SS) of depth-1 to ensure
positive correlation between inputs. Also, to increase the
arithmetic accuracy, one D Flip-Flop used in CORDIV is re-
placed with an SR of depth-2. In contrast, the circuit based
on our proposed framework does not need the correlation
between inputs, but it requires an NSAdd. In conclusion,
Table 2 shows the number of major modules used in each
SC division circuit. Then, considering the hardware cost of

each module listed in Table 1, we can conclude that the cir-
cuit based on our proposed framework has lower hardware
cost than the one based on CORDIV.

5. Conclusion

In this paper, we proposed the SC design framework to use
a feedback circuit; we considered what kinds of target func-
tions can be realized easily by using a feedback circuit. Our
framework is considered as a generalization of BISQRT.
Then, we proposed an SC n-th root circuit and an SC divi-
sion circuit based on our proposed framework.

An SC cubic root circuit based on our proposed frame-
work has a lower hardware area than an SC cubic root circuit
by a Taylor expansion. An SC division circuit based on our
proposed framework shows the lower MAE and hardware
area than the one based on CORDIV. Our simulation results
also show that the maximum difference between the output
of a circuit based on our proposed framework and the correct
value is lower than that of the conventional Taylor expansion
based method. In conclusion, we can expect that our frame-
work provide us a new type of SC circuits which are better
than the known SC circuits in some aspects.

For our future work, we need to consider other target
functions. In addition, it would be interesting to consider
replacing NSAdd in our framework with other gates such as
an AND gate or an OR gate.
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