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PAPER
Constructions of Boolean Functions with Five-Valued Walsh
Spectra and Their Applications

Yingzhong ZHANG†,††,†††a), Nonmember, Xiaoni DU†,††b), Member, Wengang JIN††††,
and Xingbin QIAO†,††, Nonmembers

SUMMARY Boolean functions with a few Walsh spectral values have
important applications in sequence ciphers and coding theory. In this pa-
per, we first construct a class of Boolean functions with at most five-valued
Walsh spectra by using the secondary construction of Boolean functions,
in particular, plateaued functions are included. Then, we construct three
classes of Boolean functions with five-valued Walsh spectra using Kasami
functions and investigate the Walsh spectrum distributions of the new func-
tions. Finally, three classes of minimal linear codes with five-weights are
obtained, which can be used to design secret sharing scheme with good
access structures.
key words: Boolean function, bent function, plateaued function, Walsh
transform, minimal linear codes

1. Introduction

Cryptographic functions are important components of cryp-
tographic algorithms, and their cryptographic properties
such as balance, nonlinearity, and differential uniformity are
related to the security of cryptographic algorithms [1]–[3].
As the most important cryptographic functions, Boolean
functions can be used in the design and analysis of symmet-
ric cryptosystems. Some of these criteria can be character-
ized by the Walsh transform of Boolean functions, which is
also a useful tool for studying Boolean functions. Bent func-
tions introduced in [4] by Rothaus, are the maximally non-
linear Boolean functions. Plateaued functions [5] are gener-
alization of bent functions. After that, in 2011 Tu et al. [6]
characterized all Boolean functions with exactly two distinct
Walsh transform values in terms of their spectrum. Recently,
Jin et al. [7] presented three classes of Boolean functions
with six-valued Walsh spectra and determined their Walsh
spectrum distributions.
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Linear codes have wide applications in consumer elec-
tronics, communication and data storage system. Besides,
linear codes with a few weights have been used in secret
sharing scheme [8], [9], authentication codes [10], associa-
tion schemes [11], and strongly regular graphs [11]. A suffi-
cient condition for judging whether a linear code is minimal
was first presented by Ashikhmin and Barg [12], which is
called the AB condition. In 2018, Ding et al. [13], [14] de-
rived a necessary and sufficient condition for a linear code to
be minimal. Meanwhile they presented some infinite fam-
ilies of minimal linear codes violating the AB condition.
Very recently, Bartoli and Bonini [15] provided infinite fam-
ilies of minimal linear codes violating the AB condition for
any odd prime p.

The aim of this paper is to construct several classes of
Boolean functions with at most five-valued Walsh spectra.
More precisely, three classes of new Boolean functions with
five-valued Walsh spectra are obtained, and we also investi-
gate their Walsh spectrum distribution. As application, we
construct three classes of minimal linear codes with five-
weights, and the length, dimension and weight distribution
of the codes are determined.

The rest of this paper is organized as follows. Sec-
tion 2 introduces some notations and preliminary results
on Boolean functions. Section 3 constructs a new class
of Boolean functions with a few Walsh spectra including
plateaued functions. Section 4 proposes three classes of
Boolean functions with five-valued Walsh spectra by using
Kasami functions and determines their Walsh spectrum dis-
tributions. Meanwhile, three classes of minimal codes are
derived from the new functions. Section 5 concludes the
paper.

2. Preliminaries

In this section, we present some basic notations and facts
on Boolean functions, Walsh transform, and minimal linear
codes.

Let n be a positive integer. Let F2n be the finite field
with 2n elements and F∗2n = F2n \ {0}. An n-variable Boolean
function is a mapping from finite field F2n into F2. Denote
by Bn the set of Boolean functions from F2n to F2.

Let r be a positive integer with r | n. The trace function
Trn

r (·) from F2n to F2r is defined by

Trn
r (x) = x + x2r

+ . . . + x2(n/r−1)r
, where x ∈ F2n .
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Let Fn
2 be the n-dimensional vector space over the finite

field F2. There is a one-to-one correspondence between F2n

and Fn
2, since every a ∈ F2n can be represented uniquely by

a = a1α1 + a2α2 + . . . + anαn, where ai ∈ F2, α1, α2, . . . , αn
is a basis of Fn

2 over F2.
The Walsh transform of f ∈ Bn calculates the correla-

tions between this function and the linear functions, which
is defined by

f̂ (a) =
∑
x∈F2n

(−1) f (x)+Trn
1(ax), a ∈ F2n . (1)

If f̂ has only t different values, then we say f has t-valued
Walsh spectrum. Let

Ni = |{α ∈ F2n : f̂ (α) = vi}|, 1 ≤ i ≤ t,

where |S | denotes the cardinality of a set S . Then we have
the following system of equations

t∑
i=1

Ni = 2n,

t∑
i=1

Nivi = 2n(−1) f (0),

t∑
i=1

Niv
2
i = 22n.

(2)

The bivariate representation of a Boolean function f (x)
over F2n is based on the identification F2n ≈ F2m ×F2k for n =

m + k. For the bivariate trace representation over F2m × F2k ,
the Walsh transform of f (y, z) at any (a1, a2) ∈ F2m × F2k is

f̂ (a1, a2) =
∑

y∈F2m ,z∈F2k

(−1) f (y,z)+Trm
1 (a1y)+Trk

1(a2z).

Definition 1: [16] Let f ∈ Bn with n = 2m and m be a
positive integer. If for any α ∈ F2n , f̂ (α) = ±2m, then f (x) is
called bent function.

If f (x) is bent, then its dual function f̃ is also bent and
the relation between them is as follows:

f̂ (α) = 2m(−1) f̃ (α).

For even n, a function f ∈ Bn is said to be semi-bent
if f̂ (ω) ∈ {0,±2

n+2
2 } for all ω ∈ F2n . For odd n, a function

f ∈ Bn is said to be semi-bent if f̂ (ω) ∈ {0,±2
n+1

2 } for all
ω ∈ F2n . A function f ∈ Bn is said to be rth-plateaued if
f̂ 2(ω) ∈ {0, 22n−r}. Obviously, bent function is nth-plateaued
and semi-bent is (n − 2)th-plateaued when n is even.

Lemma 1: [17] Let n = 2m and λ ∈ F∗2m . Then f (x) =

Trm
1 (λx2m+1) is a bent function, and satisfys

f̂ (a) = 2m(−1)Trm
1 (λ−1a2m+1)+1, a ∈ F2n .

Lemma 2: [17] Let n = 2m and λ ∈ F∗2m . Let (a, b) ∈ F∗2n ×

F∗2n such that a , b and Trn
1(λ−1b2m

a) = 0. Then h(x) =

Trm
1 (λx2m+1) + Trn

1(ax)Trn
1(bx) is bent and its dual h∗ is given

by

h∗(x) =
∏

t∈{a,b}
(Trm

1 (λ−1t2m+1) + Trn
1(λ−1t2m

u))

+Trm
1 (λ−1x2m+1) + 1. (3)

3. The Construction of New Boolean Functions with a
Few Walsh Spectral Values

In this section, we will construct a new class of Boolean
functions with a few Walsh spectral values.

Let h(x) = g(x) + g(x), g(x), g(x) ∈ Bn. For any integer
n, k ≥ 2, we define

f(x, y) = g(x) + Trk
1(c1y)Trk

1(c2y)g(x), (4)

where c1, c2 ∈ F
∗

2k and c1 , c2.
Now we present the main results of the paper.

Theorem 1: For any (u, v) ∈ F2n ×F2k , the Walsh transform
of f (x, y) in Eq. (4) satisfies

f̂(u, v) =


2k−2(3̂g(u) + ĥ(u)), v = 0,
2k−2 (̂g(u) − ĥ(u)), v ∈ {c1, c2},

−2k−2 (̂g(u) − ĥ(u)), v = c1 + c2,
0, otherwise.

(5)

Proof: For any (ε1, ε2) ∈ F2
2, we define the sets

T (ε1, ε2) = {y ∈ F2k : Trk
1(c1y) = ε1,Trk

1(c2y) = ε2}.

It is easy to see that H = T (0, 0) is a subspace of F2k with
dim(H) = k−2, and H⊥ = {y ∈ F2k : ∀x ∈ H,Trk

1(yx) = 0} =

{0, c1, c2, c1 + c1}. There exists α(ε1,ε2) ∈ T (ε1, ε2) such that
F2k =

⋃
(ε1,ε2)∈F2

2
(α(ε1,ε2) + H) for any (ε1, ε2) ∈ F2

2. Then for
any (u, v) ∈ F2n × F2k , we have

f̂(u, v) =
∑

x∈F2n ,y∈F2k

(−1)f(x,y)+Trn
1(ux)+Trk

1(vy)

=
∑

x∈F2n ,y∈F2k

(−1)g(x)+Trk
1(c1y)Trk

1(c2y)g(x)

·(−1)Trn
1(ux)+Trk

1(vy)

=
∑
x∈F2n

∑
(ε1,ε2)∈F2

2

∑
y∈α(ε1 ,ε2)+H

(−1)g(x)

·(−1)ε1ε2g(x)+Trn
1(ux)+Trk

1(vy)

= ĥ(u)
∑

y∈α(1,1)+H

(−1)Trk
1(vy)

+ĝ(u)
∑

(ε1,ε2)∈F2
2\(1,1)

∑
y∈α(ε1 ,ε2)+H

(−1)Trk
1(vy)

=


2k−2(3̂g(u) + ĥ(u)), v = 0,
2k−2 (̂g(u) − ĥ(u)), v ∈ {c1, c2},

2k−2 (̂h(u) − ĝ(u)), v = c1 + c2,
0, otherwise.

(6)

Thus, we complete the proof. �

Corollary 1: Let g(x) be bent, and g(x) = 1. Then f(x, y)
in Eq. (4) is (k−2)th-plateaued, and f̂(u, v) ∈ {0,±2

n+2k−2
2 }. In

particular, if k = 2, then f(x, y) is bent, and if k = 3 or 4,
then f(x, y) is semi-bent.
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4. Construction of the Five-Valued Walsh Spectra
Boolean Function and Its Application

In this section, based on the functions in Sect. 3, we will con-
struct three classes five-valued Walsh spectra Boolean func-
tions by using Kasami function and determine the Walsh
spectrum distributions, then investigate the applications in
linear codes.

Below, we always put n = 2m > 4, g(x) = Trm
1 (λx2m+1),

where λ ∈ F∗2m . We introduce the following notations for
clarity.

A = Trm
1 (λ−1u2m+1), for any u ∈ F2n ,

N1 = |{(u, v) ∈ F2n × F2k : f̂(u, v) = 0}|,

N2+i = |{(u, v) ∈ F2n × F2k : f̂(u, v) = (−1)i2
n
2 +k−1}|,

N4+i = |{(u, v) ∈ F2n × F2k : f̂(u, v) = (−1)i+12
n
2 +k}|,

where i ∈ {0, 1}.
According to Lemma 1, it is easy to get∑
u∈F2n

(−1)A = 2
n
2 (−1)Trm

1 (λ02m+1)+1 = −2
n
2 . (7)

4.1 The Spectrum Distributions for g(x) = Trm
1 (rx2m+1)

In this subsection, let g(x) = Trm
1 (rx2m+1), r ∈ F∗2m in Eq. (4).

Then

f(x, y) = Trk
1(c1y)Trk

1(c2y)Trm
1 (rx2m+1)

+Trm
1 (λx2m+1), (8)

where λ , r, c1, c2 ∈ F
∗

2k and c1 , c2.
For this function we have the following lemma which

will be used in the sequel.

Lemma 3: For any (u, v) ∈ F2n × F2k , the Walsh transform
of f(x, y) in Eq. (8) is as following
f̂(u, v) =
−2

n
2 +k−2(3(−1)A + (−1)B), v = 0,

−2
n
2 +k−2((−1)A − (−1)B), v ∈ {c1, c2},

2
n
2 +k−2((−1)A − (−1)B), v = c1 + c2,

0, otherwise.

(9)

where B = Trm
1 ((r + λ)−1u2m+1).

Theorem 2: With the notations above. The Walsh spec-
trum distribution of f(x, y) in Eq. (8) satisfies
f̂(u, v) =

0, 2n+k − 5 · 2n−1 − 3 · 2
n
2−1times,

−2
n
2 +k, 2n−2 − 3 · 2

n
2−2 times,

2
n
2 +k, 2n−2 + 2

n
2−2 times,

±2
n
2 +k−1, 2n + 2

n
2 times.

(10)

Proof: By Lemma 3, we discuss the Walsh transform of
function f(x, y) in two cases:

(1) If A = B, then

f̂(u, v) =

{
(−1)A+12

n
2 +k, v = 0,

0, otherwise.

(2) If A , B, then

f̂(u, v) =


(−1)A+12

n
2 +k−1, v ∈ {0, c1, c2},

(−1)A2
n
2 +k−1, v = c1 + c2,

0, otherwise.

Now we discuss the Walsh spectrum distribution of
f(x, y). We first consider N4, the number of (u, v) ∈ F2n × F2k

such that f̂(u, v) = −2
n
2 +k, and this will happen if v = 0 and

A = B = 0. So we have

N4 =
1
22

∑
u∈F2n

(1 + (−1)A)(1 + (−1)B).

Since it follows from Lemma 1 and Eq. (7) that
∑

u∈F2n

(−1)B =∑
u∈F2n

(−1)A+B = −2
n
2 , we can get

N4 =
1
22 (2n − 2

n
2 − 2

n
2 − 2

n
2 ) = 2n−2 − 3 · 2

n
2−2.

Next, we will calculate N5, which corresponding to v = 0
and A = B = 1. Then

N5 =
1
22

∑
u∈F2n

(1 − (−1)A)(1 − (−1)B)

= 2n−2 + 2
n
2−2.

Since f(0, 0) = 0, then by applying the value of N4
and N5 to Eq. (2), and solving the system of linear equations
yields that{

N1 = 2n+k − 5 · 2n−1 − 3 · 2
n
2 ,

N2 = N3 = 2
n
2 + 2n.

Therefore, we have completed the proof. �

Example 1: Let n = 8, k = 2, and ζ be a primitive element
in F28 such that ζ8 + ζ6 + ζ5 + ζ + 1 = 0. Let c1 = 1, c2 = ζ85,
λ = ζ17, r = ζ34. It was verified by a Magma program that

f(x, y) = Tr4
1(λx17) + Tr2

1(c1y)Tr2
1(c2y)Tr4

1(rx17)

has the Walsh spectrum distribution as following

f̂(u, v) =


0, 210 − 83 · 23 times,
−26, 26 − 3 · 22 times,
26, 26 + 22 times,
±25, 28 + 24 times,

which is consistent with Theorem 2.

4.2 The Spectrum Distributions for g(x) = Trn
1(ax)

In this subsection, let g(x) = Trn
1(ax) in Eq. (4). Then

f(x, y) = Trk
1(c1y)Trk

1(c2y)Trn
1(ax)

+Trm
1 (λx2m+1), (11)
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where a ∈ F∗2n , c1, c2 ∈ F
∗

2k and c1 , c2.
By Theorem 1, the following lemma is obtained.

Lemma 4: For any (u, v) ∈ F2n × F2k , the Walsh transform
of f(x, y) in Eq. (11) is as following
f̂(u, v) =
−2

n
2 +k−2(3(−1)A + (−1)B), v = 0,

−2
n
2 +k−2((−1)A − (−1)B), v ∈ {c1, c2},

2
n
2 +k−2((−1)A − (−1)B), v = c1 + c2,

0, otherwise.

where B = Trm
1 (λ−1(u + a)2m+1).

Theorem 3: The Walsh spectrum distribution of f(x, y) in
Eq. (11) is as following

f̂(u, v) =


0, 2n+k − 5 · 2n−1 times,
±2

n
2 +k, 2n−2 ± 2

n
2−1 times,

±2
n
2 +k−1, 2n times.

(12)

Proof: The proof is similar to that of Theorem 2, so we only
give a sketch. By Lemma 4, for any (u, v) ∈ F2n × F2k , we
have

f̂(u, v) =


(−1)A+12

n
2 +k, A = B, v = 0,

(−1)A+12
n
2 +k−1, A , B, v ∈ {0, c1, c2},

(−1)A2
n
2 +k−1, A , B, v = c1 + c2,

0, otherwise.

Now we discuss the Walsh spectrum distribution of f(x, y).
We first consider N4, the number of (u, v) ∈ F2n × F2k such
that f̂(u, v) = −2

n
2 +k. It follows from the equation above and

Lemma 1 that

N4 =
1
22

∑
u∈F2n

(1 + (−1)A)(1 + (−1)B)

=
1
22

∑
u∈F2n

(1 + (−1)A + (−1)B + (−1)A+B)

=
1
22 (2n − 2

n
2 − 2

n
2 − 0)

= 2n−2 − 2
n
2−1.

Next, we examine N5, which correspond to the case of
v = 0 and A = B = 1. Then with the similar calculation of
N4, we get

N5 = 2n−2 + 2
n
2−1.

Using the same argument as in the proof of Theorem 2, we
obtain{

N1 = 2n+k − 5 · 2n−1,
N2 = N3 = 2n.

Therefore, the spectrum distribution of f(x, y) is

f̂(u, v) =


0, 2n+k − 5 · 2n−1 times,
±2

n
2 +k, 2n−2 ± 2

n
2−1 times,

±2
n
2 +k−1, 2n times.

This completes the proof. �

Example 2: Let n = 8, k = 2, and ζ be a primitive element
in F28 such that ζ8 + ζ6 + ζ5 + ζ + 1 = 0. Let c1 = 1, c2 = ζ85,
λ = ζ17, a = ζ2. It was verified by a Magma program that

f(x, y) = Tr4
1(λx17) + Tr2

1(c1y)Tr2
1(c2y)Tr8

1(ax)

has the Walsh spectrum distribution as follows

f̂(u, v) =


0, 210 − 5 · 27 times,
±26, 26 ± 23 times,
±25, 28 times.

This is consistent with Theorem 3.

4.3 The Spectrum Distributions for g(x) = Trn
1(ax)Trn

1(bx)

In this subsection, let g(x) = Trn
1(ax)Trn

1(bx), (a, b) ∈ F∗2n ×

F∗2n such that a , b in Eq. (4). Then

f(x, y) = Trk
1(c1y)Trk

1(c2y)Trn
1(ax)Trn

1(bx)
+Trm

1 (λx2m+1), (13)

where r ∈ F∗2m , and Trn
1(λ−1b2m

a) = 0, c1, c2 ∈ F
∗

2k and c1 ,
c2.

By Theorem 1, we have the following result.

Lemma 5: Let f(x, y) be defined as in Eq. (13). For any
(u, v) ∈ F2n ×F2k , the Walsh transform of f(x, y) is as follow-
ing
f̂(u, v) =

2
n
2 +k−2(−1)A+1(3 + (−1)Γ), v = 0,

2
n
2 +k−2((−1)A+1 − (−1)Γ), v ∈ {c1, c2},

2
n
2 +k−2(−1)A(1 − (−1)Γ), v = c1 + c2,

0, otherwise.

where Γ =
∏

t∈{a,b}
(Trm

1 (λ−1t2m+1) + Trn
1(λ−1t2m

u)).

Theorem 4: The Walsh spectrum distribution of f(x, y) de-
fined by Eq. (13) is as following

f̂(u, v) =


0, 2n+k − 7 · 2n−2 times,
±2

n
2 +k, 3 · 2n−3 ± 2

n
2−1 times,

±2
n
2 +k−1, 2n−1 times.

Proof: The proof is similar to that of Theorem 2, so we give
a brief proof. By Lemma 5, for any (u, v) ∈ F2n × F2k , we
have

f̂(u, v) =


(−1)A+12

n
2 +k, Γ = 0, v = 0,

(−1)A+12
n
2 +k−1, Γ = 1, v ∈ {0, c1, c2},

(−1)A2
n
2 +k−1, Γ = 1, v = c1 + c2,

0, otherwise.

Now we discuss the Walsh spectrum distribution of
f(x, y). Let

Γ0 = Trm
1 (λ−1a2m+1) + Trn

1(λ−1a2m
u),

Γ1 = Trm
1 (λ−1b2m+1) + Trn

1(λ−1b2m
u).
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First, considering N4, the number of (u, v) ∈ F2n × F2k

such that f̂(u, v) = −2
n
2 +k, which correspond to v = 0 and

A = Γ = 0. It is obvious that (Γ0,Γ1) ∈ {(0, 0), (0, 1), (1, 0)}
when Γ = 0. Let N4 j be the number of (u, v) ∈ F2n × F2k

such that f̂(u, v) = −2
n
2 +k when (Γ0,Γ1) = ( j0, j1), where

0 ≤ j ≤ 2 and j = 2 j0 + j1. Then

N4 = N40 + N41 + N42.

Next, we calculate N40,N41,N42.

N40 =
1
23

∑
u∈F2n

(1 + (−1)A)(1 + (−1)Γ0 )(1 + (−1)Γ1 )

=
1
23

∑
u∈F2n

(1 + (−1)Γ0 + (−1)Γ1

+(−1)A + (−1)A+Γ0 + (−1)Γ0+Γ1

+(−1)A+Γ1 + (−1)A+Γ0+Γ1 ). (14)

Due to the definition of Γ0,Γ1 and a , b, we can get∑
u∈F2n

(−1)Γ0 =
∑

u∈F2n

(−1)Γ1 =
∑

u∈F2n

(−1)Γ0+Γ1 = 0.

By Lemma 1, we have
∑

u∈F2n

(−1)A+Γi = −2
n
2 , i = 0, 1.

Notice that Trn
1(λ−1b2m

a) = Trm
1 (λ−1(b2m

a + a2m
b)) = 0.

For convenience, let Aa = Trm
1 (λ−1a2m+1). Then∑

u∈F2n

(−1)A+Γ0+Γ1

=
∑

u∈F2n

(−1)Trm
1 (λ−1u2m+1)

·(−1)Trn
1(λ−1(a+b)2m

u)+Aa+Ab

= (−1)Aa+Ab 2
n
2 (−1)Trm

1 (λ(λ−1(a+b)2m
)2m+1)+1

= 2
n
2 (−1)2(Aa+Ab)+1

= −2
n
2 .

Taking the above results into Eq. (14) yields

N40 = 2n−3 − 2
n
2−1.

Similarly, N41 = N42 = 2n−3. In summary, it can be seen that

N4 = 3 · 2n−3 − 2
n
2−1.

Secondly, considering N5, the number of (u, v) ∈ F2n × F2k

such that f̂(u, v) = 2
n
2 +k where v = 0 and (A,Γ) = (1, 0).

With the same discussion as that for N4, we have

N5 = 3 · 2n−3 + 2
n
2−1.

Using the same argument as in the proof of Theorem 2, we
obtain{

N1 = 2n+k − 7 · 2n−2,
N2 = N3 = 2n−1.

This completes the proof. �

Example 3: Let n = 6, k = 2, and ζ be a primitive element
in F26 such that ζ6 + ζ4 + ζ3 + ζ + 1 = 0. Let c1 = 1, c2 = ζ9,
λ = ζ54, a = ζ3, b = ζ2. Then Tr6

1(λ−1b8a) = 0. It was
verified by a Magma program that

f(x, y) = Tr3
1(λx9) + Tr2

1(c1y)Tr2
1(c2y)Tr6

1(ax)Tr6
1(bx)

has the Walsh spectrum distribution as following

f̂(u, v) =


0, 24 · 9 times,
−25, 22 · 5 times,
25, 22 · 7 times,
±24, 25 times,

which is consistent with Theorem 4.

Remark 1: It is easy to see that the Walsh spectrum dis-
tribution of the functions constructed in Eqs. (8), (11) and
(13) are different from known functions etc., see for example
[18], [19]. Therefore the Boolean functions with five-valued
Walsh spectra in this paper are new.

4.4 Application of the New Functions in Linear Codes

The main object of this subsection is to design three classes
of minimal linear codes from the constructed functions.

Let f (x) ∈ Bn with f (0) = 0. For all v ∈ F2n , f (x) , v·x,
then the linear code C f ∈ F2 is defined by

C f = {(u f (x) + Tr(v · x))x∈F∗2n : u ∈ F2, v ∈ F2n }. (15)

The lemma below called AB condition is use to deter-
mine a linear code being minimal.

Lemma 6: [12] Let C be a linear code over Fq, and wmin
and wmax denote the minimum and maximum nonzero Ham-
ming weights in C, respectively. If

wmin/wmax > q − 1/q, (16)

then C is minimal.

We will say that a binary linear code is narrow if it satis-
fies the condition of Lemma 6, namely, wmin/wmax > 1/2.
Otherwise, a binary linear code is called wide.

Lemma 7: [13] The binary code C f in Eq. (15) has length
2n − 1 and dimension n + 1. In addition, the weight distribu-
tion of C f is given by the following multiset:

{{
2n − f̂ (ω)

2
: ω ∈ F2n } ∪ {2n−1 : ω ∈ F∗2n } ∪ {0}}.

Theorem 5: With the notations above. The binary codes
C f from f(x, y) in Eqs. (8), (11) and (13) have length 2n+k−1,
dimension n + k + 1, and minimum weight 2n+k−1 − 2m+k−1.
Furthermore, C f are minimal and the weight distributions of
C f are given by Table 1,

(1) where A1 = −5 · 2n−1 − 3 · 2m−1 + 2n+k+1 − 1, A2 =

2n−2 −3 ·2m−2, A3 = 2n−2 + 2m−2, A4 = 2n + 2m, if f(x, y)
is defined by Eq. (8).
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Table 1 The weight distribution of C f .

(2) where A1 = −5·2n−1+2n+k+1−1, A2 = 2n−2−2m−1, A3 =

2n−2 + 2m−1, A4 = 2n, if f(x, y) is defined by Eq. (11).
(3) where A1 = −7 · 2n−2 + 2n+k+1 − 1, A2 = 3 · 2n−3 −

2m−1, A3 = 3 ·2n−3 +2m−1, A4 = 2n−1, if f(x, y) is defined
by Eq. (13).

Proof: According to Theorems 2–4 and Lemma 7, we have
the weight distribution of C f is in Table 1. Obviously,
wmin/wmax > 1/2. Thus, C f satisfies AB condition according
to Lemma 6, that is, C f is narrow minimal. �

5. Conclusion

In this paper, a family of Boolean functions with a few
Walsh spectrum was promoted. Moreover, we constructed
three classes of Boolean functions with five-valued Walsh
spectra and investigated the distributions of Walsh spectrum.
As application, three classes of minimal linear codes with
five-weights were obtained from the new functions, and the
length, dimension and weight distribution were determined.
The results show that the new codes are all minimal and
thus they can be used to design the secret sharing scheme
with sound access structures.
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