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Analysis of Blood Cell Image Recognition Methods Based on
Improved CNN and Vision Transformer

Pingping WANG ™, Xinyi ZHANG ", Yayan ZHAO "™, Yueti LI "%, Kaisheng XU 717,

SUMMARY  Leukemia is a common and highly dangerous blood dis-
ease that requires early detection and treatment. Currently, the diagnosis of
leukemia types mainly relies on the pathologist’s morphological examina-
tion of blood cell images, which is a tedious and time-consuming process,
and the diagnosis results are highly subjective and prone to misdiagnosis
and missed diagnosis. This research suggests a blood cell image recognition
technique based on an enhanced Vision Transformer to address these prob-
lems. Firstly, this paper incorporate convolutions with token embedding
to replace the positional encoding which represent coarse spatial informa-
tion. Then based on the Transformer’s self-attention mechanism, this paper
proposes a sparse attention module that can select identifying regions in
the image, further enhancing the model’s fine-grained feature expression
capability. Finally, this paper uses a contrastive loss function to further in-
crease the intra-class consistency and inter-class difference of classification
features. According to experimental results, The model in this study has an
identification accuracy of 92.49% on the Munich single-cell morphological
dataset, which is an improvement of 1.41% over the baseline. And compar-
ing with sota Swin transformer, this method still get greater performance.
So our method has the potential to provide reference for clinical diagnosis
by physicians.

key words: vision transformer, CNN, self attention mechanisms, blood cell
recognition, leukemia

1. Introduction

Blood cells are the cellular components of blood that play
important roles in carrying oxygen and nutrients throughout
the body, fighting off infections, and removing waste prod-
ucts. They are classified into three main types: red blood
cells, white blood cells, and platelets. White blood cells,
also known as leukocytes, play a vital role in protecting the
human body from infections. They are crucial for the im-
mune system to function and are responsible for fighting
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against harmful bacteria, viruses, and other pathogens. The
five main types of white blood cells, including neutrophils,
basophils, eosinophils, monocytes, and lymphocytes. Iden-
tifying and categorizing white blood cells has always been a
crucial step in blood analysis as it helps physicians anticipate
significant illnesses and monitor the progress of treatment by
monitoring the alteration in the quantity and form of various
white blood cell types [1].

The traditional method is to stain a blood smear and
then identify it under a light microscope. This method is
extremely tedious and time-consuming, and the results of
counting and sorting are susceptible to human influence [2].
As a result of the quick growth of computing power and
artificial intelligence, deep learning technology [3]-[8] has
been widely used and has greatly advanced image process-
ing [9], [10]. Blood cell classification using deep learning
is a type of medical image analysis that involves using ad-
vanced machine learning algorithms to automatically iden-
tify and classify different types of blood cells present in
digital images of blood samples. This method may enhance
the precision and effectiveness of blood cell classification
and assist medical professionals in the diagnosis and treat-
ment of various blood-related diseases and disorders, such
as leukemia.

Recent years, in computer vision tasks including picture
classification, object recognition, and segmentation, Vision
Transformer (ViT) has achieved astounding results. Unlike
traditional convolutional neural networks (CNNs), ViT uses
a self-attention mechanism to learn and extract relevant fea-
tures from input images, allowing it to attend to the most
important parts of the image for the task at hand. The self-
attention mechanism allows ViT to learn the relationships
between different parts of the input image and to attend to
the most relevant parts of the image for the task at hand.
This is achieved through a mechanism called the multi-head
self-attention, where the input image is divided into multiple
patches, and attention is calculated between each patch and
all the other patches. The attention weights are then used
to weight the importance of each patch for the final classifi-
cation. Given the exceptional results demonstrated by ViT
in generic visual recognition and the increasing demand for
automated blood cell image classification, this paper were
motivated to research the ViT for blood cell classification
task.

While numerous studies have focused on blood cell
recognition, the majority are predicated on general object
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detection and classification networks, without specific im-
provements tailored to the characteristics of blood cells.
Moreover, many studies have concentrated on major blood
cell categories, neglecting subcategories such as stages of
granulocytes. The subtle differences between these blood
cell subcategories make their automatic recognition more
challenging. Recently, the Vision Transformer has demon-
strated impressive performance in visual classification tasks,
indicating that the self-attention mechanism of the Trans-
former can capture critical parts of image block sequences,
endowing the model with stronger local and global feature
representation capabilities. Although a visual problem has
been transformed into a sequence to sequence problem by
patch embedding in ViT, medical image classification tends
to focus on discriminative regions’ local information. ViT
is hard to focus on information regarding the discriminative
regions.

The rationale behind the choice of using an enhanced
Vision Transformer and Sparse Attention Module in this
study is that these methods can better identify and classify
blood cells. The enhanced Vision Transformer, by inte-
grating convolutions with token embedding, supersedes the
positional encoding that represents coarse spatial informa-
tion, thereby augmenting the model’s feature representation
capabilities. The Sparse Attention Module can select iden-
tifying regions in the image, further enhancing the model’s
fine-grained feature expression capability. Additionally, the
choice of employing a contrastive loss function is predicated
on its ability to further increase the intra-class consistency
and inter-class difference of classification features, thereby
enhancing the model’s classification performance.

To sum up, our contributions are two-fold:

- Sparse attention module, which makes comprehensive
use of the attention weight information of all coding layers
to capture the discriminative region in the image. For the
purpose of resolving the blood cell picture intra-class vari-
ance and inter-class similarity problems, this is extremely
significant.

- Convolutional Token Emebedding keeps all the pos-
itive attributes of Transformers—dynamic attention, uni-
versal context integration, and more gigantic generaliza-
tion—while utilizing all of CNN’s advantages—Local cor-
relation, stationarity, and spatially subsampling.

In the remainder of this paper, we delve into the de-
tails of our proposed method and its underlying principles.
Section 2 provides a comprehensive review of related work,
highlighting the advancements and limitations of existing
methods in the field of blood cell recognition. In Sect. 3, we
elucidate the materials and methods used in our study, in-
cluding a detailed explanation of the enhanced Vision Trans-
former and Sparse Attention Module, and the rationale be-
hind their implementation. Section 4 presents the results
of our experiments, providing a comparative analysis of our
method with existing techniques. Finally, Sect.5 concludes
the paper with a summary of our findings and potential di-
rections for future research.
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2. Related Work

Although previous studies [11]-[13] have made significant
progress in blood cell recognition, most of them are based on
general object detection and classification networks, without
improvements specifically targeting blood cell characteris-
tics. Furthermore, many studies have only focused on major
blood cell categories, without paying attention to subcate-
gories such as the stages of granulocytes, including primi-
tive, early, intermediate, and late stages. The subtle differ-
ences between blood cell subcategories make their automatic
recognition more challenging. Recently, the Vision Trans-
former [14] has shown good performance in visual classi-
fication tasks, indicating that the self-attention mechanism
of Transformer [15] can capture important parts of image
block sequences, allowing the model to have stronger local
and global feature representation capabilities. Therefore,
this paper combines blood cell characteristics to study fine-
grained classification of blood cells and proposes a blood
cell recognition method based on an improved Vision Trans-
former.

2.1 Medical Image Classification Based on Deep Learning
Methods

Deep learning has made significant progress in recent years,
mainly due to increasing computer hardware and the huge
amount of data available, as well as deep learning technol-
ogy [16].

A fundamental stage in medical image analysis, medical
image classification tries to separate medical images based
on a certain criterion, such as clinical pathologies or imaging
modalities. A trustworthy technique for classifying medical
images can help clinicians evaluate medical images quickly
and correctly.

Deep learning techniques, particularly especially deep
convolutional neural networks (DCNN), have significantly
advanced medical image classification in recent years [17],
[18].

Dhieb et al. used a Mask Region-Based Convolutional
Neural Network (Mask R-CNN) to detect red and white
blood cells. The model employed Resnet-101 as its back-
bone and utilized a Feature Pyramid Network (FPN) to ex-
tract multi-scale features for detecting cells of different sizes.
The method achieved an accuracy of 92% for red blood cell
recognition and 96% for white blood cell recognition [19].

Shakarami et al. [11] proposed a Fast and Efficient
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YOLOV3 Detector (FED) based on the YOLOvV3 (You Look
Only Once v3) single-stage object detection network. This
model used Efficientnet as its backbone and performed
blood cell detection at three different scales. The method
achieved average recognition accuracy of 90.25%, 80.41%,
and 98.92% for platelets, red blood cells, and white blood
cells, respectively, on the BCCD dataset.

In the field of blood cell image classification, re-
searchers have also conducted extensive studies. Matek et al.
[12] released an open-source blood cell dataset containing
15 classes and a total of 18,375 images. They then used the
ResNext model for classification, achieving a recognition ac-
curacy of 94% for common blood cells such as neutrophils,
lymphocytes, and monocytes.

Huang et al. [20] first obtained individual blood cell
slice images based on the RetinaNet detection network, then
introduced an adaptive attention module into the convolu-
tional neural network. This module enhanced the weight of
regional features related to classification tasks, improving
the model’s feature representation capabilities. The model
achieved an average classification accuracy of 95.3% for six
types of white blood cells.

Mori et al. [21] divided blood cells into four categories
based on the degree of cytoplasmic granule reduction, and
then used the Resnet-152 network for classification. The
average sensitivity and specificity were 85.2% and 98.9%,
respectively.

Numerous studies demonstrate that the DCNN ap-
proach is more precise than hand-crafted feature-based alter-
natives [22], [23]. However, they have not been as success-
ful [24] as ImageNet challenge [25] on medical image classi-
fication [26], [27]. Researchers have sought to apply Trans-
former in computer vision since its remarkable success in
natural language processing, and they then suggested Vision
Transformer, which has shown excellent results [15]. There-
fore, researchers are attempting to apply variations of VIT to
address the challenges of intra-class variance and inter-class
similarity in the classification of medical images [28].

2.2 Research Process of Vision Transformer

CNNs have demonstrate excellent performances in image
classification. CNNs are a type of deep learning tech-
nique that automatically extract features from image data.
The CNNs process an input image through multiple stages
to extract hierarchical and sophisticated feature represen-
tations [29]. Using CNN can easily construct an end-to-
end model and there’s no requirement for designing intri-
cate, manually designed features [30]. Recently, a inno-
vative transformer architecture has resulted in a significant
advancement in Natural Language Processing tasks. The
Transformer, specifically created for sequence modeling and
transaction tasks, stands out for its implementation of atten-
tion mechanisms to capture long-range dependencies in the
data. Due to its remarkable success in the language field, re-
searchers are exploring its potential applications in computer
vision.
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Unlike traditional CNNs, ViT replaces convolutional
layers with self-attention mechanism, which allows the net-
work to directly process the full-resolution image. This
design decision results in the ViT model being capable of
processing images of variable sizes while maintaining high
accuracy. Dosovitskiy et al. [14] designed the first example
of a transformer-based. The ViT model replaces the fixed
receptive field of CNNss with a self-attention mechanism that
allows it to process full-resolution images. The ViT model
is an encoder-only architecture and removes the transformer
decoder for computer vision classification tasks [31]. The
traditional approach to processing images in CNNs is to ap-
ply convolutional operations to reduce the spatial resolution
of the image, which can lead to the loss of important details
and features. In contrast, the ViT model processes the full-
resolution image and retains all of its details and features.
This enables the ViT model to exhibit an impressive balance
between speed and accuracy in image classification relative
to convolutional networks [32]. While VIT model relies on
large dataset to perform better. Touvron et al. [33] presents
multiple training techniques that enable the ViT model to
perform effectively even when using the smaller ImageNet-
1K dataset.

In the ViT model, each image is first divided into a
sequence of non-overlapping patches, and each patch is
then embedded into a vector representation. These vector
representations are then processed through the Transformer
encoder, which computes self-attention scores between the
patches to capture the relationships between them. This
self-attention mechanism allows the ViT model to learn a
global representation of the image, regardless of its size or
aspectratio. The ViT model’s architecture consists of a stack
of multiple Transformer encoder blocks, each consisting of
multi-head self-attention and position-wise feedforward lay-
ers. The final output of the model is then passed through a
classifier layer to make a prediction for the image classifica-
tion task.

2.3 Introducing Convolutions to Transformers

In Natural Language Processing (NLP), the Transformer
block has been modified using convolutions. and speech
recognition, either by substituting convolution layers for
multi-head attentions [34] or by adding more convolution
layers concurrently [35] or sequentially [36]. As well, some
earlier research suggests propagating attention mappings to
following layers using a residual link that is first convolution-
ally processed [37]. This paper propose, in contrast to these
works, to add convolutions to two key components of the
vision Transformer: initially, to substitute our convolutional
projection for the current Position-wise linear projection.
Secondly, to use our hierarchical multi-stage structure to en-
able variable resolution of two-dimensional reshaped token
maps. Compared to earlier designs, ours offers notable per-
formance and efficiency advantages.
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Fig.1  This figure illustrates the pipeline for the proposed architecture. The overall architecture is
shown in (a), which uses a convolutional token embedding layer to provide a hierarchical multi-stage
structure. In (b), further information on the convolutional sparse transformer block.

3. Materials and Methods

This paper presents the Vision Transformer-based blood cell
recognition network framework. This method add Convolu-
tional Token Emebedding and Sparse Attention Module to
Vision Transformer architecture. Meanwhile we use a multi-
stage hierarchy design which is from CNNs [38], [39]. As
shown in Fig. 1.

First put the image into the Convonlution Token Embed-
ding layer, and it can be seen as Convolution of overlapping
blocks of reconstructed Tokens into a 2D spatial grid as in-
put. Then this paper add the another layer normalization
to these tokens. Next, add a learnable classification vector.
The token are subsequently fed into multiple stacked coding
modules for feature extraction. Before the final layer of the
coding module, a sparse attention module is used to find
the distinguishing pixel blocks in the image and use their
corresponding implicit features as input. Finally, The clas-
sification features output by the encoder are passed through
the fully connected layer to obtain the class information of
the blood cells.

3.1 Convolutional Token Embedding Layer

Traditional Vision Transformer [40] demonstrates the pos-
sibility of using pure Transformer structures in computer
vision field. Nevertheless, it This layer uses a multi-stage
hierarchical method, akin to CNNs, to represent local spa-
tial contexts, ranging from basic edges to more complex
semantic primitives. Essentially this paper assumed a two
dimensions image or a reshaped output token map from the
Earlier stages x;_; € RFi-1"Wi-i-Ci-t a5 for stage i’s input.
Which H; represents height:
H;_| + 2p )

H=—"1T207 7 4 (1)
S—0

w; represents the new token map’s width:

i1 +2p—
w = Wi k2o )

§—0

This paper set a learnable function f(-) to map into tokens
f(xi—1) where f(-) is a 2-dimensional convolution operation
with a kernel size of s; X s;, stride s — o and p padding.
Padding is necessary to address boundary conditions. The
new token map f(x;,_1) € RHi-1-Wi-t:Ciet ' Then f(x;_1) €
RHi-1 Wio1-Cim1 jg flattened into size H; W; xC; and normalized
by layer normalization [41].

By changing the convolution operation’s parameters,
this layer enables us to modify the token feature dimension
and the number of tokens at each step. So that, this method
can gradually shorten the length of the token sequence while
expanding the token dimension in each iteration. Similar to
CNNess, It enable the tokens to represent sophisticated vision
feature in the larger spatial grid [42].

3.2 Encoder

This paper has adopted a stacked encoder structure similar
to the Vision Transformer. The structure of the module is
shown in Fig. 2.

The module incorporates multi-head self-attention
(MSA) and multi-layer perception (MLP). The MSA module
consists of a single self-attention unit (SA) stitched together.
For SA units, the input / € RN+*DXP g first transformed
by the following formula Eqgs. (3), (4) and (5) to obtain the
query matrix Q, key matrix K, value matrix V. The formula
is:

0 =1,WeW2 e RP x d 3)
K = [, WKWK e RP>dx “)
V = Lw'W* € RP>dx 3)

Where dy = Nﬂ, The attentional weighting matrix A and SA
unit’s output /" are calculated as follows:

KT

A = softmax{ %d_ }, A € RIV+Dxdx 6)
k
I =A- V, V= R(N+1)><(N+1) (7)

Different SA unit learn relevant features in non-interfering
and independent feature subspace. At last, MSA concat the
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Fig.2  Our model’s encoder block architecture.

different SA units’ output. After a linear transformation the
output of the module is obtained. The output make residual
connections with I, next go through layer normalization
(LN) as the next MLP’s input.

MSA(zp,) = concat(SA(2) ) Wour + bous )

Where W € RNV+DXD jg the weight matrix, b € RV +DxD g
the bias. MLP Module is composed of two Fully Connected
Layer, the fist one used ReLu [43] as activation function and
the second layer without activation function. The calculation
formula is as follows:

MLP(X) = ReLUXW1 + by) - W, + by O]
The output of the module is shown in the Eqgs. (10) and (11):

I, = LN(MSA(L,_; +1,-1)) (10)
Ip = LN(MSA(L,_, +1,_1)) (11)

were I,_; is the input of pth coding module.
3.3 Sparse Attention Module

The capacity to precisely find the discriminative regions is
the main challenge in blood cell classification. Take the
granulocyte in Fig.3 as an example. The nucleus of lobu-
lated neutrophils is lobulated, and the cytoplasm is evenly
distributed with many light red special particles (about 80%
of the total particles) and a small amount of light purple
azurophilic particles (about 20% of the total particles) The
nucleus of eosinophils is mainly composed of two leaves of
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the discriminative
region

Fig.3  The discriminative region.

cytoplasm filled with uniformly distributed and thick orange-
red eosinophils. The nucleus of basophils is s-shaped, lob-
ulated or irregular, and the color is light; The cytoplasm
contains special basophilic particles with unequal size and
uneven distribution. The nucleus of mononuclear cells is
kidney shaped, horseshoe shaped or twisted and folded ir-
regularly, the chromatin particles are fine and loose, and the
color is light; More cytoplasm, weakly basophilic, gray-blue,
containing lavender azurophilic particles.

In the Vision Transformer model, the multi-head self-
attention mechanism can autonomously learn the weights of
different image blocks. In this research, a sparse attention
module is presented to fully utilize this weight information
for the localization of discriminative regions.

It is assumed that the Vision Transformer network has
n coding modules. The sparse attention module filters the
hidden features input I = [Ii_l; Iz_l; e Ig’_l; ] from the
last coding layer using the weight learned from the first N-1
coding layers. The weights learned by the first N — 1 coding
layers are shown in Equation Egs. (12) and (13) :

A =[A}A2 - AV ]le 1,2+ L1 (12)

A; — [alclass; all;alz; L { Rl><(N+1)

;alli €1,2--- np,a
(13)

High layer feature attention maps do not accurately
reflect the significance of the corresponding input picture
blocks. Therefore, this paper combine the attentional map
information from all previous encoding modules with the
compressed excitation module to learn the weights of each
attentional map autonomously. The sparse attention model
is shown in Fig. 4.

After the global average pooling of attention graphs,
the module uses two fully connected layers to model the
correlation between attention graphs, and obtains the weight
value a of each attention graph. Then the weight value is
normalized and weighted with the attention diagram to get
the final attention weight Ag;s,.

Auin = S A, (14)
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Agin contains all the attention weight informa-
tion of low-level features and high-level features Aj_i,
which is more suitable for screening identification regions
than single-layer attention weight A;_;. We utilize the
weights corresponding to the classification vectors ASLss =
[a}inal,a}inal e ,a}vn o) 10 Agren to fliter out the implied
features corresponding to the largest weights among the
npself-attentive heads. These hidden features are finally
combined with classification vectors as the input of the final
layer of coding module.

an

R e gl R 13)

The last coding module receives the result of the sparse
attention module, which has replaced all sequence vectors
with feature vectors corresponding to the identification re-
gion.

3.4 Loss Function

The network’s The loss function consists of a cross-entropy
loss Lcyoss and a contrast loss L,,. As shown following:

L= Lcross(y’ y/) + Lcon(z) (16)

Cross-entropy loss is used to measure the similarity of the
true labels y to the network predicted labels y'. The defini-
tion is shown following.

This paper added contrast loss L., to further increase
the intra-class similarity and inter-class variability of net-
work extracted features. Contrast loss minimizes the sim-
ilarity of classification features corresponding to different
labels and maximizes the similarity of classification features

Table 1  Position embedding ablations experiments.
Model Pos. Emb  ImageNet Top-1
Our model  Every stage 81.0
Our model First stage 80.9
Our model Last stage 80.9
Our model N/A 81.1

Table2  Contrastive model’s position embedding ablations experiments.
Model Pos. Emb  ImageNet Top-1
DeiT Applicable 78.7
DeiT N/A 77.1

with the same label. To prevent losses from being domi-
nated by different classes of features with little similarity,
this paper introduce a threshold #.,,. Only the similarity
of features of different categories of samples is greater than
tcon» it would be included in loss. N is the batch size of the
input data. The contrast loss is defined as follows:

N
1 ZiZ; ZiZ;
Lopn=— 1 - +
=3 2, Z( |zi||zj|) j.yZ_yAm“x(mnzﬂ

i=1 [jyi=y;

a7

4. Experiments
4.1 Dataset

This article uses the open source Munich AML Morphology
Dataset (TMAMD) [44] on The Cancer Imaging Archive
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Table 5  Architectures for classification. Conv. Embed.: convolutional
token embedding. Conv. Proj.: convolutional projection. H; and D; is

Table 3  Ablation study on contrastive loss.
Model Contrastive loss  Precision
Vision Transformer Applicable 91.08
Vision Transformer N/A 90.79
Our model(only sparse attention module) Applicable 91.62
Our model(only sparse attention module) N/A 91.28

Fig.5  This is a image of a single cell.

Table 4  The distribution of blood cell images which this paper have
selected.
Blood cell type  Number of images  Data Augmentation

NGS 8484 1000

NGB 109 545

LYT 3937 1000

MON 1789 1000

EOS 424 848

BAS 79 395

MYO 3268 1000

PMO 70 350

MYB 42 210

EBO 78 390

Total 18280 6738

platform. The dataset contains 18,635 expert-labelled im-
ages of 15 categories of single-cell images. Some multicel-
lular images and mature red blood cell images are present in
the original dataset. Even though mature red blood cell are
not the main concern in this paper. The above factors can
lead to degradation of network classification performance.
Therefore, this paper manually crop and screen the images.
The image had processed is shown in the Fig. 5.

Considering the practicalities of clinical diagnosis and
the small amount of data in some categories of the dataset.
This paper selected 10 classes of red blood cells for the
classification task.

4.2 Experimental Environment and Parameter Configura-
tion

This paper adjusted the single-cell image size to 224x224. In
the experiments, we adapted three stages. The convolutional
token embedding layer’s parameter is shown in Table 5. The

the number of heads and embedding feature dimension in the i, MHSA
module. R; is the feature dimension expansion ration in the i;;, MLP layer.

Output Size | Layer Name
56x56 Conv. Embed. 7x7,64,stride 4
Stage 1 Conv. Proj. 3x3,64
56x56 MHSA H=1,D=64 x1
MLP R=4
28x28 Conv. Embed. 3x3,192,stide 2
Stage 2 Conv. Proj. 3x3,192
28x28 MHSA H=2,D=192 x2
MLP R=4
14x14 Conv. Embed. | 3x3,384,stride 2
Stage 3 Conv. Proj. 3x3,384
14x14 MHSA H=6,D=384  x10
MLP R=4
Head 1x1 Linear 1000

threshold value 7., in Eq. (17) is 0.4, batch size is set to 32.
We trained the model on an NVIDIA GeForce RTX 3090
graphics card in Windows 11. The version of deep learing
frame is pytorch 1.10.1. We use ViT’s technique for fine-
tuning. The tuning is done with an SGD optimizor with a
momentum of 0.9. The weight attenuation is set to Se — 4
and the learning rate is initialized to 0.001, at the 40th, 70th,
and 90th epoch, it becomes 1/10 of the original one. The
whole training process stops at the 100th epoch.

This paper used 5-fold cross validation and evaluation
indexes such as Precision, Recall and Accuracy to quanti-
tatively estimate the performance of the classification algo-
rithm. The definitions are shown in Egs. (18), (19) and (20).

TP
Precision = ———— (18)
TP + FP
TP
Recall = ——— (19)
TP+ FN
TP+TN
Accuracy = (20)
TP+FP+TN+FN

TP is the number of positive samples correctly predicted
as positive class;

FP is the number of negative samples wrongly predicted
to be positive;

TN is the number of negative samples correctly pre-
dicted as negative class;

FN is the number of positive samples of the wrong
predicted negative class.

While our model was trained and tested using the Mu-
nich single-cell morphology dataset, the data settings used in
this study are not exclusive to this dataset. The model’s archi-
tecture and training parameters are designed to be adaptable
to various types of blood cell recognition tasks. However,
for different datasets or tasks, some adjustments may be nec-
essary to achieve optimal performance.

4.3 Ablation Study

First, to study whether position embedding is still needed
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Table 6  The performance of different methods.
Blood cell type  Precision(%) Recall rate(%) The number of testing images
NGS 94.32 94.29 200
NGB 92.71 92.98 110
LYT 95.78 96.75 200
MON 87.82 94.81 200
EOS 98.88 97.81 170
BAS 91.46 84.50 80
MYO 92.50 92.50 200
PMO 78.92 86.91 70
MYB 92.89 56.67 45
EBO 97.32 97.65 80
Total 1355
Table 7  The performance of different methods.
Method Backone network  Precision(%)
VGG VGG16 88.54
ResNet ResNet50 88.71
ResNet ResNet152 88.97
SENet SE-ResNet50 89.56
SENet SE-ResNet101 89.98
EfficientNet EfficientNet-BO 90.27
Vision Transformer(2020) vit-base-p16 91.08
Swin Transformer(2021) vit-base-p16 92.09
TVT(2022) t2t-vit-14 91.88
Our model(only Convolutional Token Embedding) vit-base-p16 91.73
Our model(only sparse attention module) vit-base-cell-p16 91.62
Our model vit-base-cell-p16 92.49

for our model. This paper performed the ablation experi-
ments on ImageNet [45] as shown in Table 1. Experimen-
tal results show that eliminating position embedding from
different stages has little effect on the model effect. It can
demonstrate that position embedding can be eliminated from
the model with the use of convolutions.

Comparatively, eliminating DeiT’s position embedding
in Table 2 would result in a 1.6% reduction in ImageNet
Top-1 accuracy. Because other than by adding the position
embedding, it does not model the spatial connections be-
tween images. This demonstrates much more the efficiency
of the convolutions we added.

Then, in order to prove the effectiveness of sparse atten-
tion module and contrast loss function, this paper conducted
ablation experiments in Table 3. Experimental results show
that by adding contrast loss, the recognition accuracy of Vi-
sion Transformer is improved by 0.29%, and the recognition
accuracy of the model in this paper is improved by 0.34%

To sum up, we believe that our model can effectively
expand the feature distance between similar subcategories
and reduce the feature distance between the same categories,
so as to improve the recognition performance of the model.

4.4 Network Performance Comparison Experiments

Different classes’s accuracy rates and recall rates in the
TMAMD data set are shown in Table 6. For the most preva-
lent types of blood cells, we found that the predicted results
of the model were in good agreement with the doctor’s an-
notation, and the accuracy rate and recall rate were both
higher than 90%. Nevertheless, other categories’ results are

not quite ideal. It can be tolerated due to the small original
sample size.

Additional, the baseline model is VGG [46],
ResNet [38], EfficientNet [47], SENet [48] and Vision Trans-
former [14]. The results could be see in Table 7.

Meanwhile, comparing with the Tokens-to-Token ViT
(TVT) [49] and Swin Transformer [32], the models’ perfor-
mance in this paper exceed 0.61% and 0.40%, respectively.
The experiments strongly prove that the performance of the
proposed model on the TMAMD dataset has been greatly
improved.

5. Conclusions

Our study introduces an innovative method for blood cell
recognition, which employs an enhanced Vision Transformer
and Sparse Attention Module. This unique combination al-
lows our model to effectively capture identifying regions in
the image and enhance the model’s fine-grained feature ex-
pression capability. Furthermore, our method utilizes a con-
trastive loss function to increase the intra-class consistency
and inter-class difference of classification features, thereby
enhancing the model’s classification performance. Specif-
ically, our model achieved an accuracy of 92.49% on the
Munich single-cell morphology dataset, an improvement of
1.41% over the baseline. This approach represents a sig-
nificant improvement over existing blood cell recognition
methods, highlighting the novelty and superiority of our
method.

Despite the promising results, our study has certain
limitations. Our model, while effective, may require larger
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datasets for further performance improvement. The model’s
ability to handle certain types of blood cells may also be
a potential area for improvement. Additionally, the com-
putational resources required by our model may limit its
applicability in resource-constrained environments. Future
work will aim to address these limitations and further refine
our model.
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