
1098
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

PAPER
Synchronization of Canards in Coupled Canard-Generating
Bonhoeffer–Van Der Pol Oscillators Subject to Weak Periodic
Perturbations

Kundan LAL DAS†a), Nonmember, Munehisa SEKIKAWA†, Tadashi TSUBONE††, Members,
Naohiko INABA†††, Nonmember, and Hideaki OKAZAKI†††, Senior Member

SUMMARY This paper discusses the synchronization of two identical
canard-generating oscillators. First, we investigate a canard explosion gen-
erated in a system containing a Bonhoeffer–van der Pol (BVP) oscillator
using the actual parameter values obtained experimentally. We find that it is
possible to numerically observe a canard explosion using this dynamic os-
cillator. Second, we analyze the complete and in-phase synchronizations of
identical canard-generating coupled oscillators via experimental and numer-
ical methods. However, we experimentally determine that a small decrease
in the coupling strength of the system induces the collapse of the complete
synchronization and the occurrence of a complex synchronization; this
finding could not be explained considering four-dimensional autonomous
coupled BVP oscillators in our numerical work. To numerically investigate
the experimental results, we construct a model containing coupled BVP
oscillators that are subjected to two weak periodic perturbations having the
same frequency. Further, we find that this model can efficiently numerically
reproduce experimentally observed synchronization.
key words: synchronization, canard, Bonhoeffer–van der Pol oscillator

1. Introduction

Herein, we numerically investigate the fundamental proper-
ties of a canard explosion generated by a Bonhoeffer–van
der Pol (BVP) oscillator using the parameter values obtained
experimentally. Furthermore, we investigate two identical
coupled canard-generating oscillators. However, the exper-
imental results exhibit complex phenomena, which cannot
be explained considering two identical autonomous coupled
BVP oscillators. Thus, we construct a numerical model that
is capable of accurately reproducing the experimentally ob-
served results; this model includes two weak perturbations
having the same frequency.

Canards are among the most important discoveries of
the late 20th century, and they have been studied extensively
for over four decades [1]–[11]. Here, we consider a van der
Pol oscillator of the following form:
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{
ε Ûx = y + x − x3,

Ûy = −x + B0,
(1)

where ε is a small parameter and B0 represents the ampli-
tude of the DC voltage source considered here. It has been
demonstrated through a nonstandard analysis that there ex-
ists a case where the amplitude of the oscillator changes by
a factor on the order of 1 when the value of B0 changes by
a factor on the order of exp(−1/ε) [2], [6]. The magnitude
of exp(−1/ε) is ∼4.5 × 10−5 for ε = 0.1 and ∼10−44 for
ε = 0.01. The observed oscillation in this system is referred
to as a canard because the form of the oscillation resembles
a duck. The oscillatory behavior observed here is notable
because canard explosions are not phenomena in which the
characteristic multipliers cross the threshold.

Herein, we first numerically analyze a slow–fast BVP
oscillator that generates a canard explosion; we undertake
this work utilizing the parameter values obtained experi-
mentally. As the inductor in the system includes an internal
resistance, we assert that BVP oscillators represent more nat-
ural and realistic systems than van der Pol oscillators. In our
numerical study, we find the magnitude of the canard oscilla-
tion is changed by a factor on the order of 1 when parameter
B0 is changed by 0.0001; this finding is in good qualita-
tive agreement with the results of a previous nonstandard
analysis.

We then discuss the synchronization of identical and
nearly identical canard generating BVP oscillators. Re-
cently, coupled canard- andmixed-mode oscillation (MMO)-
generating oscillators have been the subject of intense re-
search [12]–[17]. In such systems, the synchronization of
canards and MMOs can be observed [13]–[15].

In our previous work, the complete and in-phase syn-
chronizations of canards in identical and nearly identical
coupled canard-generating BVP oscillators have been inves-
tigated [18]. Understanding how canard-synchronization oc-
curs is of particular interest because canards are extremely
sensitive to parameter values. Numerical simulations on
coupled canard-generating oscillators have been undertaken
previously, and both the complete and in-phase synchroniza-
tions have been observed. It has also been established why
a strong coupling is necessary to achieve complete synchro-
nization in experimental work [18]. Herein, we assume that
capacitance mismatch of 10% in the two oscillators; this
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mismatch is taken as it reflects the probable inaccuracies in
the experimentally realized circuit. The 10% mismatch is
considered to be reasonable because it is probable that the
nonlinear conductors include a 10% parametermismatch due
to the difficulty of realizing elements with an identical non-
linear conductance using diode arrays. In a previous study,
it has been confirmed that an error of ∼10% can generate
almost complete synchronization of the oscillators [18].

Herein, we consider a system that accurately represents
an experimentally realized ciruit and demonstrates numeri-
cally that almost-complete synchronization is no longer sta-
ble for a coupling parameter of α = 0.4, and that the in-phase
synchronization emerges instead. Here, α is the coupling pa-
rameter that represents the coupling conductance, g. Con-
versely, we observe the almost-complete synchronization for
α ' 1.2. However, in the experimental work, we find that the
oscillator demonstrates a stable in-phase synchronization for
values of α below 1.2; in this case, the phenomena observed
experimentally cannot be replicated numerically.

In previous work, the complete synchronization of ca-
nards was observed across a wide range of coupling pa-
rameter values in numerical simulations in identical coupled
canard-generating oscillators [18]; this synchronization can
occur for relatively small coupling parameter values, such as
α = 0.03. However, in the circuit experiments undertanken
in this work, we observe that the complete synchronization
collapses as a result of even a slight decrease in the cou-
pling parameter value at which complete synchronization
can be seen. In this work, we have found a discrepancy
between the numerical simulations and actual circuit experi-
ments; indeed, we have observed a complex synchronization
that emerges in experiments that had not previously been
reported. Furthermore, the destruction of the complete syn-
chronization of canards observed in experiments cannot be
explained by considereing coupled canard-generating four-
variable autonomous ordinary differential equations (ODEs)
that include a 10% parameter mismatch, despite these ODEs
would be a good approximation of the dynamics.

To explain such a discrepancy, in this paper, we investi-
gate this phenomenon by constructing a set of four-variable
nonautonomous coupled BVP ODEs with a 10% parameter
mismatch and two weak periodic perturbations. By consid-
ering these non-autonomous ODEs, we were able to observe
oscillatory behavior that was consistent with that present in
the circuit experiments. These weak periodic perturbations
could be considered to represent the noise that is present in an
actual dynamical circuit. We refer to this complex synchro-
nization behavior as “butterfly synchronization” of canards,
a name that reflects the shape of the attractors. The butterfly
synchronization of canards occurs when the phase difference
of the canards is sufficiently large. We numerically confirm
that such a phase difference can be achieved by considereing
two weak periodic perturbations. We note that the butterfly
synchronization of canards occurs not because of the change
in shape of the attractors, but because the phases of the two
canards are shifted.

2. Canard Explosion Generated by a BVP Oscillator

In this section, we accurately describe a canard explosion
generated by a canard-generating oscillator using parameter
values that reflects the properties of a circuit considered ex-
perimentally. The circuit considered here is shown in Fig. 1;
it is referred to as a BVP oscillator. In Fig. 1,C, L, R, E0, and
N.C. represent the capacitance of the capacitor, the induc-
tance of the inductor, a parasitic resistance of the inductor,
a DC voltage source, and a nonlinear negative conductance,
respectively.

The voltage–current characteristics of the nonlinear
conductance (labeled N.C.), is assumed to be represented
by the following third-order polynomial function:

G(v) = −g1v + g3v
3. (2)

The circuit diagram for the element N.C. is given in Fig. 2(a).
Herein, r1, r2, r3 and r4 in Fig. 2(a) are set to 2.0 kΩ, 3.0 kΩ,
3.2 kΩ, and 1.4 kΩ respectively. Figure 2(b) shows the char-
acteristic voltage–current curve obtained from the circuit
shown in Fig. 2(a); in this figure, the experimental results are
shown in blue and the polynomial function given in Eq. (2)
is shown by a red curve.

The governing equation of the circuit shown in Fig. 1
can be written as

Fig. 1 The circuit diagram of the BVP oscillator considered here.

Fig. 2 (a) Realization of a nonlinear conductance via diode arrays (the
values of the resistance used herein are r1 = 2.0 kΩ, r2 = 3.0 kΩ, r3 =
3.2 kΩ, and r4 = 1.4 kΩ), (b) Voltage–current characteristics of the circuit
shown in (a).
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C

dv
dt
= −i + g1v − g3v

3,

L
di
dt
= −v − iR + E0.

(3)

The parameter values measured experimentally are as fol-
lows.

C ' 10 nF, L ' 100 mH,R ' 540 Ω,
g1 ' 370 µS, and g3 ' 2.3 µS. (4)

Considering the following rescaling:

v =

√
g1
g3

x, i = −g1

√
g1
g3
y, t = Lg1τ,

E0 =

√
g1
g3

B0, k = g1R, ε =
C

Lg2
1
,

(5)

we can normalize the equations of the system; the system can
then be described by the following system of two-variable
autonomous ordinary differential equations (ODEs):{

ε Ûx = y + x − x3,

Ûy = −x − ky + B0.
(6)

In Eq. (6), B0 describes the DC bias voltage E0, and ε is a
parameter corresponding to the small capacitanceC. Herein,
ε is assumed to be small. Considering the transformations
described in Eq. (5) and the parameter values obtained from
the experimental work, the normalized parameters are set as
ε = 0.1 and k = 0.1998; the parameter B0 is used as the
bifurcation parameter in the system. In the following work,
we describe the solutions of this system for a range of values
of B0.

Figure 3 shows the behavior of the solutions of Eq. (6)
in the x − y plane. In Fig. 3, the lines in blue and green
represent x- and y-nullclines, respectively. When the DC
bias voltage is relatively large (for example, when B0 = 0.5),
the intersection of these nullclines becomes a stable equi-
librium; this point is marked with the black dot in Fig. 3(a).
As B0 decreases to 0.4898, a limit cycle with small ampli-
tude emerges via a supercritical Hopf bifurcation as shown
in Fig. 3(b). This attractor is a canard without a head. For
B0=0.4897, which is 0.0001 smaller than the value of B0 for
which a canard without a head can be observed, a canard
with a head can be seen to emerge [19]. Once a canard with
a head has been generated, the change in the magnitude of
its amplitude becomes gradual with respect to the change in
B0, as shown in Fig. 3(d).

Figure 4 shows a one-parameter bifurcation diagram
where the horizontal axis represents the bifurcation parame-
ter B0 and the vertical axis represents the largest and smallest
values of x. The equilibrium generated in the system de-
scribed by Eq. (6) is stable for B0 > 0.4946604 and unstable
for 0 < B0 < 0.4946604. Stable and unstable equilibria are
marked with solid and dashed lines, respectively. The tran-
sition of the equilibrium from stable to unstable occurs at
B0 = 0.4946604 via a supercritical Hopf bifurcation. This
value of B0 can be manually obtained. Immediately after

Fig. 3 Phase planes for various value ofB0 (ε = 0.1 and k = 0.1998): (a)
Stable equilibrium (B0 = 0.5), (b) canard without a head (B0 = 0.4898),
(c) canard with a head (B0 = 0.4897), and (d) large-amplitude solution
(B0 = 0.4).

Fig. 4 One-parameter bifurcation diagram of x plotted as a function of
B0 (ε = 0.1 and k = 0.1998).

this bifurcation, a small amplitude limit cycle is generated.
Figure 4 shows that extremely rapid changes in the ampli-
tude of the solution occur at around B0 = 0.49. This abrupt
change in the magnitude of the oscillation is called a canard
explosion [19]. A canard explosion is a notable phenomenon
because it represents a bifurcation in the more general sense
as an important change occurs; however, the canard explo-
sion is not a phenomenon in which characteristic multipliers
cross a threshold value.

3. Numerical Analysis for Two-Coupled BVP Oscilla-
tors with a Mismatch in Capacitances

In this section, we discuss the synchronization of canards that
are generated by identical coupled BVP oscillators. Figure 5
shows a circuit diagram of two-coupled BVP oscillators with
a conductance g; in this circuit, the parameters describing
and each oscillator are identical. However, notably, a slight
parameter mismatch exists between the two oscillators be-
cause complete synchronization (that should not exist) may
occur as a result of the finite precision of the computations
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Fig. 5 Resistively coupled BVP oscillators.

undertaken. Based on the difficulty of realizing the quali-
tatively similar elements with a nonlinear conductance con-
structed using diode arrays, we intentionally introduce a 10%
parameter mismatch in the two capacitances C1 and C2.

The governing equation of the coupled circuits can
be expressed by the following system of four autonomous
ODEs:

C1
dv1
dt
= i1 − G1(v1) − g(v1 − v2),

L
di1
dt
= E0 − v1 − i1R,

C2
dv2
dt
= i2 − G2(v2) − g(v2 − v1),

L
di2
dt
= E0 − v2 − i2R.

(7)

The variable transformations,

v1 =

√
g1
g3

x1, v2 =

√
g1
g3

x2, i1 = −g1

√
g1
g3
y1,

i2 = −g1

√
g1
g3
y2, t = Lg1τ, E0 =

√
g1
g3

B0,

k = g1R, ε1 =
C1

Lg2
1
, ε2 =

C2

Lg2
1
, α =

g

g1
,

(8)

can be used to write the above expressions in a normalized
form:

ε1 Ûx1 = y1 + x1 − x3
1 − α(x1 − x2),

Ûy1 = −x1 − ky1 + B0,

ε2 Ûx2 = y2 + x2 − x3
2 + α(x1 − x2),

Ûy2 = −x2 − ky2 + B0.

(9)

Here, B0, which is the parameter that contains informa-
tion related to theDC bias voltage E0, was set to 0.4897. This
parameter value yields a canard in each oscillator. ε1 and ε2
are parameters that describe the capacitors of capacitances
C1 and C2, respectively. As mentioned above, a 10% param-
eter mismatch is introduced in the values of the capacitances,
i.e., we set ε1 = 0.1 and ε2 = 0.09. We use these values of
B0, ε1, and ε2 throughout this study. Furthermore, we note
that α is a parameter that corresponds to the conductance g;
the parameter g is used as the bifurcation parameter in this
section.

We investigate the behavior of the two oscillators and
investigate the extent of their synchronization for various val-
ues of the parameter α. Figure 6 shows the one-parameter

Fig. 6 One-parameter bifurcation diagram for decreasing values of α.
Here, the parameters used are ε1 = 0.1, ε2 = 0.09, B0 = 0.4897, and
k = 0.1998.

Fig. 7 (a) In-phase and (b) almost complete synchronizations of canards
in coupled BVP oscillators; in this case the two oscillators include a param-
eter mismatch of 10% (ε1 = 0.1 and ε2 = 0.09): Attractors in the (a.1)
x1–x2 and (a.2) x1–y1 planes for α = 0.4 and attractors in the (b.1) x1–x2
and (b.2) x1–y1 planes for α = 1.2.

bifurcation diagram for α decreasing from 1.2 to 0. In Fig. 6,
the intersection points between the orbits and Poincaré sec-
tion (x1 = 1/

√
3, Ûx1 ≤ 0) are plotted as a function of α. As

this figure demonstrates, after in-phase synchronization oc-
curs, the in-phase synchronization is maintained over a wide
range of α values.

The attractor of the in-phase synchronization for α =
0.4 is shown in Fig. 7(a.1). As α increases, the in-phase
synchronization that more closely resembles complete syn-
chronization emerges, as shown in Fig. 7(b.1). The attrac-
tors in both cases take the typical canard form, as shown in
Figs. 7(a.2) and (b.2).

In the next section, we undertake circuit experiments
for the two identical coupled oscillators to verify the results
of the numerical analysis; we verify that in-phase synchro-
nization can be observed across a wide range of values of the
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bifurcation parameter α. However, notably qualitative dif-
ferences between the numerical results obtained via Eq. (9)
and the experimental measurements presented here exist.

4. Experimental Study of Two Identical Canard-
Generating Coupled Oscillators

In the circuit experiment, the conductance g is used as the
bifurcation parameter. First, we investigate the system exper-
imentally for large values of the coupling conductance, g. As
expected, for large values of g, when g ' 0.455mS (α ' 1.2),
the oscillators reach an almost complete (pseudo complete)
synchronization state, as shown in Fig. 8(a.1). Figure 8(a.2)
shows the attractor of the canard shape projected onto the v–i
phase plane; this finding qualitatively agrees with the results
of the numerical simulations.

When the coupling parameter α is decreased slightly,
the phase difference between v1 and v2 can be clearly ob-
served. At slightly smaller values of α, the in-phase syn-
chronization of the two oscillators collapses, as shown in
Fig. 8(b.1). Due to the shape of the Lissajous diagram of the
synchronized attractor projected onto the v1–v2 plane, we
refer to this complex synchronization behavior as “butterfly
synchronization” of canards, a name that reflects the shape of
the attractors. The Lissajous diagrams observed here are ex-
plained by considering the corresponding numerical results
in the next Section.

Fig. 8 Experimental measurement of synchronized canards. Trajectories
of the almost-complete (pseudo complete) synchronization in the (a.1) v1–v2
and (a.2) v1–i1 planes in a system with coupling, g = 445µS. Trajectories
in the (b.1) v1–v2 and (b.2) v1–i1 planes in a system with coupling slightly
higher than g = 445µS. (The grid meshes represent 5V/div in both the
horizontal and vertical directions in both (a.1) and (b.1); the grid meshes
represent 1V/div and 5V/div in the vertical and horizontal directions, re-
spectively, in (a.2) and (b.2).)

5. Modeling of a Dynamic Oscillator and the Collapse
Mechanism of the in-Phase Synchronization

In the numerical simulation related to Eq. (9), the two nearly
identical dynamic oscillators exhibit in-phase synchroniza-
tion across a wide range of values of the parameter α. How-
ever, the experimental measurements indicate that the in-
phase synchronization breaks down even for small decreases
in the coupling conductance.

To explain the generation of complex synchronization
seen in circuit experiments, we investigate the behavior of
coupled canard-generating oscillators subject to two weak
periodic perturbations, as shown in Fig. 9. Here, we assume
that the two weak perturbations have the same angular fre-
quency; this frequency is given by ω. Their phase angles are
given by φ1 and φ2.

The butterfly synchronization of canards was not ob-
served numerically when considering two sinusoidal forc-
ing waves with the same phase difference. We hypothesize
that the dynamics with two sinusoidal perturbations with a
moderate phase difference are sufficient to explain the but-
terfly synchronization of canards. To explain the butterfly
synchronization of canards, we consider the following four
nonautonomous ODEs:

C1
dv1
dt
= i1 − G1(v1) − g(v1 − v2),

L
di1
dt
= E0 + E1 sin(ωt + φ1) − v1 − i1R,

C2
dv2
dt
= i2 − G2(v2) − g(v2 − v1),

L
di2
dt
= E0 + E2 sin(ωt + φ2) − v2 − i2R,

(10)

where the constant DC voltage source E0 in the second and
fourth equations of Eq. (9) is replaced by E0+E1 sin(ωt+φ1)
and E0 + E2 sin(ωt + φ2), respectively. Here, E1 and E2
are assumed to be small, which permits the construction
of a dynamic model that explains the phenomena observed
experimentally.

In addition to Eq. (8), the following rescaling is used.

E1 =

√
g1
g3

B1,E2 =

√
g1
g3

B2, and ω =
ν

Lg1
. (11)

This yields the following normalized equations:

Fig. 9 Resistively coupled BVP oscillators subject to weak periodic per-
turbations.
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ε1 Ûx1 = y1 + x1 − x3

1 − α(x1 − x2),

Ûy1 = −x1 − ky1 + B0 + B1 sin(ντ + φ1),

ε2 Ûx2 = y2 + x2 − x3
2 + α(x1 − x2),

Ûy2 = −x2 − ky2 + B0 + B2 sin(ντ + φ2),

(12)

where B1 and B2 represent the amplitudes, and ν represents
the angular frequency of the AC forcing terms, respectively.
Here, we consider the case where B1 = B2, φ1 = 0, and
φ2 = π/2 hold; we found that phase difference of π/2 be-
tween the two perturbations is sufficient to induce the but-
terfly synchronization of canards in numerical simulations
that approximately resembles that observed in the circuit
experiments.

The numerical experiments presented here are per-
formed considering the variation of the amplitude and the
angular frequency of the forcing terms. For larger values
of α (for example, α = 1.2), the resistively coupled BVP
oscillators with weak periodic perturbations exhibit almost-
complete synchronization, as shown in the x1 − x2 plane of
Fig. 10(a). The trajectory in the xi–yi plane (i = 1, 2) shows
a canard for B1 = 0.15 and ν1 = 1.3. However, for a smaller
value of α (for example, α = 0.03), the phase difference be-
tween the two oscillators increases. As a result, the in-phase
synchronization breaks down, as shown in Fig. 10(b). We
have succeeded in tuning the set of parameters such that the
numerically obtained attractor more closely resembles that
obtained in the circuit experiments; this agreement is shown
in Fig. 10(b.1).

Our model, which is described by the dynamic expres-
sions given in Eq. (12), suggests that weak periodic pertur-
bations decrease the propensity of the system to achieve
in-phase synchronizaiton at a lower value of α. Based on the
comparison of the experimental and numerical results, we
hypothesize that the modelling of coupled BVP dynamics
subject to weak perturbations could be suitable to explain
the phenomena observed in the circuit experiments. We see
that qualitatively similar attractors to those observed in the
experiments can be obtained in the numerical results corre-
sponding to coupled oscillators subject to weak periodic per-
turbations. From Fig. 10(b.3), the butterfly synchronization
of canards occurs when the phase difference of the canards
is sufficiently large.

6. Conclusion

Herein, we have discussed the synchronization of identical
canard-generating BVP oscillators with a parameter mis-
match of 10% in the capacitances of the coupled oscillators;
this mismatch was selected to reflect the experimental errors
that are probable to occur in the realized circuits.

We numerically demonstrated that the almost-complete
synchronization, which occurs at a coupling parameter
α ' 1.2, becomes unstable at α = 0.4 and the in-phase syn-
chronization emerges at this parameter value. Converesly, it
can be experimentally found that the almost-complete syn-
chronization breaks down for values of the coupling param-
eter slightly smaller than α = 1.2. From the shape of these

Fig. 10 (a.1)–(a.3) Numerically obtained almost complete synchronized
canards for α = 1.2, B1 = 0.15 and ν1 = 1.3. Trajectories projected onto
the (a.1) x1–x2, (a.2) x1–y1 (blue) and x2–y2 (green) planes, and (a.3)
time-series waveform for x1 (blue) and x2 (green). (b.1)–(b.3) Numerically
obtained butterfly synchronized canards for α = 0.03, B1 = 0.15 and
ν = 1.3. Trajectories projected onto the (b.1) x1–x2, (b.2) x1–y1 (blue)
and x2–y2 (green) planes, and (b.3) time-series waveforms for x1(blue) and
x2(green) of the perturbed system.

attractors, we call them butterfly synchronization of canards.
This finding could not be replicated in the numerical study
of nearly identical coupled canard-generating autonomous
ODEs.

To construct a model that explains the experimentally
observed phenomena, we introduced nearly identical coupled
BVP oscillators subject to two weak periodic perturbations
of the same frequency. Considering the resultant nonau-
tonomous dynamics, we showed that the weak perturbations
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weaken the propensity of the oscillators to reach in-phase
synchronization.

In future works, we intend to numerically investigate al-
ternative sets of parameter values with the aim of replicating
the phenomena observed in experimental works.
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