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PAPER
CPNet: Covariance-Improved Prototype Network for Limited
Samples Masked Face Recognition Using Few-Shot Learning

Sendren Sheng-Dong XU†, Albertus Andrie CHRISTIAN††, Chien-Peng HO†††,
and Shun-Long WENG†††† ,††††† ,††††††a), Nonmembers

SUMMARY During the COVID-19 pandemic, a robust system for
masked face recognition has been required. Most existing solutions used
many samples per identity for the model to recognize, but the processes
involved are very laborious in a real-life scenario. Therefore, we propose
“CPNet” as a suitable and reliable way of recognizing masked faces from
only a few samples per identity. The prototype classifier uses a few-shot
learning paradigm to perform the recognition process. To handle complex
and occluded facial features, we incorporated the covariance structure of
the classes to refine the class distance calculation. We also used sharpness-
aware minimization (SAM) to improve the classifier. Extensive in-depth
experiments on a variety of datasets show that our method achieves remark-
able results with accuracy as high as 95.3%, which is 3.4% higher than that
of the baseline prototype network used for comparison.
key words: few-shot learning (FSL), masked face recognition, prototype
network, sharpness-aware minimization, class-covariance matrix

1. Introduction

Face recognition [1] is one of the most popular ways to use
biometrics for identification and has been used in many dif-
ferent ways over the past decade. Because of the emergence
of the COVID-19 pandemic, it has been recommended that
masks be worn to prevent the spread of the disease. Before
the pandemic, most established face-recognition systems re-
lied on the eyes, ears, nose, and mouth of an uncovered
face as the most important facial features [2]. Since the
pandemic, face masks have blocked many features used in
face-recognition algorithms. Past solutions for face recogni-
tion do not work well now because a large part of the face is
occluded. Therefore, masked face recognition is a complex
challenge.

These issues have motivated the establishment of a bio-
metric authentication system that is capable of masked face

Manuscript received April 10, 2023.
Manuscript revised August 2, 2023.
Manuscript publicized December 11, 2023.
†Department of PowerMechanical Engineering, National Tsing

Hua University, Hsinchu, Taiwan.
††Advanced Manufacturing Research Center, National Taiwan

University of Science and Technology, Taipei, Taiwan.
†††Department of Communication Engineering, Asia Eastern

University of Science and Technology, New Taipei City, Taiwan.
††††Department of Obstetrics and Gynecology, Hsinchu MacKay
Memorial Hospital, Hsinchu City, Taiwan.
†††††Department of Medicine, MacKay Medical College, New
Taipei City, Taiwan.
††††††Mackay Junior College of Medicine, Nursing and Manage-
ment, Taipei City, Taiwan.

a) E-mail: 4467@mmh.org.tw (Corresponding author)
DOI: 10.1587/transfun.2023EAP1038

recognition, which has been widely adopted in many sce-
narios, such as automated border control, access to security
systems in private areas, and even for convenience [3]. An-
war et al. [4] used the FaceNet system and sampled 42 images
per identity. Mandal et al. [5] proposed a model that was
built on top of ResNet-50 to recognize masked faces and
used at least 20 images per identity. Hariri [6] applied pre-
trained convolutional neural networks (CNNs) to choose the
best characteristics from selected areas.

Conventional deep learning models such as those used
in previous studies are efficient and robust in capturing facial
features even under occluded conditions, but they require a
large amount of data to generalize an identity [7]. However,
samplingmany face images is sometimes challenging or even
impossible. Moreover, storage and computational costs have
to be considered [8]. Therefore, it is important to develop a
masked face-recognition system that is capable of learning
identities from just a few samples or even a single sample.

In general, humans can quickly identify new tasks based
on what they have learned before. Accurate recognition
can be achieved despite having only a few learning experi-
ences. For instance, when a child sees a single picture of
a stranger, they may later recognize the same person easily
in many other pictures [9]. Inspired by this human capabil-
ity, a unique learning technique called Few-Shot Learning
(FSL) was developed a few years ago to address the dis-
parity between artificial intelligence (AI) and humans [10].
Using limited datasets, supervised learning, and previous
knowledge, FSL can be effectively generalized to new tasks
and can also decrease the amount of initial data required,
which is beneficial when extensive supervised data cannot
be gathered easily. The related applications include image
classification [11], object tracking [12], neural architecture
search [13], etc.

Several algorithms are commonly used in image clas-
sification with FSL. Snell et al. [14] studies a prototypical
network (PN); they performed classification on query data
by finding the distance to each prototype. Vinyals [11] et
al. studied a matching network; they used bidirectional long
short-term memory (LSTM) for the embedding network and
the cosine distance to compute the distance. Chen et al.
[15] studied the fine-tune by using a simple linear classifier
without a complicated meta-learning algorithm and it was
proven to provide a comparable result to that obtained with
meta-learning. Sung et al. [16] studied a relation network;
they learned a deep distance metric to compare a small num-
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Table 1 Comparison of algorithms and improvements for the few-shot learning methods.

ber of images in a cluster and categorized the new category
of images by calculating a relationship score between the
query image and a small number of examples from each new
category. Related works are compared in detail in Table 1.

Currently, the majority of available methods for recog-
nition rely on a conventional learning model that requires
large numbers of samples. However, the process of label-
ing a large number of samples requires expertise and time
and also tends to introduce human error or subjective bias.
Consequently, the conventional non-FSL learning methods
do not work well if only limited samples are available. In
addition, conventional learning requires retraining whenever
new people need to be added to the system or when irrelevant
personnel who have been recorded in the system need to be
removed, which is inefficient.

FSL methods for face recognition have also been pro-
posed for application to face images that are obtained un-
der various unfavorable conditions, such as poor lighting,
head rotation, and occlusion. Holkar et al. [17] presented
an FSL method based on Siamese networks for multi-class
face recognition from a training dataset. Three types of dif-
ferences in face images were considered: low light, head
rotation, and occlusion. Yang et al. [18] constructed a
TwoStream Prototype Learning Network (TSPLN) scheme
using learning adaptive weights for different supported im-
ages and relevance by considering the quality of the image
and relevance to the query.

This study focuses on addressing specific challenges
related to masked face recognition: occlusion and informa-
tion loss due to masks. We present CPNet to resolve these
issues. The proposed method is based on the FSL method,
which allows it to handle masked face-recognition tasks with

only a few samples per identity. Furthermore, no retraining
is needed whenever adding or removing an identity, thus
enhancing the efficiency in real-life scenarios. The signif-
icant difference between our work and the previous studies
is that we used a non-meta-learning setup for uncomplicated
training. First, we applied sharpness-aware minimization
(SAM) during the training stage and then incorporated a
class-covariance matrix into the distance calculation process
during inference time, which refined the discriminative abil-
ity of the prototype classifier. The more detailed explanation
is in Sect. 2.

In short, our contributions are summarized as follows:

1. To handle the condition where only limited masked face
samples are available, we propose the CPNet, a method
based on few-shot learning, which fits the case where
collecting numerous face examples is too laborious or
impossible to accomplish.

2. To improve the distance calculation process, CPNet uti-
lized the data spread of each identity by integrating the
covariance structure of the data in the distance calcula-
tion, which improves the generalization ability.

3. To enhance the performance further, the recently in-
vented Sharpness Aware Minimization (SAM) is inte-
grated into the CPNet on the classifier training stage.

4. We trained and tested the CPNet with two backbones on
two publicly available datasets. Out of fairness, we also
self-collected and tested two other datasets, which con-
tain multiethnic cohorts, to examine the effectiveness
of our method in a diverse range of settings.

5. Our method performs remarkable results with accuracy
as high as 95.3%, which is 3.4% higher than that of the
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baseline prototype network used for comparison.

The rest of the paper is divided into some parts. Section 2
describes the methods. Section 3 summarizes and examines
the results of our proposed method. Finally, Sect. 4 presents
the conclusion of the work.

2. Proposed Method

This section describes the learning paradigm used for build-
ing the few-sample masked face recognition model, namely
the CPNet, the Prototypical network, the training method,
the integration of SAM, as well as the integration of the
class-covariance matrix in the calculation of distance be-
tween class.

2.1 Few-Shot Learning

As inspired by humans, by being able to classify identi-
ties with undoubtedly near-perfect accuracy even only with
slightest samples, Few-shot Learning (FSL) was proposed.
The goal of the FSL is to overcome the problem of having
limited data for the model to learn from.

The learning task of FSL involves classifiers learned
from several examples of each labeled identity, as shown in
the example of 2-way 3-shot classification in Fig. 1. The
training of FSL can be divided into two methods: 1) episod-
ical training and 2) conventional training. In an episodical
training scenario, the learning is usually defined as n-way
k-shot (or n-identity k-sample) classification. In this case,
the training set contains J = NK examples from N classes
and K examples. In each epoch, every batch of the training
process is called an episode, which is built as a subset gener-
ated by randomly picking n classes with k examples in each
identity for the support set, as well as a few query images for
evaluation purposes called the query set, which are all taken
from J.

The model uses the support set to learn how to perform
classification, which can be considered as “learn to learn.”
At the evaluation stage, the classification performance is
evaluated using the query images based on the knowledge
learned from the support set. This training can solve the
problem of data imbalance (skewed class proportions) since
this method forces the training process to have the same

Fig. 1 TypicalFSL n-way k-shot scenario with an example of n = 2 and
k = 3.

number of instances.
In conventional training, the training process is the same

as that used in non-FSL training. Given adequate examples,
this training can be advantageous as it is more adaptive to
various n-way k-shot scenarios [19]. Furthermore, it is not
always necessary to train the model episodically as the train-
ing process is slow (the convergence is much slower than that
of a linear classifier), implementations are complex, and the
performance decreases dramatically if the parameters (the
number of shots and ways) of meta-training and meta-testing
do not match [15], [19]–[21]. According to the study [20],
fine-tuning an FSL model with a linear classifier also yields
a competitive result with a considerably simpler model and
fewer hyperparameters.

2.2 Embedding Learning

One of the FSL strategies is embedding learning, which
could also be called “learning to compare.” Embedding
learning views the classification problem as a comparison
task and acquires knowledge of its embedding by compar-
ison with or in combination with other tasks. It uses an
embedding function to generate a representation using lower-
dimension input data. The embedding function is a feature
extractor that employs a CNN model without its final classi-
fier layer or a LSTM model. Then, the distance distribution
between samples is modeled using a similarity function to
bring members of the same class together and to keep mem-
bers of other classes apart [9].

A typical example of a distance function used as a sim-
ilarity function is the Euclidean or cosine distance. Figure 2
shows an illustration of embedding learning. First, sup-
port and query sets are built from J. Each support class is
labeled with distinct colors that each represent a particular
class alongside the query example and is passed to the feature
extractor, which outputs embedding vectors. The embedding
vectors represent the information needed for distance com-
putation, which is done between support and query sets. The
distance from each of the support examples is then calculated
with the corresponding query example, and then similarity
scores that ultimately point to a particular class are output.
Some embedding learning-based methods are described in
detail in Table 1. This study is based on the work of Snell
et al. regarding PNs [14] as the method is proven and has
shown effectiveness and reliability.

2.3 Prototypical Network

The PN method is well known and effective approach to em-
bedding learning methods. To perform classification, a PN
first builds a prototype (Cn), which is a representation of each
class obtained by averaging all feature vectors of examples
in the class. The prototype is obtained from computing each
example (xni ) using a previously trained feature extractor,
which is a function ( fΦ) for embedding data, where the Φ
parameters are tunable by training, as illustrated in Fig. 4.
The figure shows an example of a 4-way 3-shot setting. The
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Fig. 2 Embedding learning illustration. The support and query sets built
from J are used to make a representation. The support fΦ (xs ) and query
vector fΦ (xq ) are both returned from the embedding function and then
compared using a similarity function d(·, ·).

result is passed to an embedding function.
An embedding space is then built, and information is

derived from the embedding function. Each support and
query member is passed to the embedding function and the
embedding space. The prototype is calculated with Eq. (1):

Cn =
1
k

k∑
i=1

fΦ
(
xni

)
(1)

where n denotes the value of ways (classes) in the support set,
while k is the number of shots. After a representation of each
class (prototype) is computed, the query sample (xq) feature
vector is built from the query set, and is also computed using
the same embedding function. The query set comprises
samples (xq) and labels (yq). Finally, for classification, a
probability distribution derived from the negative distance
of classes given a query sample can be calculated as follows:

pΦ
(
yq = n|xq,Cn

)
=

exp
(
−d

(
fΦ

(
xq

)
,Cn

) )∑n
j=1 exp

(
−d

(
fΦ

(
xq

)
,Cj

) ) (2)

where d(·, ·) refers to the distance function calculation. Eu-
clidian distance is used in the PN.

2.4 Prototype Classifier Based on Fine-Tuning a Linear
Classifier

By classically training the feature extractor, the training pro-
cess becomes more straightforward and faster while also
giving an agnostic feature extractor that shows a better result
with various n-way k-shot scenarios compared to episodical
training. Thus, no complicated meta-training algorithm is
used in this method. The backbone used for the prototype
classifier is trained using standard classification fine-tuning
with cross-entropy loss. The ResNet-based backbone was
chosen in this work.

Figure 5 shows the architecture of ResNet [22], which
has proven effective in many image recognition applications
[19]. The model contains 12 layers for ResNet-12 and 18
layers for ResNet-18. The values of A, B, C, and D are 1,
1, 2, and 1 for ResNet-12, while they are 2, 2, 2, and 2 for
ResNet-12, respectively. These values indicate the number
of blocks that are used to construct the model. This network
is a fusion of deep architectural parsing and residual network
integrations.

Due to bottleneck blocks, the training time is reasonably
faster, thus increasing efficiency. A total of five convolutional
blocks make up the network, and some shortcuts are inserted
between the various layers. ResNet-12 and ResNet-18 were
chosen after considering the tradeoffs between model depth,
accuracy, and computing efficiency. These models are deep
enough to extract high-level features derived from image
inputs while still lightweight enough for efficient training
and inference. Therefore, we chose ResNet-12 and ResNet-
18 as they provide a good balance of all considered factors,
making them well suited for masked face recognition.

For the training stage, we chose a backbone and trained
it using training examples in training classes with a feature
extractor fΦ from scratch. We used cross-entropy loss to
minimize the loss in the training set. Hence, the model
was not tied to any category. Instead, we wanted the model
to generalize any new categories. Therefore, we did not
use the last classification layer, which generally used for
conventional neural networks.

2.5 Sharpness-Aware Minimization

To improve the model generalization and model accuracy,
we used SAM [24], which has been shown to bring sig-
nificant improvements in prediction performance for deep
networks applied in various fields. The applications include
image classification and natural language processing. SAM
does not use heavy parameterization, which typically relies
on decreasing the loss functions (cross-entropy loss), which
guarantees only a small amount of generalization capability
of the model. Unlike the Stochastic Gradient Descent (SGD)
method, which relies solely on the gradient of the loss func-
tion to update the model parameters, SAM considers both
the gradient of the loss function and the curvature of the loss
landscape.



1300
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

Fig. 3 Illustration showing the flow of CPNet development.

The SAM algorithm tries to find neighborhood param-
eters with uniformly low loss values rather than those pos-
sessing low loss values. The curvature of the loss landscape
provides information about the stability of predictions of the
model, which is essential for improving its generalization
ability. Sharp models with high curvature are more sensitive
to small changes in the input and may overfit the training
data. In contrast, flat models with low curvature are more
robust to changes in the input but may underfit the training
data. Therefore, SAM adjusts the parameters of the model to
balance the tradeoff between sharpness and stability, ensur-
ing that the predictions of the model are both accurate and
robust. Also, SAMsuggests using label smoothing alongside
the cross-entropy loss on top of the SGD method as a base
optimizer to improve the robustness and mitigate overfitting.

2.6 Class-Covariance Matrix Improved Prototype Classi-
fier

A key component for the classification process of the PN is
the choice of distance metric. Originally, the PN employed
the Euclidean distance function to calculate the distance be-
tween the query and prototype representation of each class.
However, when using the Euclidean distance, it is assumed
that 1) there is no correlation among dimensions in the fea-
ture vector, and 2) the dimensions have uniform variance.
However, many real-life datasets have correlated features.
For example, in an image of a face, the distance between the
eyes is likely to be correlated with the overall size of the face.
In contrast, Euclidean distance assumes that all dimensions
are independent and equal and that all classes possess the
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Fig. 4 Illustration of prototypical network model.

Fig. 5 ResNet architecture [21].

same distribution in the embedding space, which can cause
poor outcomes when applied to data that are correlated and
or may not have the same variance.

Thus, we propose using the Mahalanobis distance co-
variance matrix for the distance calculation to estimate and
include the spread in the classification strategy. The Maha-
lanobis distance takes into account the correlation between
features, which better captures the structure and variation
of the data points. By leveraging the covariance structure,
the Mahalanobis distance potentially improves the classi-
fier’s accuracy as it considers the covariance information
while determining the similarity between data points. As

Fig. 6 An example of classes with different variances.

this study employs the correlation among dimensions in the
feature vector, the choice of distance metric is very impor-
tant. Rather than simply calculating the distance between
the query and prototype with Euclidean distance, we con-
sider the covariance matrix of each class. The importance
of introducing the covariance matrix into the distance calcu-
lation is illustrated in Fig. 6.

We need to employ the Mahalanobis distance to use
the class-covariance matrix in the distance calculation. The
distance between two points, x and y, can be calculated using
the Mahalanobis distance as shown in Eq. (3):

dM =

√
(x − y)T S−1(x − y) (3)

where S−1 denotes the inversion of the covariance matrix S
and is specific to the current class and task. If the distribution
D has an invertible covariance matrix S, then the distance
between the distribution with a mean µ and a data point x
may also be determined by Eq. (4):

dM =

√
(x − µ)T S−1(x − µ). (4)

Figure 6 shows a case of classes with different vari-
ances. It can be seen that the choice of distance metric is
important. The figure shows an example of two-class clas-
sification with C1 and C2 as prototypes of each class, and
the distributions for the spread of each class are labeled as
σ1 and σ2, respectively. xq is a query point. When we use
the Euclidean distance as an example, the exact distance be-
tween C1 and xq and between C2 and xq outputs the same
probability since the Euclidean distance does not consider
the spread of the classes. If we use theMahalanobis distance,
class 2 yields a higher probability since xq is closer to the
data spread of the second class.

We calculate the Mahalanobis distance using Eq. (4).
However, the value covariance matrix needs to be estimated
using the feature vector from the feature embedding based
on a previous study [25], which was derived from the Ledoit-
Wolf regularized shrinkage estimator. The covariancematrix
can be estimated as follows:

S = δcΣc + (1 − δc) Σt + I, (5)

which is formed froma convex combination of the covariance
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matrix of each class in a task Σc and the covariance matrix
of all classes in a task Σt . I is the identity matrix. To weigh
the covariance estimation of each class and all classes in
a task, we use a simple and particular approach using the
deterministic ratio δc , which is obtained from the number of
shots:

δc =
k

k + 1
(6)

where k denotes the number of shots or samples in each class.
The precise values of the covariance matrix cannot be known
in advance, and the number of examples in the support set
is typically smaller than the feature space dimension. Thus,
we employ Eq. (5) to estimate the covariance structure neces-
sary for distance computation. where k denotes the number
of shots or samples in each class. This simple deterministic
ratio tells us that when the number of shots is high, the value
of δc will approach 1, indicating that the estimated covari-
ance matrix will mainly consist of the covariance matrix of
each class. In other words, when the number of examples
is high (in a high-shot setting), the covariance estimation
is primarily influenced by the covariance of each individual
class. As the number of shots increases, the quality of the
covariance of each class estimation improves, leading to a
closer resemblance to the actual covariance.

The overall proposed algorithm can be seen in Algo-
rithm 1. Figure 3 illustrates the overall flow of our work, in
which a classifier is trained conventionally using a base class
with a ResNet backbone, where the parameter is updated
using SAM. The previously learned embedding is then used
as the feature embedding for the FSL task. Class represen-
tatives (prototypes) and the covariance are the outputs from
the image input data and are used in the distance calculation.
The distance among queries and prototypes is then negated
to obtain similarity scores, which are passed to a Softmax
function to output a probability that ultimately leads to a
particular prediction.

2.7 Datasets

We used several datasets to validate the effectiveness of
the method. The “Celebrities in Frontal” and CelebA-HQ
datasets were chosen for the training stage to make the pre-
trained classifier model. These two datasets are diverse and
include various ethnicities, genders, and ages, making them
ideal for training models to recognize faces in various set-
tings. Moreover, due to the wide range of variation, the
masked face-recognition issues are included, such as illu-
mination, pose variation, mask model variations, and low
image resolution. Table 2 describes the challenges present
in each dataset to show the capability of the proposedmethod
for specific issues.

One of the datasets is the “Celebrities in Frontal” dataset
[26]. Examples are shown in Fig. 8. It is one of the most
frequently used datasets for face recognition tasks and con-
tains 500 subjects with a fixed number of 10 examples per
identity. Aligned and cropped versions are also available, so

Table 2 Datasets used and variations present in them.

Fig. 7 Examples of pre- and post-masked “Celebrities in Frontal” dataset.
(a) Pre-masked dataset. (b) Post-masked dataset.

there is no need for preprocessing (face cropping and align-
ment). Out of 500 identities, 300 were randomly chosen as
the training dataset, while the other 200 identities were used
for the validation and testing dataset with 100 identities each.

To create the masked version of the dataset, we used
the MaskTheFace tool [4] to create a simulated masked face
dataset. The tool uses open-source face landmark and detec-
tion methods, finds estimated mask key positions, estimates
the face tilt angle, and then applies a suitable mask image
template based on the face tilt. This straightforward tool can
generate randommask types and variations with various ori-
entations and lighting conditions. The pre- and post-masked
datasets are shown in Fig. 7(a) and 7(b).

The second dataset used in this experiment was the
CelebA-HQ dataset [27]. The dataset has also been cropped
and aligned. The dataset consists of 30,000 images. Out of
more than 10,000 identities, we chose 750 random identities
for training for each identity with at least 10 examples for
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Fig. 8 Examples of dataset on each identity of masked “Celebrities in
Frontal” dataset. (a) and (b) indicate two different identities.

Fig. 9 Examples of dataset on each identity of masked CelebA-HQ
dataset. (a) and (b) indicate two different identities.

Fig. 10 Examples of Self Dataset A. (a), (b), (c), and (d) indicate four
different identities.

each identity. We then randomized each 150 examples for
validation and testing. We ensured that the identitieswere not
overlapping for training, validation, and testing. The same
MaskTheFace tool was used to create a simulated masked
dataset. Examples of this dataset are shown in Fig. 9.

To validate the performance of our method on a real
masked face, we collected two sets of data using various
smartphone cameras for testing. Moreover, other researchers
have not concentrated on the problem of racial bias, even
though it is present in most face recognition methods [28].
Therefore, we tried to evaluate the generalization ability of
our method with a wide range of ethnic groups, particularly
Asian and African subjects, since numerous face recognition
algorithms performworse on these two specific racial groups
[29].

Thus, we gathered Self Dataset A (examples are shown
in Fig. 10), which contains 20 Asian subjects, and Self
Dataset B (examples are shown in Fig. 11), which contains 20
African subjects. These datasets contain various poses and
lighting conditions that are sufficient for representing actual
use conditions. Each of the identities has 10 samples, which
were selected randomly when inference was performed. The
gathered photos were preprocessed (cropped and aligned)
using MTCNN [30].

2.8 Experimental Setup and Procedure

An experiment was carried out on a computer with an Intel
i7-9700, 16GB of RAM, an NVIDIA RTX 2080 GPU, and

Fig. 11 Examples of Self Dataset B. (a), (b), (c), and (d) indicate four
different identities.

the Windows 10 operating system. The entire code was im-
plemented using the PyTorch package, including Compute-
Covariance in Algorithm 1, which was used to calculate the
covariance estimation of the data. The training image sets
were first preprocessed, as shown in Fig. 7, to create the sim-
ulated masked face dataset. Three random colors/variations
were chosen, as shown in the example in Fig. 8. The im-
ages were then resized to 224 × 224 as the input image size
requirement for ResNet-based models.

We employed an extensive data augmentation method
using various image transformations to increase the gener-
alization ability of the model. Our augmentations included
flipping, color shifting, contrast, and brightness, which were
all applied randomly to the training set usingAlbumentations
[31].

To make the classifier, we trained all the backbones for
200 epochs from scratch with a learning rate of 0.1 and a
StepLR scheduler to periodically reduce the learning rate.
We used a momentum of 0.9 and weight decay of 5e-4 for
both SGD and SAM experiments. The Rho value of SAM
was set to 0.05 with a label smoothing value of 0.1, as
recommended by the original author. To prevent overfitting,
we performed the validation procedure every three epochs
and monitored the validation accuracy. The training epoch
with the best validation accuracy was used as the model
classifier in the testing stage. To report the performance,
100 random test tasks were used, and the evaluation metric
was obtained by averaging the results of all tasks. Each task
included an n-way k-shot support set with a query sample
for each way.

3. Experimental Results

We present the results for models with several different con-
figurations: (1) 5-way (1-shot and 5-shot), (2) 10-way (1-shot
and 5-shot), and (3) 20-way (1-shot and 5-shot). We present
the results as the accuracy, which is an evaluation metric that
is commonly used in evaluating biometric systems. The ac-
curacy is defined as the degree of correctness of predictions
for all query images (Nq) inferred in the testing process, as
shown in Eq. (7) below:

Accuracy =
TP + TN

Nq
(7)

where TP is the number of true positive results, and TN is
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Table 3 Accuracy results comparison on masked celebrities in frontal
dataset.

Table 4 Accuracy results comparison on masked CelebA-HQ dataset.

the number of true negative results.

3.1 In-Domain Testing

We examined the proposed method’s in-domain results (re-
sults obtained after training and testing with the same
kind of dataset) and compared them with those of re-
implementations of other algorithms. The in-domain test
results of CPNet trained using the “Celebrities in Frontal”
and CelebA-HQ datasets can be seen in Tables 3 and 4.
There was improvement when using the deeper and heavier
backbone, ResNet-18. Slight performance gains were seen
in this in-domain testing. The in-domain testing achieved
high accuracy for both datasets even in high-way scenarios.
Although it is more difficult to qualitatively judge the diffi-
culty of the dataset, the CelebA-HQ dataset has reasonably
high resolution, making our model easier to represent each
identity.

In contrast, the “Celebrities in Frontal” dataset presents
a challenge of low resolution, making it harder to form a
good representation, thus giving a slightly lower recognition
accuracy. Overall, CPNet obtained reasonably good perfor-
mance ranging from 67.0% accuracy (0.9% improvement
over original PN) in the 20-identity 1-example scenario to
95.4% accuracy (1.6% improvement over original PN) in the
5-identity 5-example scenario. With higher ways and shots,
as in the 20-way 5-shot scenario, the CPNet even achieved
more than 3% accuracy improvement over the original PN
for both datasets trained with the ResNet-18 backbone. One
interesting result is that CPNet hadmore significant improve-
ment at higher shots due to the integration of the covariance
structure of the data.

3.2 Out-of-Domain Testing

We used the classifier trained using the “Celebrities in
Frontal” and CelebA-HQ datasets to perform few-shot

Table 5 OUT-domain testing results using masked celebrities in frontal
as training set.

Table 6 OUT-domain testing results using masked CelebA-HQ as train-
ing set.

masked face recognition with other datasets. Using the
knowledge from other training set, we performed cross-
domain testing on the datasets that we collected to evalu-
ate the capability of our proposed method in different do-
mains, especially for various ethnicities. The results of out-
of-domain testing can be seen in Tables 5 and 6.

The model trained with CelebA-HQ yielded better re-
sults than the model trained with the “Celebrities in Frontal”
dataset. Our model performed best when it was trained with
CelebA-HQ using a ResNet-18 backbone and tested with
Self Dataset A (98.6%) and Self Dataset B (95.8%) in a
5-way 5-shot setting. The proposed method CPNet outper-
formed other methods in terms of accuracy for all settings
of ways and shots. The accuracies showed 0.6% and 1.4%
improvements compared to PN, respectively.

In lower-shot settings, our proposed method was com-
parable to the matching network (MN), which consistently
worked well in lower-shot scenarios, showing improvements
of 0.8% in the 20-way 1-shot setting for both Self Datasets
A and B (trained with CelebA-HQ and ResNet-12). In
higher-shot settings, Baseline Plus worked well in higher-
shot scenarios compared with CPNet. However, our method
achieved 92.7% accuracy in a 20-way 5-shot setting for Self
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Table 7 Reduced dataset scenario for CelebA-HQ dataset using ResNet-
12.

Dataset B (trained with CelebA-HQ and ResNet-18), which
was a 2.7% improvement over Baseline Plus. Moreover, the
domain shift verification that we conducted on all methods
also showed that our method improves accuracy over the
other methods in all scenarios and datasets.

3.3 Parameters Analysis

3.3.1 Effect of Reduced Number of Training Classes

We conducted several experiments to examine the response
of the model to the number of classes in the training phase
with a reduced number of classes, as well as the influence
of the number of classes (n-way) and the size of the support
set (k-shot). First, we analyzed the effect of reduced training
classes on the classifier accuracy, as shown in Table 7. The
table shows the effect of the number of training samples on
CPNet and PN on in-domain testing accuracy.

We performed a comparison using the CelebA-HQ
dataset with class reductions of 300 and 500. There was
a significant accuracy improvement with the 300-class re-
duction, and our method performed significantly better than
PN. This happened because CPNet makes a better feature
space and distance judgment with a better feature extractor,
thus improving the accuracy.

3.3.2 Impact of Class Size (n-Way) and Number of Sup-
ports (k-Shot)

As shown in Fig. 12, we investigated the influence of class
size and support size on the accuracy by varying the values
of n and k. We used PN as a natural baseline for com-
parison to demonstrate the enhancements and advancements
achieved by our proposed approach. According to Fig. 12(a),
the performance decreased as more classes were introduced,
leading to increased difficulty of classification. Figure 12(b)
shows that the performance grew as the value of k increased,
meaning that the model made a better representation during
the recognition. Furthermore, compared with PN, CPNet led
to an improvement of performance. The figures show that
CPNet empirically handles the recognition better than PN.

3.4 Ablation Study

We conducted ablation experiments to assess the effects of
the various modules used in this study. We conducted the ab-
lation experiment using ResNet-12 as a representative back-
bone. The first scenario employed SGD and the Euclidean

Fig. 12 Effect of n-way k-shot on PN (prototypical network) and CPNet
recognition accuracy. (a) Accuracy of 5-shot with varying n-way, (b)
accuracy of 5-way with varying k-shot.

Table 8 Ablation study of accuracy on ResNet-12 using “celebrities in
frontal” dataset.

Table 9 Ablation study of accuracy on ResNet-12 using CelebA-HQ
dataset.

distance metric, and we looked at the performance improve-
ment by implementing particularly heavy data augmentation
used in the training stage, which was labeled as DA. Next,
we looked at the effect of integrating the SAM in the train-
ing stage in conjunction with the Euclidean distance metric,
which was labeled as DA+SAM. Lastly, we looked at our
full CPNet model, which combines the previous two mod-
ules alongside the class-covariance matrix in the distance
calculation process. The findings of the ablation experiment
are shown in Tables 8 and 9.

Tables 8 and 9 show that CPNet outperformed the
baseline model for the “Celebrities in Frontal” and CelebA-
HQ datasets, demonstrating the robustness of the proposed
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Fig. 13 Training loss with CelebA-HQ dataset using (a) ResNet-12 back-
bone and (b) ResNet-18 backbone.

distance calculation method, which considers the class-
covariance matrix. Improvements from integrating the co-
variance structure of the data were more evident in 5-shot
scenarios. The results showed a large accuracy increase due
to the effect of the data spread in higher shots scenarios as
the model can use more information from the samples and
make a better hypothesis than the PN baseline.

Figure 13 shows the training loss after training with
ResNet-12 and ResNet-18. With integration of SAM, CP-
Net (blue line) converged to a much more stable level than
PN, which used SGD (orange line), as shown in the graph.
The y-axis (loss) values are shown on a non-linear scale to
emphasize the effect. However, after the same number of
epochs (200 epochs), the SAM-based loss graph did not de-
crease anymore compared to the SGD as it tried to find a
uniformly low loss value rather than minimizing loss values
individually.

Although the loss was not lower, it is important to note
that the capability of SAM in avoiding the overfitting issue
has improved the performance. This outcome suggests that
the integration of SAM has a positive impact across all ab-
lation experiment scenarios. SAM not only improves the
optimization process by reducing the loss, but also helps the
model navigate a more favorable loss landscape for gener-
alization. By considering both the loss value and the land-
scape, we ensure that this approach enhances the overall

performance of the model.
It is worth mentioning that achieving a lower loss does

not necessarily guarantee good generalization ability or im-
proved accuracy. Therefore, the focus has been on enhancing
the model’s ability to generalize well rather than solely the
lowest possible loss value. In short, compared with PN,
which uses the SGD, our method CPNet improves the over-
all generalization capability of the model.

4. Conclusion

We have presented CPNet using a few-shot-based method
that uses an improved covariance-matrix prototype classifier
and SAM to improve the classifier further for a limited sam-
ple of masked face recognition data. Our work is unique in
terms of tackling the difficulties of collecting massive sam-
ples of masked face data and providing convenience when
a new identity needs to be added or irrelevant ones need to
be removed since no retraining is needed. We experimented
with various backbones, namely, the ResNet-12 and ResNet-
18, and different datasets to evaluate a wide range of settings
and obtained promising results. We obtained 95.3% accu-
racy in the 20-way 5-shot setting with Self Dataset A and
92.7% with Self Dataset B, which showed 2.0% and 3.4%
accuracy improvements over the reported baseline results,
respectively.

Thus, these results show the feasibility of using our
method for limited masked face recognition samples. Al-
though we have successfully developed and experimented
with CPNet, there is room for improvement. Further re-
search should concentrate on developing a more efficient
way to consider the covariance matrix in the distance cal-
culation process, which restricts the performance in some
cases, especially in higher-shot settings.
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