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PAPER
Mixed-Integer Linear Optimization Formulations for Feature
Subset Selection in Kernel SVM Classification

Ryuta TAMURA † ,††a), Yuichi TAKANO †††, Nonmembers, and Ryuhei MIYASHIRO ††††, Member

SUMMARY We study the mixed-integer optimization (MIO) approach
to feature subset selection in nonlinear kernel support vector machines
(SVMs) for binary classification. To measure the performance of subset
selection, we use the distance between two classes (DBTC) in a high-
dimensional feature space based on the Gaussian kernel function. However,
DBTC to be maximized as an objective function is nonlinear, nonconvex
and nonconcave. Despite the difficulty of linearizing such a nonlinear
function in general, our major contribution is to propose a mixed-integer
linear optimization (MILO) formulation to maximize DBTC for feature
subset selection, and this MILO problem can be solved to optimality using
optimization software. We also derive a reduced version of the MILO
problem to accelerate our MILO computations. Experimental results show
good computational efficiency for our MILO formulation with the reduced
problem. Moreover, our method can often outperform the linear-SVM-
based MILO formulation and recursive feature elimination in prediction
performance, especially when there are relatively few data instances.
key words: feature subset selection, support vector machine, mixed-integer
optimization, kernel–target alignment, machine learning

1. Introduction

1.1 Background

Support vector machines (SVMs) are a family of sophisti-
cated machine learning methods based on optimal separat-
ing hyperplanes. This method was first devised for binary
classification by Boser et al. [11] in combination with the
kernel method [1] for nonlinear data analyses. Since then,
SVMs have attracted considerable attention in various scien-
tific fields because of their solid theoretical foundations and
high generalization ability [15], [21], [74]. Kernel meth-
ods have been extended to a variety of multivariate analyses
(e.g., principal component analysis, cluster analysis, and out-
lier detection) [64], [65], and they have also been applied to
dynamic portfolio selection [67], [68].

Feature subset selection involves selecting a subset of
relevant features used in machine learning models. Such se-
lection helps to understand the causality between predictor
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features and response classes, and it reduces the data col-
lection/storage costs and the computational load of training
machine learning models. Moreover, the prediction per-
formance can be improved because overfitting is mitigated
by eliminating redundant features. Because of these ben-
efits, algorithms for subset selection have been extensively
studied [17], [30], [48], [49]. These algorithms can be cat-
egorized into filter, wrapper, and embedded methods. Filter
methods (e.g., Fisher score [32] and relief [13], [42]) rank
features according to evaluation criteria before the training
phase. Wrapper methods (e.g., recursive feature elimina-
tion [32]) search for better subsets of features through re-
peated training of subset models. Embedded methods (e.g.,
L1-regularized estimation [34]) provide a subset of features
as a result of the training process.

Mixed-integer optimization (MIO; formerly known as
mixed-integer programming, or MIP) is the study of how
to formulate and solve mathematical optimization problems
involving real- and integer-valued decision variables [83].
Since many optimization problems can be formulated as
MIO problems [82], MIO has been studied extensively,
mainly in the field of operations research. Although solving
MIO problems is NP-hard in general, recent advancement
of optimization algorithms and computer hardware allows
us to tackle large-scale MIO problems [41]. In particular,
MILO (mixed-integer linear optimization) problems, namely
MIOproblems consisting of linear functions of decision vari-
ables, are rather tractable. Recent records [27] show that
several MILO problems with millions of decision variables
are solvable within an hour. In contrast, integer nonlinear
optimization (INLO) problems, which consist of integer de-
cision variables and contain nonlinear functions of them, are
still quite difficult to solve. INLO problems even with a few
hundreds of decision variables cannot be exactly solved by
state-of-the-art optimization software [55]. Some lineariza-
tion/transformation techniques for reducing INLO to MILO
problems have been developed, but such techniques have
only limited application.

1.2 Related Work

We address MIO approaches to feature subset selection for
kernel SVM classification. First proposed for linear regres-
sion in the 1970s [2], this approach has recently moved into
the spotlight with advances in optimization algorithms and
computer hardware [6], [19], [33], [43], [73]. Compared
with many heuristic optimization algorithms, the MIO ap-
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proach has the advantage of selecting the best subset of fea-
tureswith respect to given criterion functions [56], [57], [60],
[69]. MIO methods for subset selection have been extended
to logistic regression [7], [63], ordinal regression [58], [62],
count regression [61], dimensionality reduction [4], [79], and
elimination of multicollinearity [5], [8], [70], [71]. MIO-
based high-performance algorithms have also been designed
for subset selection [9], [10], [22], [35], [36], [44].

Several prior studies have dealt with feature subset
selection in linear SVM classification. A typical ap-
proach involves approximating the L0-regularization term
(or the cardinality constraint) for subset selection by the
concave exponential function [12], the L1-regularization
term [12], [80], [84], and convex relaxations [16], [26], and
the L0-regularization term can be handled more accurately
byDC (difference of convex functions) algorithms [24], [46].
Meanwhile, Maldonado et al. [51] proposed exact MIO for-
mulations for subset selection in linear SVM classification,
and Labbé et al. [45] applied a heuristic kernel search al-
gorithm to the MIO problem. Lagrangian relaxation [25]
and generalized Benders decomposition [3] have been used
to handle large-scale MIO problems. The MIO formula-
tions were extended to robust cost-effective subset selection
in linear SVM classification [47]. However, since these al-
gorithms are focused on linear classification, they cannot
be applied to nonlinear classification based on the kernel
method.

The feature scaling approach has been studied inten-
sively for feature subset selection in kernel SVM classifica-
tion [18], [28], [50], [53], [81]. This approach introduces
feature weights in a kernel function and updates them iter-
atively in the gradient descent direction. Other algorithms
for subset selection in kernel SVM classification include
the filter method based on local kernel gradients [37], local
search algorithms [52], [54], [77], and metaheuristic algo-
rithms [38].

Several performance measures for kernel SVM classi-
fiers have been used in feature subset selection. Chapelle
et al. [18] designed gradient descent methods for minimiz-
ing various performance bounds on generalization errors,
Neumann et al. [59] proposed DC algorithms to maximize
the kernel–target alignment [20], Wang [77] considered the
kernel class separability in subset selection, and Jiménez-
Cordero et al. [40] used optimization software to obtain
good-quality solutions to their nonlinear min-max optimiza-
tion problem. To our knowledge, however, no prior studies
have developed an exact algorithm to compute the best sub-
set of features in terms of a given performance measure for
nonlinear kernel SVM classification.

1.3 Contribution

The goal of this paper is to establish a practicable MIO ap-
proach to selecting the best subset of features for nonlinear
kernel SVM classification. In line with Neumann et al. [59],
we use the kernel–target alignment [20], namely the distance
between two classes (DBTC) [66] in a high-dimensional fea-

ture space, as an objective function for subset selection. The
kernel–target alignment has many applications in various
kernel-based machine learning algorithms [78].

First, we introduce an INLO formulation for feature
subset selection to maximize DBTC based on the Gaussian
kernel function. However, its objective function is nonlinear,
nonconvex and nonconcave, and thus, it is very difficult to
linearize this function in general. Our major contribution is
to reformulate the problem as a MILO problem, which can
be solved to optimality using optimization software. To our
knowledge, we are the first to transform this subset selection
problem into aMILOproblem for exactlymaximizingDBTC
based on the Gaussian kernel function. Our additional con-
tribution is to derive a reduced version of the MILO problem
to accelerate our MILO computations.

We assess the efficacy of our method through computa-
tional experiments using real-world and synthetic datasets.
With the real-world datasets, our MILO formulations pro-
duce clear computational advantages over the INLO formu-
lation. In addition, the problem reduction offers highly ac-
celerated MILO computations and allows us to find better
quality solutions than does the DC algorithm [59]. With the
synthetic datasets, our method often outperforms the linear-
SVM-based MILO formulation [51] and recursive feature
elimination [32] in terms of accuracy for both classification
and subset selection, especially when there are relatively few
data instances.

1.4 Organization and Notation

In Sect. 2, we introduce DBTC as a performance measure for
nonlinear kernel SVM classification. In Sect. 3, we present
our MIO formulations to maximize DBTC for feature subset
selection. We report the computational results in Sect. 4
and conclude in Sect. 5. A list of abbreviations is given
in Appendix.

Throughout this paper, we denote the set of consecutive
integers ranging from 1 to n as [n] := {1,2, . . . ,n}. We write
a p-dimensional column vector as x := (xj)j∈[p] ∈ Rp , and
an m × n matrix asX := (xi j)(i, j)∈[m]×[n] ∈ Rm×n.

2. Distance between Two Classes

We address the task of nonlinear binary classification, which
aims at learning a nonlinear function f : Rp → R cor-
rectly assigning a binary class label ŷ ∈ {+1,−1} to each
p-dimensional feature vector x := (xj)j∈[p] ∈ Rp as{

f (x) > 0 ⇒ ŷ = +1,
f (x) < 0 ⇒ ŷ = −1.

To express such a nonlinear function in kernel SVM
classification, we consider a feature map φ : Rp → X,
which nonlinearly transforms the original feature vector x
into a high-dimensional feature vectorφ(x) in a feature space
X. A simple example with x = (x1, x2)

> is given by

φ(x) = (x1, x2, x2
1, x1x2, x2

2)
>.
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Suppose that we are given a training dataset {(xi, yi) |
i ∈ [n]} containing n data instances, wherexi := (xi j)j∈[p] ∈
Rp and yi ∈ {+1,−1} for each i ∈ [n]. For each class
y ∈ {+1,−1}, we denote the index set of data instances as

N(y) := {i ∈ [n] | yi = y}.

We also define a vector of class labels divided by each class
size as

ψ := (ψi)i∈[n] :=
(

yi
|N(yi)|

)
i∈[n]

∈ Rn.

To measure the class separability in a high-dimensional
feature spaceX, we focus onDBTC [66] (or the kernel–target
alignment [20], [59]) given by the squaredEuclidean distance
between the centroids of positive and negative classes in a
feature space:





 1

|N(+1)|

∑
i∈N (+1)

φ(xi) −
1

|N(−1)|

∑
i∈N (−1)

φ(xi)








2

2

=






 n∑
i=1

ψiφ(xi)






2

2

=

(
n∑
i=1

ψiφ(xi)

)> (
n∑

h=1
ψhφ(xh)

)
=

n∑
i=1

n∑
h=1

ψiψhk(xi,xh), (1)

where

k(x,x′) = φ(x)>φ(x′)

is the kernel function, which is the inner product in a feature
space. In Sect. 3, we use DBTC (1) as an objective function
to be maximized for subset selection.

We consider the Gaussian kernel function defined as

k(x,x′) = exp
(
−γ‖x − x′‖22

)
= exp ©­«−γ

p∑
j=1
(xj − x ′j)

2ª®¬ , (2)

where γ ∈ R+ is a user-defined scaling parameter. It
is known that the Gaussian kernel function (2) corre-
sponds to the inner product in an infinite-dimensional feature
space [64].

3. Mixed-Integer Optimization Formulations for Fea-
ture Subset Selection

In this section, we present ourMIO formulations tomaximize
DBTC (1) for feature subset selection. We also apply some
problem reduction techniques to our MIO formulations.

3.1 Integer Nonlinear Optimization Formulation

For subset selection, we assume that all features are stan-
dardized as

n∑
i=1

xi j = 0 and
∑n

i=1 x2
i j

n
= 1 (3)

for all j ∈ [p].
Let z := (zj)j∈[p] ∈ {0,1}p be a vector composed of

binary decision variables for subset selection; that is, zj = 1
if the jth feature is selected, and zj = 0 otherwise. We
then consider the following subset-based Gaussian kernel
function:

kz(x,x′) := exp ©­«−γ
p∑
j=1

zj(xj − x ′j)
2ª®¬ . (4)

To select the best subset of features for kernel SVMclas-
sification, wemaximize DBTC (1) based on the subset-based
Gaussian kernel function (4). This problem is formulated as
the following INLO problem:

maximize
n∑
i=1

n∑
h=1

ψiψh exp ©­«−γ
p∑
j=1

zj(xi j − xhj)2
ª®¬ (5)

subject to
p∑
j=1

zj ≤ θ, (6)

z ∈ {0,1}p, (7)

where θ ∈ [p] is a user-defined subset size parameter.
However, a globally optimal solution to problem (5)–(7)

is very difficult to compute because its objective function (5)
is nonlinear, nonconvex and nonconcave.

3.2 Mixed-Integer Linear Optimization Formulations

Theorem 1 states that the INLO problem (5)–(7) can be
reformulated as the following MILO problem:

maximize
n∑
i=1

n∑
h=1

ψiψheihp (8)

subject to
p∑
j=1

zj ≤ θ, (9)

eih0 = 1 (i ∈ [n], h ∈ [n]), (10)
zj = 0⇒ eih j = eih, j−1

(i ∈ [n], h ∈ [n], j ∈ [p]), (11)
zj = 1 ⇒

eih j = eih, j−1 · exp
(
−γ(xi j − xhj)2

)
(i ∈ [n], h ∈ [n], j ∈ [p]), (12)

e ∈ R
n×n×(p+1)
+ , z ∈ {0,1}p, (13)

where e := (eih j)(i,h, j)∈[n]×[n]×({0}∪[p]) ∈ Rn×n×(p+1)
+ is an

array of auxiliary nonnegative decision variables for calcu-
lating the objective function (5). Here, Eqs. (11) and (12)
are logical implications, which can be imposed by using
indicator constraints implemented in modern optimization
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software.

Theorem 1: Let (e∗,z∗) be an optimal solution to the
MILO problem (8)–(13). Then, z∗ is also an optimal so-
lution to the INLO problem (5)–(7).

Proof : For eachz ∈ {0,1}p , we can construct a feasible so-
lution (e,z) to problem (8)–(13) by using Eqs. (11) and (12)
recursively from Eq. (10). Therefore, the feasible region of
z in problem (8)–(13) is the same as in problem (5)–(7).

Consequently, it is necessary to prove only that, in
Eqs. (5) and (8),

eihp = exp ©­«−γ
p∑
j=1

zj(xi j − xhj)2
ª®¬

for all (i, h) ∈ [n] × [n]. Note that

exp
(
−γzj(xi j − xhj)2

)
=

{
exp(0) = 1 if zj = 0,
exp

(
−γ(xi j − xhj)2

)
if zj = 1.

Therefore, the constraints (11) and (12) can be integrated
into

eih j = eih, j−1 · exp
(
−γzj(xi j − xhj)2

)
for all j ∈ [p]. By substituting this equation recursively for
j ∈ [p], we obtain

eihp = eih0

p∏
j=1

exp
(
−γzj(xi j − xhj)2

)
= exp ©­«−γ

p∑
j=1

zj(xi j − xhj)2
ª®¬ , ∵ Eq. (10)

which completes the proof. �

Note also that problem (8)–(13) can be equivalently rewritten
without logical implications using well-known formulation
techniques [82] as

maximize
n∑
i=1

n∑
h=1

ψiψheihp (14)

subject to
p∑
j=1

zj ≤ θ, (15)

eih0 = 1 (i ∈ [n], h ∈ [n]), (16)
− Mzj ≤ eih j − eih, j−1 ≤ Mzj

(i ∈ [n], h ∈ [n], j ∈ [p]), (17)
− M · (1 − zj)

≤ eih j − eih, j−1 · exp
(
−γ(xi j − xhj)2

)
≤ M · (1 − zj)
(i ∈ [n], h ∈ [n], j ∈ [p]), (18)

e ∈ R
n×n×(p+1)
+ , z ∈ {0,1}p, (19)

where M ∈ R+ is a sufficiently large positive constant (e.g.,
M = 1 due to Eqs. (10)–(12)).

3.3 Problem Reduction

For problem reduction, we introduce the following index sets
of instance pairs:

H := {(i, h) ∈ [n] × [n] | i < h},
H+ := {(i, h) ∈ [n] × [n] | i < h, ψiψh > 0},
H− := {(i, h) ∈ [n] × [n] | i < h, ψiψh < 0}.

Then, Theorem 2 proves that the MILO problem (14)–(19)
can be reduced to the following MILO problem:

maximize
∑
(i,h)∈H

ψiψheihp (20)

subject to
p∑
j=1

zj ≤ θ, (21)

eih0 = 1 ((i, h) ∈ H), (22)
− Mih j zj ≤ eih j − eih, j−1

((i, h) ∈ H−, j ∈ [p]), (23)
eih j − eih, j−1 ≤ 0

((i, h) ∈ H+, j ∈ [p]), (24)

0 ≤ eih j − eih, j−1 · exp
(
−γ(xi j − xhj)2

)
((i, h) ∈ H−, j ∈ [p]), (25)

eih j − eih, j−1 · exp
(
−γ(xi j − xhj)2

)
≤ Mih j · (1 − zj)
((i, h) ∈ H+, j ∈ [p]), (26)

e ∈ R
|H |×(p+1)
+ , z ∈ {0,1}p, (27)

where

Mih j := 1 − exp
(
−γ(xi j − xhj)2

)
(i ∈ [n], h ∈ [n], j ∈ [p]). (28)

Theorem 2: Let (e∗,z∗) be an optimal solution to the re-
ducedMILO problem (20)–(27). Then, z∗ is also an optimal
solution to the INLO problem (5)–(7).
Proof : Because of Theorem 1, it is necessary to prove only
that problem (14)–(19), which is equivalent to problem (8)–
(13), can be reformulated as problem (20)–(27).

We begin by focusing on the objective function (14).
Note that Eq. (5) can be decomposed as

n∑
i=1

n∑
h=1

ψiψh exp ©­«−γ
p∑
j=1

zj(xi j − xhj)2
ª®¬

=

n∑
i=1

ψ2
i + 2

∑
(i,h)∈H

ψiψh exp ©­«−γ
p∑
j=1

zj(xi j − xhj)2
ª®¬ .
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This implies that the objective function (14) can be replaced
with Eq. (20). Accordingly, the unnecessary decision vari-
ables (i.e., eih j for (i, h) < H) and the corresponding subset
of constraints (16)–(18) can be deleted from the problem.

Next, we consider constraints (17) and (18). It is clear
from Eqs. (10)–(12) that

0 ≤ eih, j−1 · exp
(
−γ(xi j − xhj)2

)
≤ eih j ≤ eih, j−1 ≤ 1.

Therefore, it follows that

−Mih j ≤ −eih, j−1 ·
(
1 − exp

(
−γ(xi j − xhj)2

))
︸                             ︷︷                             ︸

Mih j

≤ eih j − eih, j−1 ≤ 0,

0 ≤ eih j − eih, j−1 · exp
(
−γ(xi j − xhj)2

)
≤ eih, j−1 ·

(
1 − exp

(
−γ(xi j − xhj)2

))
︸                             ︷︷                             ︸

Mih j

≤ Mih j .

This implies that the feasible region remains the same even
if the constraints (17) and (18) are tightened as

−Mih j zj ≤ eih j − eih, j−1 ≤ 0, (29)

0 ≤ eih j − eih, j−1 · exp
(
−γ(xi j − xhj)2

)
≤ Mih j · (1 − zj). (30)

When ψiψh > 0, the left inequalities in
Eqs. (29) and (30) are redundant because eih j is maximized
by the objective function (14). Similarly, when ψiψh < 0,
the right inequalities in Eqs. (29) and (30) are redundant. As
a result, constraints (23)–(26) are obtained, thus completing
the proof. �

We conclude this section by highlighting the differences
between the MILO problem (14)–(19) and its reduced ver-
sion (20)–(27). The number of continuous decision variables
is reduced from (p + 1)n2 (Eq. (19)) to (p + 1)n(n − 1)/2
(Eq. (27)), and the number of inequality constraints is re-
duced from 4pn2 (Eqs. (17) and (18)) to pn(n−1) (Eqs. (23)–
(26)). Also, the big-M values are equal (e.g., M = 1) in
Eqs. (17) and (18), whereas they are set to the smaller val-
ues (28) in Eqs. (23) and (26).

4. Computational Experiments

In this section, we report the results of computations to eval-
uate the efficacy of our method for feature subset selection in
kernel SVM classification. First, we confirm the optimiza-
tion performance of our MIO formulations using real-world
datasets, and then we examine the prediction performance of
our method for subset selection using synthetic datasets.

All computations were performed on a Windows com-
puter with two Intel Xeon E5-2620v4 CPUs (2.10GHz) and
128GB of memory using a single thread.

Table 1 Real-world datasets.

4.1 Experimental Design for Real-World Datasets

We downloaded four real-world datasets for classification
tasks from the UCI Machine Learning Repository [23]. Ta-
ble 1 lists the datasets, where n and p are the numbers of data
instances and candidate features, respectively. Categorical
variables with two categories were treated as dummy vari-
ables, and those with more than two categories were trans-
formed into sets of dummy variables. In the Zoo and Parkin-
sons datasets, the names of data instances were deleted. In
the Hepatitis dataset, we removed four variables containing
more than 10missing values, and then data instances contain-
ing missing values. In the Soybean dataset, variables with
the same value in all data instances were eliminated. The
Zoo and Soybean datasets have multiple response classes, so
the positive label (i.e., yi = +1) was given to classes 1 and 2
in the Zoo dataset and to classes D1 and D4 in the Soybean
dataset, and the negative label (i.e., yi = −1) was given to
the other classes.

Although it is difficult to apply our method to large-
sized datasets, our method will be effective in small-sized
datasets, for instance, for medical applications. The Parkin-
sons dataset is composed of a range of biomedical voice
measurements; each column is a particular voice measure,
each row corresponds to one of 195 voice recordings from
subjects, and the main aim of this dataset is to discriminate
healthy people from those with Parkinson’s disease [23].
In this situation, highly accurate discrimination is required
from a small number of measurements of a small number of
subjects, and thus, our method is expected to work well for
such medical applications.

We compare the optimization performance of the fol-
lowing methods for maximizing DBTC through feature sub-
set selection for kernel SVM classification:

INLO-K: INLO formulation (5)–(7);

MILO-K: MILO formulation (14)–(19) with M = 1;

RMILO-K: reduced MILO formulation (20)–(27);

DCA-K: DC algorithm [59].

The MILO problems were solved using the optimization
software IBMILOGCPLEX20.1.0.0 [39], where algorithms
for solving relaxed subproblems on each node were set to the
interior-point method instead of the dual simplexmethod. To
increase numerical stability, the big-M values for RMILO-K
were set as

Mih j = min{1 − exp
(
−γ(xi j − xhj)2

)
+ 0.1,1.0}
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(i ∈ [n], h ∈ [n], j ∈ [p]). (31)

The INLO problems, which cannot be handled by
CPLEX because of nonlinearity, were solved by the opti-
mization software Gurobi Optimizer 9.5.0 [29] using the
general constraint EXP function. The DC algorithm [59] was
implemented in the Python programming language with the
optimization software Ipopt 3.14 [75]. Here, the initial solu-
tion was set as z0

j := 0.5 for j ∈ [p], and the algorithm was
terminated at the kth iteration when |zk+1

j − zkj | ≤ 10−3 for
all j ∈ [p]. The weight λ ∈ {0,0.1, . . . ,0.9} of the penalty
term was tuned such that the objective function (5) would be
maximized subject to the subset size constraint (6).

Many algorithms have been proposed for tuning SVM
hyperparameters [76]. Based on the sigest method [14], we
estimated an appropriate value of the scaling parameter γ in
the subset-based Gaussian kernel function (4) as follows:

γ̂ :=
1

median of
{
(θ/p) ·

∑p
j=1(xi j − xhj)2 | (i, h) ∈ H

} .
(32)

We then set γ = βγ̂ with the scaling factor β ∈
{0.25,1.00,4.00}.

The following column labels are used in Tables 2–9:

ObjVal: value of the objective function (5);

OptGap: absolute difference between lower and upper
bounds on the optimal objective value divided by the
lower bound;

|Ŝ|: subset size of selected features;

Time: computation time in seconds.

A computation was terminated if it did not complete within
10000 s; in those cases, the best feasible solution found
within 10000 s was taken as the result. The total com-
putation time required for tuning the weight parameter
λ ∈ {0,0.1, . . . ,0.9} was measured in the DC algorithm.

4.2 Results for Real-World Datasets

Tables 2–5 give the computational results of the four meth-
ods for maximizing DBTC for the real-world datasets. First,
we focus on the results for the Hepatitis dataset (Table 2).
The INLO formulation (INLO-K) always reached the time
limit of 10000 s, and therefore its ObjVal values were of-
ten very small. In contrast, our reduced MILO formula-
tion (RMILO-K) solved all the problem instances completely
within the time limit. Moreover, RMILO-K finished com-
putations much sooner than did the original MILO formu-
lation (MILO-K); for example, the computation times of
MILO-K and RMILO-K for (θ, β) = (3,0.25) were 9498.3 s
and 716.6 s, respectively. The DC algorithm (DCA-K) was
faster than RMILO-K, whereas better ObjVal values were
often attained by RMILO-K.

Table 2 Results for Hepatitis dataset: (n, p) = (138, 15).

Table 3 Results for Zoo dataset: (n, p) = (101, 16).

For the Zoo dataset (Table 3), RMILO-Kwas still much
faster than the other MIO formulations, whereas the differ-
ences in ObjVal among the three MIO formulations were
relatively small. For the Parkinsons dataset (Table 4), al-
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Table 4 Results for Parkinsons dataset: (n, p) = (195, 22).

Table 5 Results for Soybean dataset: (n, p) = (47, 45).

though the three MIO formulations failed to finish compu-
tations within the time limit, RMILO-K attained the largest
ObjVal and smallest OptGap values in these formulations
for β ∈ {0.25,1.00}. For the Soybean dataset (Table 5),

INLO-K and MILO-K often reached the time limit, whereas
RMILO-K solved all the problem instances to optimality.
DCA-K was faster than the MIO formulations for these three
datasets, and its ObjVal values were often the best for the
Parkinsons dataset; however, DCA-K failed to give better
ObjVal values than did RMILO-K for the Zoo and Soybean
datasets. These results show that our MILO formulations
produce clear computational advantages over the INLO for-
mulation, and the problem reduction offers highly acceler-
ated MILO computations and thus good-quality solutions
within the time limit.

Next, we examine how the two user-defined parameters
(θ, β) affected the MILO computations. The computation
time of RMILO-K was longer when θ was large; this is rea-
sonable because the number of feasible subsets of features
increases with θ. Also, the computation time of RMILO-K
was often longest with β = 1.00; this implies that solv-
ing MILO problems is computationally expensive when the
scaling parameter γ is tuned appropriately by Eq. (32).

4.3 Experimental Design for Synthetic Datasets

We prepared synthetic datasets based on the MADELON
dataset [31] from the NIPS 2003 Feature Selection Chal-
lenge. Specifically, we supposed that there were θ∗ relevant
features and p − θ∗ irrelevant features. The relevant features
were generated using the NDCC (normally distributed clus-
ters on cubes) data generator [72], which is designed to create
datasets for nonlinear binary classification. The expansion
factor “exp” is used in the NDCC data generator to stretch
the covariance matrix of multivariate normal distributions;
as the expansion factor increases, two classes overlap and be-
come difficult to discriminate. The irrelevant features were
drawn randomly from the standard normal distribution. All
these features were standardized as in Eq. (3).

We used n data instances as a training dataset for each
combination (n, p,exp, θ∗) of parameter values. For this
training dataset, we selected a subset Ŝ of features. The
accuracy of subset selection is measured by the F1 score,
which is the harmonic average of Recall := |S∗∩ Ŝ |/|S∗ | and
Precision := |S∗ ∩ Ŝ |/|Ŝ | as follows:

SetF1 :=
2 · Recall · Precision
Recall + Precision

,

where S∗ is the set of relevant features.
By means of the training dataset, we trained SVM clas-

sifiers with the selected subset Ŝ of features. We then eval-
uated the prediction performance by applying the trained
classifier to a testing dataset consisting of sufficiently many
data instances. Let ŷi(Ŝ) be the class label predicted for the
ith data instance. The classification accuracy for the testing
dataset is calculated as

ClsAcc :=
|{i ∈ Ñ | yi = ŷi(Ŝ)}|

|Ñ |
,

where Ñ is the index set of testing data instances. We re-
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peated this process 10 times and give average values in Ta-
bles 6–9.

We compare the prediction performance of the follow-
ing methods for feature subset selection:

MILO-L: MILO formulation (MILP2 [51]) for linear SVM
classification;

RFE-K: recursive feature elimination [32] for kernel SVM
classification;

RMILO-K: our reduced MILO formulation (20)–(27) for
kernel SVM classification.

The MILO formulation (denoted by MILP2 in Maldonado
et al. [51]) was proposed for subset selection in linear SVM
classification. The recursive feature elimination was im-
plemented using the caret package in the R programming
language. The MILO problems were solved using the opti-
mization software IBM ILOG CPLEX 20.1.0.0 [39], where
the interior-point method was used to solve relaxed sub-
problems. The big-M values for RMILO-K were set as in
Eq. (31). For a selected subset Ŝ of features, SVM classifiers
were trained using the sklearn.svm.LinearSVC function
(MILO-L) and the sklearn.svm.SVC function (RFE-K and
RMILO-K) in the Python programming language. We set
the misclassification penalty parameter as C = 1, which per-
formed well for our synthetic datasets. We also used the
scaling parameter γ = γ̂, which was tuned by Eq. (32) for
the subset-based Gaussian kernel function (4).

4.4 Results for Synthetic Datasets

Tables 6–9 show the computational results of the three meth-
ods for feature subset selection for the synthetic datasets.
Recall that the tables show average values over 10 repeti-
tions, with standard errors of the ClsAcc and SetF1 values
in parentheses, where the best ClsAcc and SetF1 values for
each problem instance (n, p,exp, θ∗) are given in bold. Note
also that where the tables show “>10000.0” in the column
labeled “Time,” the computation reached the time limit of
10000 s at least once out of 10 repetitions.

Table 6 gives the results for the expansion factor
exp = 25 and the subset size θ = θ∗ = 3. When n ∈ {25,50},
our kernel-based MILO method (RMILO-K) achieved good
accuracy for both classification (ClsAcc) and subset selec-
tion (SetF1). When n = 100, the kernel-based recursive
feature elimination (RFE-K) performed relatively well. On
the whole, the linear-SVM-based MILO method (MILO-L)
performed badly.

Table 7 gives the results for the expansion factor
exp = 25 and the subset size θ = θ∗ = 5. When n = 25,
MILO-L provided the best accuracy for both classification
and subset selection. When n = 50, RMILO-K maintained
good accuracy for both classification and subset selection.
When n = 100, RFE-K and MILO-L had the best accuracy
for classification and subset selection, respectively. How-
ever, note that RMILO-K selected nearly half the features

Table 6 Results for the synthetic dataset (exp = 25 and θ = θ∗ = 3).

Table 7 Results for the synthetic dataset (exp = 25 and θ = θ∗ = 5).

selected by MILO-L. Accordingly, it is also the case that
RMILO-K delivered overall good performance with rela-
tively few features.

Table 8 gives the results for the expansion factor exp =
100 and the subset size θ = θ∗ = 3. In this case, MILO-
L outperformed the other kernel-based methods in terms
of the classification accuracy. In other words, this dataset
was compatible with linear SVM classifiers. On the other
hand, the accuracy for classification and subset selection was
higher for RMILO-K than for RFE-K overall.
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Table 8 Results for the synthetic dataset (exp = 100 and θ = θ∗ = 3).

Table 9 Results for the synthetic dataset (exp = 100 and θ = θ∗ = 5).

Table 9 gives the results for the expansion factor
exp = 100 and the subset size θ = θ∗ = 5. When n = 25,
RMILO-K achieved the best accuracy for both classifica-
tion and subset selection. In addition, RMILO-K and RFE-
K attained good classification accuracy when n = 50 and
n = 100, respectively. As for the subset selection accuracy
when n ∈ {50,100}, although MILO-L had the overall best
performance, RMILO-K with fewer features outperformed
RFE-K on the whole.

These results show that our MILO formulation delivers

good prediction performance, especially when there are rel-
atively few data instances. One of the main reasons for this
is that DBTC is a performance measure that is robust against
small datasets. Also, our MILO formulation can outperform
recursive feature elimination in terms of the subset selection
accuracy.

5. Conclusion

This paper dealt with feature subset selection for nonlinear
kernel SVM classification. First, we introduced the INLO
formulation for computing the best subset of features based
on DBTC, which is the distance between the centroids of
two response classes in a high-dimensional feature space.
Next, we reformulated the problem as a MILO problem and
then devised some problem reduction techniques to solve the
problem more efficiently.

In computational experiments conducted using real-
world and synthetic datasets, our MILO problems were
solved in much shorter times than was the original INLO
problem, and the computational efficiency was improved by
our reducedMILO formulation. Ourmethod often found bet-
ter quality solutions than did the DC algorithm [59]. More-
over, our method often attained better classification accu-
racy than did the linear-SVM-based MILO formulation [51]
and recursive feature elimination [32], especially when there
were relatively few data instances.

It is known that feature subset selection for maximizing
DBTC (i.e., the kernel–target alignment) leads to noncon-
vex optimization [59]. To our knowledge, we are the first to
transform this subset selection problem into a MILO prob-
lem, which can be solved to optimality using optimization
software. Note that if we try to solve the original non-
convex optimization problem exactly, then we cannot avoid
numerical errors caused by its nonlinear objective function.
In contrast, our method offers globally optimal solutions to
small-sized problems without such numerical errors, and
the obtained optimal solutions can be used to evaluate the
solution quality of other algorithms. We also expect our
formulation techniques to be applicable to other nonconvex
optimization problems whose structures are similar to that
of our problem.

A limitation of our method is the computational inef-
ficiency of dealing with large-sized datasets. In fact, our
method often failed to complete MILO computations within
10000 s for large-sized datasets in the computational exper-
iments. Another limitation is that our method is specialized
for maximizing the performance measure DBTC based on
the Gaussian kernel function. Additionally, the robustness
of our method against outliers should be tested. In view
of these limitations, we can provide the following future
research directions:

• accelerating the MILO computation by implementing a
specialized branch-and-bound algorithm;

• developing a heuristic algorithm for finding high-
quality solutions efficiently for large-sized datasets;
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• devising tractable MIO formulations for other perfor-
mance measures or other kernel functions;

• evaluating the prediction performance of our method
for datasets containing outliers.
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Appendix: List of Abbreviations

DBTC Distance Between Two Classes

DC Difference of Convex functions

DCA Difference of Convex functions Algorithm

INLO Integer Nonlinear Optimization

MILO Mixed-Integer Linear Optimization

MIO Mixed-Integer Optimization

RFE Recursive Feature Elimination

SVM Support Vector Machine
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