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PAPER
A POMDP-Based Approach to Assortment Optimization Problem
for Vending Machine

Gaku NEMOTO†, Nonmember and Kunihiko HIRAISHI†a), Member

SUMMARY Assortment optimization is one of main problems for re-
tailers, and has been widely studied. In this paper, we focus on vending
machines, which have many characteristic issues to be considered. We first
formulate an assortment optimization problem for vending machines, next
propose amodel that represents consumer’s decisionmaking, and then show
a solution method based on partially observable Markov decision process
(POMDP). The problem includes incomplete state observation, stochas-
tic consumer behavior and policy decisions that maximize future expected
rewards. Using computer simulation, we observe that sales increases com-
pared to that by heuristic methods under the same condition. Moreover, the
sales approaches the theoretical upper bound.
key words: assortment optimization, POMDP, vending machine

1. Introduction

Appropriate product assortment planning, as well as pric-
ing and inventory management, is an important issue for
many retailers. Various approaches are being made to solve
problems for each type of business, such as retail stores,
convenience stores, supermarkets, and EC sites. Among
them, assortment optimization for vending machines (espe-
cially beverage vending machines) has several characteris-
tics different from other retail stores. That is, there are many
product types with limited available inventory, there is a
time lag until the sales data can be obtained, replenishment
opportunities are limited, and changes in sales due to the
environment is large. These constraints make the problem
more complicated.

In this paper, we first present formulation of an as-
sortment optimization problem for vending machines, next
propose a model that explains consumer’s decision mak-
ing, and then show a solution method to the problem. We
use formulation based on the partially observable Markov
decision process (POMDP), a modeling framework for de-
cision making processes where state variables are partially
observable. In vendingmachines, workers, called routemen,
repeatedly change the assortment of products in order to get
better sales. The goal of assortment optimization is to max-
imize the expected sales by changing the assortment at each
replenishment work.

The remainder of the paper is organized as follows. In
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Sect. 2, overview of the related works is shown. Charac-
teristics of the assortment optimization problem for vending
machines are also described. In Sect. 3, the general formula-
tion of the problem is presented. In Sect. 4, the consumer’s
product selection model is presented together with the the-
oretical upper bound of the expected sales. By these upper
bounds, we can know how the obtained solution is close to
the optimal one. The proposed POMDP-based approach to
this problem is described in Sect. 5. This is the main contri-
bution of this paper. In Sect. 6 we present a simulationmodel
and its setting for the evaluation, and discuss accuracy and
effectiveness of the proposed method in Sect. 7. Section 8 is
the conclusion.

2. Related Works

Assortment optimization problem has been widely studied.
There are two major themes in literatures on assortment
optimization, which deals with static or dynamic substitution
mechanisms and models in consumer behavior.

Static substitution assumes that if the initially selected
product is out of stock, then the consumer will not purchase
another item instead [1]. In contrast, dynamic substitution
assumes that if the product is out of stock, then the consumer
purchases another item as an alternative [2], [3].

In [4], three models are shown for describing consumer
behavior: exogenous demand, locational choice and multi-
nomial logit. The exogenous demand model gives a method
for describing consumer behavior from observable sales data
of each product, such as Kök and Fisher [5]. The locational
choice model was developed by Lancaster [6]. This model
introduces multi-dimensional vectors where each dimension
corresponds to a product characteristic and consumer’s de-
mand. The consumer’s selection of products is determined
by the proximity of the consumer’s ideal vector to the prod-
uct’s vector. The multinomial logit (MNL) model is a ran-
dom utility model that represents the selection probability of
each product as functions of consumer’s utility. The basic
MNL model was established by McFadden [7]. The MNL
model has limitations because it assumes independence of
irrelevant alternatives in the selection probabilities of prod-
ucts. To reduce these limitations, the nested MNL model
was proposed by Williams [8].

On the other hand, researches on assortment planning
for vending machines are not in progress. Instead, consumer
behavior for vending machines is being studied. Anupindi et
al. [9] propose a model for demand estimation that takes the

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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dynamic substitution into consideration. The reasons why
the assortment optimization problem for vending machines
has not been well discovered are considered to be (i) demand
for solving this problem was small because the assortment
is usually decided by route men using their knowledge and
experience on sales, and (ii) complexity of the problem. The
complexity arises from the following notable characteristics
of the problem:

• Sales of products can be observed only when the re-
plenishment is done.

• The replenishment work is done on a regular basis.
Therefore, solution to the problem is a decision making
process based on past history of observations.

• Nature of customers is not observable and needs to be
estimated.

Recently, beverage companies try to introduce information
systems that support route men’s work. Proposing a method
that helps the route men’s decision making is the main con-
tribution of this paper.

3. General Formulation

Before discussing the assortment optimization problem, we
outline the general formulation. The assortment optimiza-
tion problem for vending machines is defined by a 6-tuple
AOP = (A,S,G,O, π,C), where A is the set of assortments,
S is the set of states, G is the gain function, O is the ob-
servation function, π is the policy, and C is the assortment
constraints. Details are described below.

(1) Products and Assortment

Consider n kinds of products qi(i = 1, . . . ,n) and m columns
(m > 0, normally n > m), where columns of a vending ma-
chine are containers for stocking products. An assortment
is a combination of selecting m products from n kinds of
products allowing duplication. Such a combination is repre-
sented by amultiset†. Let A = {a1, . . . , aL} denote the set of
all assortments, where L is the total number of assortments.
The assortment given at time t is denoted by a(t). Note that
a(t) takes effect on sales between t and t + 1.

We assume that every column has the same capacity,
and let cap denote the capacity of each column. Then the
number of product qi in the assortment a(t) is stk(a(t),qi) :=
#a(t)[qi] · cap, where #a(t)[qi] is the number of occurrences
of qi in the multiset a(t) and we assume each column is full
after replenish work.

(2) State Space

Let S = {s1, . . . , sv} be the set of states, where each state si
is a u-dimensional vector and each component of a sate can
be a real number, an integer and a discrete value. The states

†Multiset: A concept of set that combines the degree of dupli-
cation of how many elements are included when the set contains
multiple elements of the same value. #X[e] represents the number
of e included in the multiple set X . We denote e ∈ X if #X[e] > 0.

of vendingmachines consists of environment, weather, back-
ground population for the purchase at the vending machine,
etc.

The state at time t is denoted by s(t). We define the
state transition probability as a function δ: N × S × S →
[0,1], where ∀t, sj :

∑
j′ δ(t, sj, sj′) = 1. It means that the

probability that s(t) = sj and s(t + 1) = sj′ is δ(t, sj, sj′).
When the state transition probability depends on time t, it is
called time variant, otherwise it is called time invariant. In
the time invariant case, δ is defined as δ : S × S → [0,1].

(3) Gain Function

The gain function for assortments is defined as a functionG :
S× A→ N that gives the total sales (amount or unit) under a
given state and an assortment. G(sj, al) is given by the sum
of the sales of all products: G(sj, al) :=

∑
qi ∈al gi , where

gi is the sales of product qi . The vector g := [g1, . . . , gn]
is called the gain vector. Note that we implicitly assume
all products have the same price. How to derive the gain
function is explained in the next section.

(4) Observation Function

The observation function is defined as O : S → W , whereW
is some set. The observation at time t is denoted by o(t) :=
O(s(t)). As we have defined, each state s is represented
by a u-dimensional vector si := [s1

i , · · · , s
u
i ]. In this paper,

we assume that the observation function masks some of the
substates, e.g., for state si = [s1

i , s
2
i , s

3
i , s

4
i ], O(si) = [s1

i , s
4
i ]

(the functionmasks the second and the third substates). Here
the masked substates imply unobservable substates and the
others imply observable ones.

(5) Policy

When s(k),o(k), a(k), g(k), k = 0, . . . , t−1 are given, a func-
tion that outputs a(t) is called a policy.

(6) Assortment Constraint

The assortment constraint is a set C ⊆ A × A. For any time
t, (a(t), a(t + 1)) ∈ C has to be satisfied. The reason why
this constraint arises is that the number of products the route
man can exchange at each time is limited. This constraint
characterizes the assortment optimization problem for vend-
ing machines.

We now define the assortment optimization problem
studied in this paper.

Assortment optimization problem: Find a policy that sat-
isfies the assortment constraint and maximizes the total gain
during time t = 0, . . . ,T .

We can also classify the problem by the following char-
acteristics: The state space is known/unknown for the agent
(the route man in this case), complete/incomplete observa-
tion, gain function is known/unknown, and transition proba-
bility is known/unknown. Examples are

• Stores (such as convenience stores, supermarkets):
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state is known, complete observation, gain function is
known.

• Vending machines: state is known (or unknown), in-
complete observation, gain function is known.

4. Product Selection Model

In order to give the gain function, we introduce a consumer’s
product selection model. Based on MNL model, utility
values give the probabilities that a consumer selects one from
plural selectable products [10], [11]. Let Pqi ,sj ,k denote the
probability that consumer Ck tries to purchase product qi
in state sj . The utility value when consumer Ck tries to
purchase product qi , denoted by Vqi ,sj ,k , is given by a linear
regression model

Vqi ,sj ,k := ln
Pqi ,sj ,k

Pq1 ,sj ,k
= α

j ,k
i +

∑
l

β
j ,k
i,l

Y j
l

(1)

where we assume product q1 is the reference, α j ,k
i is a con-

stant, and β j ,k
i,l

is the coefficient of each explanatory variable
Y j
l
. Then the probability that consumer Ck selects product

qi in state sj is given by

Pqi ,sj ,k =
exp(Vqi ,sj ,k)∑n
l=1 exp(Vql ,sj ,k)

(2)

Remark that utility values and the selection probabilities are
defined not only for products in the assortment, but also for
products not in the assortment.

Using the probability Eq. (2), we give the purchase
probability of product qi by each consumer. Let N be the
number of consumers and let Xi denote the stochastic vari-
able representing the number of sales for product qi without
any restriction on the assortment. The purchase probability
Pr(Xi = r |sj) under state sj follows Poisson binomial dis-
tribution [12]. Poisson binomial distribution is explained as
follows. We consider N independent trials each of which has
its own success probability. Then Poisson binomial distribu-
tion is the discrete probability distribution of the number of
successes from the N trials that can be computed recursively
by

Pr(Xi = r |sj) =
N∏
k=1
(1 − Pqi ,sj ,k) if r = 0

1
r

r∑
l=1
(−1)l−1 Pr(Xi = r − l |sj)Υ(l) if r > 0

(3)

where Pqi ,sj ,k is that defined by Eq. (2) and

Υ(l) =
N∑
k=1

( Pqi ,sj ,k

1 − Pqi ,sj ,k

) l
,

Expected value : E[Xi |sj] =
N∑
k=1

Pqi ,sj ,k (4)

Next we consider the probability under a given assort-
ment. We assume the static substitution. Since the amount
of actual sales gi is constrained by the assortment, the proba-
bility under state sj and assortment ah is obtained as follows.

Pr(gi = r |sj, ah) =

0 if r > stk(ah,qi)

N∑
l=r

Pr(Xi = l |sj) if r = stk(ah,qi)

Pr(Xi = r |sj) if r < stk(ah,qi)

(5)

Due to the capacity constraint, all cases r ≤ Xi ≤ N reduce
to Xi = r . Also, the expected reward under state sj and
assortment ah is given by

E[G(sj, ah)] =
∑
qi ∈ah

min{stk(ah,qi),E[Xi |sj]} (6)

We can derive the theoretical upper bound on the ex-
pected sales. If the agent explicitly knows the state s(t) of
the vending machine at time t, the agent can maximize the
expected total sales by choosing an appropriate assortment
from the set of the entire assortment A. We can give the fol-
lowing upper bound of expected sales at each time t, without
considering assortment constraint.

EUpper bound
t = max

a(t)∈A
E[G(s(t), a(t − 1))] (7)

By the assortment constraint, selection of the assort-
ment at time t is constrained by the assortment at time t − 1.
We consider the feasible maximum value of expected sales
under the assortment constraint. Let al , am be two assort-
ments and let C(al, am) denote a Boolean variable such that
C(al, am) = 1 if (al, am) ∈ C and 0 otherwise. Then the
expected sales considering assortment constraint at time t is
given by

Et (a(0), . . . , a(t − 1)) =(
t−1∏
i=1
C(a(i − 1), a(i))

)
· E[G(s(t), a(t − 1))] (8)

and the feasible maximum value at each time t is

EFeasible max
t = max

a(0),...,a(t−1)∈A
Et (a(0), . . . , a(t − 1)) (9)

Clearly, EFeasible max
t ≤ EUpper bound

t holds.

5. Formulation as POMDP

Following Kaelbling et al. [13], we propose a POMDP-based
method that select a good assortment policy from a given set
of policies. POMDP is a stochastic process that deals with
situationswhere the state can be partially observed, and these
observations do not necessarily satisfy Markov process.
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5.1 POMDP

POMDP is a model of an agent that synchronously in-
teracts with a world. Given a discrete set Z , let Π(Z)
denote the set of all discrete probability distributions on
Z . Formally, POMDP is defined as a tuple POMDP =
(St,Act,∆,Rw,Ω,Obs), where St is the finite set of states, Act
is the finite set of actions, ∆ : St × Act → Π(St) is the state
transition function, Rw : St×Act→ R is the reward function,
Ω is a finite set of observations, and Obs : St × Act→ Π(Ω)
is the observation function. Since the state has to be esti-
mated through the observation function, Kaelbling’s method
introduces a belief. A belief is a variable that represents what
the current state is, and it is estimated from the history of
observations. At each time step, the agent choose an action
to maximize the expected reward depending on the belief.
A policy is a description of the behavior of the agent. We
adopt POMDP as a framework of the solution method since
we focus on the case where the agent can not recognize a
part of the current state of the vending machine. But the
proposed model is customized from original POMDP to be
adapted to the assortment optimization problem of vending
machines.

5.2 POMDP Model for AOP

The POMDPmodel for the assortment optimization problem
is described as follows.

(1) State

The set of states in POMDP is given as the set of states in
AOP. The state at time t is denoted by s(t).

(2) Action

The agent is the route man. The action given at time t is the
assortment a(t) after the exchange.

(3) State Transition Probability

The state transition probability from time t to t+1 is denoted
by δ(t, s(t), s(t+1)). We assume that assortments do not affect
state transitions, and that the state transition probabilites are
time invariant. So we denote the probabilites by δ(s(t +
1)|s(t)). We define the state transition probability for n time
steps, denoted by δn, by δ1(s′ |s) := δ(s′ |s) and

δn(s′ |s) :=
∑
s′′∈S

δn−1(s′ |s′′)δ(s′′ |s) (10)

(4) Observation and Reward

The possible observed state o(t) and the sales vector g(t) =
[g1(t), · · · , gn(t)] at time t are stochastically given depending
on the state s(t) and the assortment a(t − 1). Suppose that
g(t) = [r1, . . . ,rn]. Then the probability is given by

O(s(t), a(t − 1),o(t), g(t))
:= Pr(o(t), g(t)|s(t), a(t − 1))

=

n∏
i=1

Pr(o(t), gi(t) = ri |s(t), a(t − 1)) (11)

=

n∏
i=1

Pr(gi(t) = ri |s(t), a(t − 1))

The last equality follows from the fact that o(t) is uniquely
determined from s(t) as described in Sect. 3(4), i.e., the ob-
servation masks some substates. Pr(gi(t) = ri |s(t), a(t − 1))
is computed by Eq. (5).

At time t, the agent obtains the possible observed state
o(t) and the sales gi(t) of each product qi . The total sales
of products is regarded as the reward. Let rw(t) denote
the reward at time t. Then rw(t) := G(s(t), a(t − 1)) =∑

qi ∈a(t−1) gi(t).

5.3 Belief and Policy

The belief is represented by a function b : S → R such that
0 ≤ b(s) ≤ 1 and

∑
sj ∈S b(sj) = 1. Let bt denote the belief

at time t. For each state s ∈ S, bt (s) is the strength that the
agent believes s(t) = s. A policy on assortment exchange
is a function that gives the assortment at each time. We
assume that the policy π depends only on the latest state s(t),
the observed values o(t), and the latest assortment a(t − 1).
Also, it is assumed that the agent can select one policy from
a finite set of policies Π := {π1, . . . , πM }.

At each time, the policy on assortment exchanges is
decided by the current belief. Given a belief bt−1 at time
t − 1, the belief that s(t) = s′ under the observed state o(t)
and the sales g(t) is given by

bt (s′) = Pr(s′ |o(t), a(t − 1), g(t), bt−1)

=
Pr(o(t), g(t)|s′, a(t − 1), bt−1)Pr(s′ |a(t − 1), bt−1)

Pr(o(t), g(t)|a(t − 1), bt−1)

=
Pr(o(t), g(t)|s′, a(t − 1))

Pr(o(t), g(t)|a(t − 1), bt−1)

×
∑
s∈S

Pr(s′ |a(t − 1), bt−1, s)Pr(s |a(t − 1), bt−1)

=
O(s′, a(t − 1),o(t), g(t))

Pr(o(t), g(t)|a(t − 1), bt−1)
×

∑
s∈S

δ(s′ |s)bt−1(s)

(12)

where the denominator Pr(o(t), g(t)|a(t − 1), bt−1) can be
treated as a normalizing factor.

5.4 Procedure for Determining Policy

We describe the procedure for determining the strategy for
assortment exchange at time t.

At time t = 0, we assume that s(0) = sj is equally
likely for all possible states sj ∈ S. In other words, the
belief b0(s(0)) is b0(s1) = b0(s2) = · · · = b0(sv) = 1

v . At
time t > 0, the observed value o(t) and the sales g(t) are
obtained. Using Eq. (12), we update the belief by
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bt (sj) = O(sj, a(t − 1),o(t), g(t)) ×
∑
s∈S

δ(sj |s)bt−1(s)

(13)

After the update, bt is normalized so that
∑

sj ∈S bt (sj) = 1.
The policy on assortment exchanges πk0

t (k0 =

1, . . . ,M) ∈ Π is decided based on the expected reward
obtained in the future. First, we consider the expected value
of the reward rw(t + 1) at time t + 1. In the case where
πk0
t : a(t − 1) → ak0 (t) is selected, the expected reward at

time t + 1 is given as follows:

E
π
k0
t

[rw(t + 1)] =∑
s′∈S

{∑
s∈S

δ(s′ |s)bt (s)

}
E[G(s′, ak0 (t))].

Next, we consider the case that πk1
t+1(k1 = 1, . . . ,M) is

selected at time t + 1. The expected value of the reward
rw(t + 2) is calculated for the each assortment ak0 (t), ak1 (t +
1). Note that the assortment at time t + 1 depends on the
assortment at time t because of the assortment constraints.

E
π
k0
t ·π

k1
t+1
[rw(t + 2)] =

=
∑
s′∈S

{∑
s∈S

δ2(s′ |s)bt (s)

}
E[G(s′, ak1 (t + 1))].

Similarly at time t + τ (τ > 0), we can obtain the expected
value of the reward as follows:

E
π
k0
t · · ·π

kτ−1
t+τ−1
[rw(t + τ)] =∑

s′∈S

{∑
s∈S

δτ(s′ |s)bt (s)

}
E[G(s′, akτ−1 (t + τ − 1))].

Therefore, we can calculate themaximumexpected reward in
the future when the policy πk0

t is selected at time t. When the
policy πk0

t is selected, the total expected reward Et→t+τ(π
k0
t )

is calculated as the sum of them from t + 1 to t + τ. As usual
in POMDP, in order to make recent rewards more effective,
we multiply the future expected reward by the discount rate
γ(0 < γ < 1).

Et→t+τ(π
k0
t )

= E
π
k0
t

[rw(t + 1)] + γ max
π
k1
t+1∈Π

{
E
π
k0
t ·π

k1
t+1
[rw(t + 2)]

+ γ max
π
k2
t+2∈Π

{
E
π
k0
t ·π

k1
t+1 ·π

k2
t+2
[rw(t + 3)] + γ max

π
k3
t+3∈Π

{
· · · + γ max

π
kτ−1
t+τ−1∈Π

{
E
π
k0
t · · ·π

kτ−1
t+τ−1
[rw(t + τ)]

}
· · ·

}}}
(14)

Note that the expected sales in far future is not very important
in vending machines, we consider rewards within a finite
horizon.

According to the above procedure, we obtain the total
expected rewards Et→t+τ(π

1
t ), . . . ,Et→t+τ(π

M
t ) by the poli-

cies π1
t , . . . , π

M
t . Then, the policy on the assortment ex-

change πt is decided as one that maximizes the expected
reward:

πt = arg max
π
k0
t ∈Π

Et→t+τ(π
k0
t ) (15)

6. Computer Simulation

In this section, we show numerical results obtained by com-
puter simulation of the vending machine assortment opti-
mization problem.

6.1 Parameters and Assumptions

We show the parameters for the simulation and some as-
sumptions.

(1) Consumer

We introduce simple assumptions on consumerswho are pur-
chasing products at the vending machine. Each consumer
has several attributes (gender, age, occupation, etc.), and the
preferences for product selection probabilistically depend on
these attributes together with the current state. At time t,
N consumers try to purchase products at the vending ma-
chine. Suppose that the k-th consumer Ck(k = 1, . . . ,N)
tries to purchase one of n kinds of products. The products
the consumerCk tries to purchase are determined probabilis-
tically. We assume that the probabilities are determined by
the attributes of the consumerCk and the state of the vending
machine s(t). If the product to be purchased is present in
the assortment a(t) and the inventory is sufficient, the con-
sumer Ck purchases it. Otherwise (including in case of sold
out), the consumer do not purchase, i.e., we assume the static
substitution.

In the computer simulation, we assume that the attribute
of the consumer is only gender: male or female. Other
conditions and attributes are not considered.

(2) Agent

The agent replenishes the vendingmachinewith products and
can exchange the assortment at its own discretion. The agent
checks sales for each assortment at the next replenishment
work. In the simulation, we assume that the agent knows all
attributes and parameters including transition probabilities
between states. The agent cannot know the entire informa-
tion on the current state and estimates it from the history of
observations as the belief. Based on the belief, the agent
selects the next policy.

(3) State of Vending Machine

Originally, the state of vending machines can be considered
to have many parameters and factors. The states can be clas-
sified into two types: observable and unobservable. In this
simulation, we consider three states: location, temperature
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Fig. 1 State of vending machine.

Fig. 2 Products and assortment.

and gender ratio. Location is observable and classified by
three types: office, outdoor and school. Temperature is an
external factor for vending machines. It is observable and is
selected from one of {high,middle, low} at each time. The
gender ratio is an internal factor for vending machines, and
it means the ratio of males and females among consumers
who are going to purchase at the vending machine. In the
simulation, three patterns are assumed: {8 : 2,5 : 5,2 : 8}.
The ratio is selected from one of them at each time. The
ratio is unobservable and it cannot be known to the agent.
The image of the vending machine states is shown in Fig. 1.

(4) Products and Assortment

All products have the same shape and price, and the number
of products that can be replenished in one column is also
the same. Products that can be in the assortment are 10
kinds: A, . . . ,J. The vending machine has 6 columns, and
the capacity of each columns is 20 for any kind of products.
It is possible to assign the same kind of products to multiple
columns. Figure 2 depicts an assortment and stocks.

(5) Selection Probability of Products

In the simulation, the utility value Vqi ,sj ,k of product qi ∈
{A, . . . ,J} by the k-th consumer in state sj is defined as:

Vqi ,sj ,k = V0
qi
+ VM

qi
+ βMqi Tj for male,

Vqi ,sj ,k = V0
qi
+ VF

qi
+ βFqiTj for female.

Table 1 Parameters of utility value: office.

Table 2 Parameters of utility value: outdoor.

whereV0
qi
is the gender-independent constant of utility value,

VM
qi
/VF

qi
is the gender-dependent constant, βMqi /β

F
qi

is the
gender-dependent coefficient, and Tj is the temperature pa-
rameter in state sj , such as high → 1, middle → 0,
low → −1.

These parameters are decided by characteristics of loca-
tions and products†. Each product is classified into types of
drink (coffee, green tea, etc.) with attribute COLD or HOT,
and the feature of each product is reflected in the values of
parameters††. The parameter V0

qi
is independent of the loca-

tion, but VM
qi
,VF

qi
, βMqi , β

F
qi

are decided by characteristics of
the location. βMqi , β

F
qi
are coefficients of temperature’s contri-

bution to the utility values. When these values are positive,
they indicate that these products become easy to be sold as
the temperature rises. The parameter values we adopted for
the simulation in this paper are shown in Tables 1–3.

Parameter estimation of the multinominal logit model
can be done independently of the assortment optimization.
In the simulation, we use artificial values for parameters
determined by the following way. We first consider a variety

†The values of these parameters are omitted due to space limi-
tations.
††For example, the utility value for men is higher for coffee,

more COLD products are sold as the temperature rises, etc.
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Table 3 Parameters of utility value: school.

of real products that are for summer/winter, indoor/outdoor,
and male/female. Next we assign values to each parameter
that seem reasonable from qualitative point of view.

(6) Transition Probability

The transition probabilities δ(s(t + 1)|s(t)) are decided by
characteristics of locations. However, we assume that a
transition of gender ratio and temperature are independent in
any location. At outdoor, the transition probability of gender
ratio to other states is large so that the variation of the ratio
is increased. While at school, the probability of staying in
the current state is increased because we consider that the
variation is small. The probability in office is adopted an
intermediate value. The parameter values for the simulation
are shown in Tables 4, 5.

Similarly to parameters in themultinominal logitmodel,
the state transition probabilities should be estimated from
empirical data. However, we here assume that the proba-
bilities are already known. In this paper, we aim to show
the proposed approach works if all the parameter values are
known. If this is not true, then there is no sense to incorpo-
rate estimation of unknown factors in the model. Estimating
unknown factors during the assort optimization process re-
mains as future work.

(7) Policy

In this simulation, we define the policy setΠ includes M = 8
policies in Table 6. The assortment constraint is the most
strict one that allows all of these policies.

6.2 Models and Evaluation

To evaluate and compare the proposed model, we used the
baselinemodel and the comparativemodels. As the baseline,
we calculated the theoretical upper bound Eq. (8) and the
feasible maximum value Eq. (9). We adopted comparative
models as heuristic approaches with fixed actions for every
time step.

• Fix action = 0: Leave the initial assortment (6 products
A, . . . ,F) unchanged at all.

• Fix action= 1,2,7: Select the policy π1, π2, π7 for every

Table 4 Transition probability of gender ratio.

Table 5 Transition probability of temperature.

Table 6 Policy set Π.

time step. In these cases, it is assumed that the agent
considers the gender ratio of the vending machine to be
constant at {5 : 5} in the initial state. Since other poli-
cies showed lower performance than that by π1, π2, π7,
we have picked up these policies in the presentation of
graphs and tables.

In Sect. 5, we calculate the total expected reward
Et→t+τ(π

k0
t ) at each time t by Eq. (14), where τ is the length

of the future time steps. In the simulation, we set up the fol-
lowing three proposedmodels at the policy decision Eq. (15):

• Proposed modelM1: Et→t+1(π
k0
t ) (τ = 1).
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Fig. 3 Example of simulation.

• Proposed modelM2: Et→t+2(π
k0
t ) (τ = 2).

• Proposed modelM3: Et→t+3(π
k0
t ) (τ = 3).

6.3 Results

For the 2 baselines, 4 comparative models and 3 proposed
models, 50 simulations were conducted at each of the 3
location. The length of each simulation is 20 steps, the
number of consumers is N = 100 and the discount rate is
γ = 0.9 in Eq. (14). The computer environment is as follows:
Macbook Pro 15-inch, CPU 2.2GHz 6cores intel Core i7,
RAM 16GB, Python 3.6.13. The execution time for one
simulation was around one minute (M1), 10 minutes (M2),
and 260 minutes (M3). Examples of simulation results at
outdoor are shown in Fig. 3†.

Tables 7, 8, and 9 show the summary of “sales” and
“sold out” in 50 simulations for each model. Here, the
amount of “sold out” cases are counted for the number of
consumers who wanted to purchase a product but could not
because of sold out in columns.

In these tables, improvement efficiency of assortment
for models are evaluated by “Sales(Ave.)/UB”, where UB is
the theoretical upper bound. This means the ratio of how
close the expected sales value is to the upper bound. In all
locations, these ratios of “Feasible max” are almost close to
100%. It means that if the agent knows all the state in the
future and can make the best exchange of products based on
the information, the expected sales that the agent can obtain
is almost close to the upper bound.

In comparative models, the ratio of fix action = 0 is

†In Fig. 3, there are cases where the sales of the proposed
models exceed that of the theoretical upper bound at some time
steps. This is because the sales of proposedmodels are calculated by
stochastic simulation at each time step while that of the theoretical
upper bound is summed up the expected value of sales. Therefore,
the proposed models are evaluated by the average values of the total
sales in 50 simulations.

Table 7 Result summary of office.

Table 8 Result summary of outdoor.

Table 9 Result summary of school.

around 65–85%, and that of fix action = 1,2,7 are around
90% on each locations. On the other hand, the ratios of the
proposed models 1 to 3 are over 90% in all locations, espe-
cially at office and school the ratios are 92–94%. Therefore,
we can conclude that the proposed models are effective in
improving sales compared to the comparativemodels. More-
over, when state probabilities of state transitions are small
like in school, we observe that the performance increases as
the future time steps τ in estimation increases. However, the
improvement is not very large. For office and outdoor, τ = 1
seems enough.

7. Discussion

If the proposed model works properly, we expect that sales
approaches the upper bound. One of possible improvements
in the proposed model is to increase τ in Eq. (14), that is,
the future time steps for summing up expected rewards. In
this paper, we have used τ = 1,2,3, but we expect that sales
approaches to the upper bound by increasing τ to 4,5, . . ..
However, as τ increases, the number of states that must be
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calculated increases exponentially. By this reason, we could
not try to use larger numbers for τ in the simulation. There
are other ways for the improvements, such as increase in the
types and patterns of policies.

Next we consider conditions in which the proposed
model performs more effectively. The conditions may in-
clude the case that the numbers of products and columns are
large enough, since when the numbers are small, the effect of
future estimation reduces because the assortment reaches the
optimal one immediately. When the absence of IoT devices
and the current sales data cannot be obtained in real time, it
is necessary to estimate the current state based on the limited
data and to make accurate plans for stock replenishment and
assortment exchanges. In this case, the proposed methods
are reasonable and effective. When the environment and
the consumer preferences of vending machines frequently
change, methods based on demand forecasting from past
history on sales can not keep up with the changes. Since
the proposed method works adaptively to the current state, it
works well even in such cases.

On the other hand, one of less effective cases is that
the optimal assortment does not differ significantly on the
environment and the consumer preferences. In such a case,
the calculation of future expected reward does not necessarily
work well.

There is another issue to be studied. Although the
state is partially observable in the proposed model, the agent
knows detailed information on consumer utility value, and
transition probability of vending machine state. The infor-
mation may be unknown in actual situations and has to be
estimated through past history of observations. Incorporat-
ing this factor into the model remains as future work.

What we have shown in this paper is that there is a case
in which the proposed method outperforms simple policies.
Of course, the results will change when the parameter values
are changed. From the above discussion, however, we can
claim the following properties hold. Compared to simple
policies,

• if the diversity of products increases, then the POMDP-
based method works well;

• if the volatility of state change increases, then the
POMDP-based method works well.

8. Conclusion

We have proposed an assortment optimization model for
vending machines that enables the worker to plan an ap-
propriate assortment of products. In model simulation
with some assumptions and numerical parameters, we have
achieved improvement on sales up to 2-3 points (in percent-
age ratio to the theoretical upper bound) compared to heuris-
tic methods. The proposed models outperform the heuristic
methods under the same conditions. As a result, we have
confirmed the effectiveness of estimation for the expected
future reward.

There are several remaining works. First, it is necessary

to verify the effects of simulation execution under different
conditions (the number of products, the number of columns,
the number of stocks, the number of consumers, etc.). In
addition, in order to bring the model closer to the actual
assortment problem, we proceed to formulate to the case
that informations that is known by the agent is limited.
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