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PAPER
CyCSNet: Learning Cycle-Consistency of Semantics for
Weakly-Supervised Semantic Segmentation

Zhikui DUAN†a), Member, Xinmei YU†b), and Yi DING††c), Nonmembers

SUMMARY Existing weakly-supervised segmentation approaches
based on image-level annotations may focus on the most activated region
in the image and tend to identify only part of the target object. Intuitively,
high-level semantics among objects of the same category in different im-
ages could help to recognize corresponding activated regions of the query.
In this study, a scheme called Cycle-Consistency of Semantics Network
(CyCSNet) is proposed, which can enhance the activation of the potential
inactive regions of the target object by utilizing the cycle-consistent se-
mantics from images of the same category in the training set. Moreover,
a Dynamic Correlation Feature Selection (DCFS) algorithm is derived to
reduce the noise from pixel-wise samples of low relevance for better train-
ing. Experiments on the PASCAL VOC 2012 dataset show that the pro-
posed CyCSNet achieves competitive results compared with state-of-the-art
weakly-supervised segmentation approaches.
key words: weakly-supervised, cycle-consistency, segmentation

1. Introduction

Semantic segmentation is a fundamental and challenging
task in computer vision, which assigns a label from a set of
categories to each pixel of the image [1], [2]. Recently, con-
volutional neural networks (CNNs) have achieved remark-
able success in semantic segmentation [3]–[5]. However,
state-of-the-art semantic segmentation approaches based on
CNNs require dense pixel-wise annotated data, which is
prohibitively laborious. To address this issue, many weakly-
supervised approaches [6], [7] have been proposed andmade
great progress in this area. These approaches are derived by
utilizing weak annotations which can be easily obtained at
low annotation costs, compared with pixel-level labels.

Due to the lack of location information in target objects,
most weakly-supervised semantic segmentation approaches
based on image-level supervision [6], [8] estimate the target
location by generating the Class ActivationMap (CAM) [9]–
[11]. CAM gives high responses to discriminative parts of
target objects by calculating the contribution of each region
in the output according to the corresponding class. However,
using only CAM for location estimation may not be optimal,
because CAM mainly captures the high response region of
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the object, which is likely to result in incomplete boundary of
objects. In order to generate a high-quality localization map,
[6], [12] use localization map produced by CAM as seeds
and apply region growing algorithm to expand them. On the
other hand, AffinityNet [6] extracts pixel pairs relationship
of an image to refine CAM under image-level annotations
and achieves high performance gain for weakly-supervised
semantic segmentation. However, the seeds generated from
CAM are probably located outside the less discriminative
parts of the object due to the lower response of these regions
in CAM. As a result, existing region growing approaches
cannot segment the entire object without seeds on the non-
discriminative parts.

To address this problem, we propose the CyCSNet,
which aims to produce more seeds from the inactivated re-
gions of the object in CAMby learning the cycle-consistency
of semantics. Instead of generating seeds by only one acti-
vation map from a single image, CyCSNet generates more
seeds from the inactivated regions when common patterns
of the same category exist in the training data. As shown in
Fig. 1, CAM gives high responses to the main body of the
ship, while CyCSNet extends the active regions and com-
pletes more key seeds from the inactivated regions (such as
mast and sail in the figure) by integrating the information
from other instances. The quality of final localization map
can be improved after region growing due to better seeds. In
a word, AffinityNet expands seeds of CAM by using the re-
lationship between pixel pairs in the image, while CyCSNet
discovers more seeds of CAM by utilizing shared seman-
tic relationships from objects of the same category among
various images.

Meanwhile, training CyCSNet collaboratively with dif-
ferent images is challenging. Aggregation of objects in the
same category with high similarity is needed in this training.
The reason is that low relevance pixel-wise samples (such as
background) may produce improper gradients, which could
degrade the performance of CyCSNet. To tackle this prob-
lem, we employ a scheme called Dynamic Correlation Fea-
ture Selection (DCFS), which flexibly rejects the high-level
semantics feature vectors with low correlation.

The main contributions of this study are summarized as
follows:

• A network called CyCSNet is proposed, which learns
the semantic consistency of different images with
image-level labels to improve segmentation perfor-
mance.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Motivation: learning cycle-consistency of semantics, which uses other instances in the same
category to highlight target objects and activate some inactive seeds (such as sail in the above figure).
Then region growing is used to modified borderline.

• A solution named DCFS is proposed, which utilizes
dynamic feature selection to reject feature vectors with
low similarity of other images.

• Experiments on PASCAL VOC 2012 dataset demon-
strate that the proposed scheme achieves competitive
performance comparedwith existingweakly supervised
approaches trained with only image-level annotations.
These results validate that CyCSNet can improve the
segmentation performance effectively by providing bet-
ter seeds and activation map for region growing.

2. Related Work

2.1 Weakly-Supervised Semantic Segmentation

Most existing image semantic segmentation approaches
based on image-level annotations employ class activation
map (CAM) [11] for getting initial seeds of target objects.
Some of them try to fix the shortcoming of CAM that only
highlights the most discriminative region of objects. [13]–
[15] force classification network to focus on larger areas by
hiding or erasing some regions of image or featuremapwhich
are discriminative enough and have a high activation value
at CAM. However, multiple computations of an image with
a classification network is an expensive cost. Meanwhile, a
fix hyper-parameter of times to repeat this operation could
not adapt to every image.

FickleNet [8] expands CAM to cover an entire ob-
ject by randomly selecting feature vectors multiple times,
and then combines multiple CAMs into one. Multi-dilated
convolution (MDC) [16] applies multi-channel dilated con-
volution blocks with various dilated rates to highlight ex-
tended regions of objects by the classifier. What’s more,
[12], [17], [18] use region-growing to extend the activated
regions from seeds obtained by CAM. In the study by LP-
CAM [19], a novel computational approach for CAM is

presented. This method not only captures the usual fea-
tures but also explicitly includes non-discriminative ones,
ensuring that CAM provides a comprehensive coverage
of entire objects. In contrast to these prior works, our
approach integrates cycle-consistency regularization into
weakly-supervised semantic segmentation, leading to im-
proved results.

2.2 Cycle-Consistency

Cycle consistency between two ormore samples is a success-
ful andwidely used technique in artificial intelligence. Cycle
consistency has achieved great success in a lot of tasks such
as image matching [20], [21], video alignment [22] and co-
segmentation [23], [24]. [20] optimizes cycle consistency
among feature representations of samples to improve the ac-
curacy of dense correspondences. [22] is a self-supervised
method for representation learning and aligns video well
without any annotation. [22] utilize cycle consistency in
videos, while our proposed scheme aims to align images,
which is much difficult due to lower similarity and more el-
ements among aligned objects. [25] employs domain adap-
tation through transferring source domain images to target
domain style images with the help of CycleGANs. Just as
[23] and [24], CyCSNet makes use of cycle consistency to
conduct co-segmentation but still has some differences be-
tween ours and their models. To improve the efficiency,
[23] and [24] over-segment each image in K (K = 200
in the original paper) super-pixels, while our method im-
proves the efficiency by selecting vectors V(x,y) (red square
in Fig. 2) to train CyCSNet if the value in the given posi-
tion (x, y) on CAM is larger than a threshold. Background
information is not only costly but also has negative effect
for CyCSNet to align semantics. These two methods use
GIST descriptors, and DNNs are adopted in this study. In
addition, they will suffer from performance degradation if
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Fig. 2 Overview of training CyCSNet: input a pair of images (image A and B), and obtain feature
maps by CyCSNet. Propagation step: selecting a feature vector that the activation value is larger than
β1 from feature map of A (red square in the figure) and find the nearest neighbor of the vector in feature
map of B (orange square). Retrieval step: just as propagation step, we find the nearest neighbor of vector
in feature maps of A (blue square). We use cycle consistency loss to make the red square closes to the
blue square, and reject some feature vectors that may affect training stability. Classification loss is used
to keep category information. More details can be obtained in Sect. 3.

there is a big difference between objects such as scale, while
we ignore those features with low similarity degree. Most
importantly, the proposed scheme is easy to combine with
other weakly-supervised semantic segmentation models and
advances those performances.

3. Proposed Method

3.1 Class Activation Map Construction

It is a common practice to compute class activation map
(CAM) with weakly-supervised semantic segmentation ap-
proaches because of its effectiveness in locating discrimi-
native regions. Highlighting local regions in their CAMs
are usually considered as brilliant seeds of objects, which
grow up to cover every object with various strategies. Here,
CyCSNet utilizes CAM to pick up the foreground, which
could avoid the disturbance caused by the background dur-
ing training. The classification score of each specific class
can be gotten through the class classification network trained
with image-level labels. Then CAM can be acquired by cal-
culating the contributions of each region based on these clas-
sification scores. It is worth mentioning that this approach
requires the architecture of the classification network with
global average pooling (GAP) layer followed by a classifica-
tion layer. CAM can be calculated by:

Mc(x, y) =
∑
n

((Wc
n )

T × f cam(x, y)) (1)

where c is the target class, and Wc denotes the weights of
classification layer which connect to class c. f cam(x, y)
represents the feature vector extracted in position (x, y), and
n is the number of channels. CAMneeds to be normalized so

that the maximum activation value of each class is adjusted
to 1.

Mc(x, y) ←
Mc(x, y)

max
i, j

Mc(i, j)
(2)

More details can be obtained in the original paper of CAM
[11].

3.2 Training CyCSNet

The motivation of designing CyCSNet is to utilize multiple
objects of the same class from different pictures to provide
some key seeds which are not active in CAM. The informa-
tion of cycle-consistency in semantics can be acquired by a
pair of pictures every time. As shown in Fig. 2, the input
image A and B contain at least one of the same category of
their image-level labels, and then featuremaps FA ∈ R

n×h×w ,
FB ∈ R

n×h×w can be gotten respectively from CyCSNet.
Class activation map CAMA and CAMB also can be gotten
respectively from classification network. The training period
of the proposed CyCSNet can be roughly divided into three
parts: the propagation step, the retrieval step, and selection
for cycle consistency.

3.2.1 Propagation Step

Motivation: As we focus on weakly-supervised setting,
where we do not have traditional labeled data. Instead, we
aim to use some intrinsic property of the segmentation data
to design a task and create supervision. To this end, we pro-
pose a cycle-consistent based self-supervised supervision
and introduce next.
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Implementation: Selecting a feature vector V(x,y)
∈ R1×n in FA (There are n channels in feature maps FA

and FB). The neighbors are defined as the similarity vec-
tors in adjacent feature maps (FB in this section). Then we
find neighbors of V(x,y) from FB and calculate the neigh-
bor vector Vi through the neighbor feature vectors of FB.
Furthermore, we use a soft distribution instead of one-hot
vectors in the propagation step because the one-hot vectors
are non-differentiable. Thus, the propagation step can be
described as:

W f

(x,y)
= V(x,y) × FB (3)

where W f

(x,y)
∈ Rh×w can be regarded as the similarity map

of V(x,y) and FB. The values of W f

(x,y)
are usually very large

so that they may out of the range of float point number after
softmax, and W f

(x,y)
is normalized as follows:

W f

(x,y)
← so f tmax(

α ×W f

(x,y)

max
(i, j)

W f

(i, j)

) (4)

where α is a constant hyperparameter. h × w approximately
equals to 3,000, and we set α as 20. Then we calculate Vi as
follows:

Vi = FB ×W f

(x,y)
(5)

whereVi ∈ R
1×n denotes the nearest neighbor ofV(x,y). V(x,y)

is also the nearest neighbor ofVi , because they have the same
semantics.

3.2.2 Retrieval Step

Motivation: There exist two reasons for introducing the
Retrieval Step: i. In order to incorporate a reconstruction
loss. When we translate from FA to FB and then back to
domain FA, we can compute a loss based on how close
the cycled-back version is to the original. This reconstruc-
tion loss acts as a regularizer and helps to ensure that the
learned translation preserves the content of the input. ii. We
want to prevent from mode collapse, where the model ends
up generating similar outputs for varied inputs. The cycle-
consistency constraint can help in reducing the chances of
mode collapse by ensuring that the distinct inputs in FA lead
to distinct translated outputs in FB and can be cycled back
correctly. By enforcing cycle-consistency, we are making
sure that the model understands the inherent visual represen-
tation of paired images.

Implementation. Similar to the propagation step, dur-
ing the retrieval step, we search for neighbors ofVi , which are
obtained from the propagation step, from FA. The retrieval
step can be described as:

Wb
(x,y) = Vi × FA (6)

where Wb
(x,y)
∈ Rh×w is the similarity map between Vi and

FA. Then we normalize it as follow:

Wb
(x,y) ← so f tmax(

α ×Wb
(x,y)

max
i, j

Wb
(i, j)

) (7)

3.2.3 Cycle Consistency and Dynamic Correlation Feature
Selection

In this study, cycle consistency loss is utilized to train CyC-
SNet. In other words, the larger the value Wb

(x,y)
(x, y) is,

the better semantic consistency it holds. However, some
regions are not suitable to calculate cycle consistency loss,
such as background. In that case, we use V(x,y) and Wb

(x,y)

to train CyCSNet, only if CAMA(x,y) is larger than a thresh-
old β1. The reason is that the smaller CAMA(x,y) is, the
higher possibility that the region is to be the background.
Another important approach to avoid negative effect caused
by unsuitable samples is that rejecting V(x,y) if Wb

(x,y)
(x, y)

is less than a threshold β2, which means that V(x,y) and Vi

are not sufficiently correlative. Therefore, cycle consistency
loss can be written as:

Lcyc =
−1
N
×

∑
(x,y)∈V sel

(ymask
(x,y) · log Wb

(x,y)) (8)

where V sel stands for the set of co-ordinates (x, y) that
CAMA(x,y) is larger than β1 and Wb

(x,y)
(x, y) is larger than

β2. N denotes the number of elements which contains in the
V sel . We can notice that Lcyc is the cross entropy loss and
ymask
(x,y)

is the label map. Setting β2 manually is inefficient and
it is not adaptive in the training period. Thus, we propose
Dynamic Correlation Feature Selection (DCFS) module that
makes β2 change with the training process to address this
problem. β2 is updated with momentum method, and β2 is
initialized to 0 at the beginning, and updated by:

β2 ← κ × β2 +
(1 − κ)

N

∑
(x,y)∈V sel

Wb
(x,y)(x, y) (9)

As for ymask
(x,y)

, it is optimal that the weight of the loss in
the region closer to (x, y) is larger. Therefore, the expression
of ymask

(x,y)
can be described as follow:

D(x,y)(i, j) = (x − i)2 + (y − j)2 (10)

ymask
(x,y) (i, j) =

{
r − D(x,y)(i, j) D(x,y)(i, j) < r
0 D(x,y)(i, j) > r

(11)

where r is a hyper parameter. Meanwhile, we expect CyC-
SNet to maintain classification performance, and multilabel
soft margin loss is adopted to achieve it.

Lcls = −
∑
c

(yc log(
1

1 + exp(−xc)
)+

(1 − yc) log(
exp(−xc)

1 + exp(−xc)
)

(12)
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where c represents the prediction of each category.
Overall, the final objective of the proposed CyCSNet is

delivering the optimal θ̂ f by:

θ̂ f = arg min
θ f

Lcyc + λLcls (13)

where θ f denotes the parameters of CyCSNet. λ is super
parameters to balance the above two losses. The process of
learning CyCSNet can be seen in Algorithm 1.

3.3 Class Activation Map Refinement by CyCSNet

Details of the proposed CyCSNet has already been intro-
duced in the above sections. Next, approach on how to use
CyCSNet to obtain better seeds in CAMs is presented. For
an input data t, where t is an image, we can get CAM Ct by
Eq. (1) and pseudo image-level label y by the classifier, and
obtain a feature map with CyCSNet. Then N images are
sampled from the training set. For each image xs , we cal-
culate its CAM Cs . And then select V(x,y) from feature map
of xs (i.e. Fs), where Cs

(x,y)
is larger than β1. The similarity

map W f

(x,y)
can be gotten by Eq. (3) and Eq. (4). Then CAM

Cx can be revised with W f

(x,y)
by:

Ct
c(i, j) ←


max( Ct

c(i, j),
εW f

(x,y)
(i, j))

if W f

(x,y)
(i, j) > Bg

ε

Ct
c(i, j) otherwise

(14)

where Bg denotes the preset background score, and c is the
class of W f

(x,y)
and image t must contain objects of c (i.e.

yc = 1).
With CyCSNet, we can obtain better seeds than CAM.

However, analogous toCAM,CyCSNet can not find the com-
plete boundary of objects. Therefore, we follow AffinityNet
[6] that uses random walk step (RW) to expand seeds for
better performance. In short, RW revises prediction mask
with AffinityNet, which can measure the high-level seman-
tics similarity between pixel pairs of an image and train with
pseudo label CAM.More details can be found in the original
paper [6].

The algorithm of the proposed CyCSNet is shown in
Algorithm 2.

4. Experiments

4.1 Experimental Setup

(1) Dataset:

Like most weakly-supervised semantic segmentation pa-
pers, all experiments shown in this study are conducted on
PASCAL VOC 2012 image segmentation benchmark [27],
which contains 20 foreground object classes and one back-
ground class. Following the common practice, we train our
model with the augmented training set, which totally con-
tains 10,582 images with image-level annotations. We report
the mean Intersection-over-Union (mIoU) between ground
truth mask and predicted mask as the performance metric.

(2) Implementation Details:

Unless otherwise specified, we set resnet38, which strictly
follows [28] as a classification network in our experiments.
CyCSNet has the same structure as the classifier network
and removes the last block. For faster convergence, we use
the classification network as pretrain model of CyCSNet.
Parameters of the entire network are optimized by stochas-
tic gradient descent (SGD) method with the learning rate
initially being set to 0.01 and halved every epoch. For all
experiments, the background score is set to 0.2, and the ε in
Eq. (14) is set to 2.0.

The scale parameter α in Eq. (4) and Eq. (7) is set to 20,
and activation threshold β1 (see in Sect. 3.2.3) is 0.3. Mo-
mentum weight κ in Eq. (9) is 0.95 by default. Meanwhile,
we set the super parameter λ in Eq. (13) to 0.1 and r in
Eq. (11) to 5 in all the following experiments. Furthermore,
unless otherwise stated, the backbone of our method is as
same as the baseline.

4.2 Comparison with the State of the Art

(1) Results on PASCAL VOC 2012 Training Set:

Self-supervised scale equivariant network (SEENet) [26] is a
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Table 1 Quantitative results of the proposed approach and baselines on
the on the PASCALVOC 2012 training set. Cyc can be viewed as CyCSNet.

Table 2 Quantitative results of the proposed approach and baselines on
the on the PASCAL VOC 2012 validation set. RW is random walk with
AffinityNet. Cyc means CyCSNet. * indicates that additional data is being
used.

method that utilizes scale equivariance as supervision infor-
mation to improve the performance of weakly-supervised se-
mantic segmentation. Backbone networks of all methods are
resnet38, and the number of imagesN mentioned in Sect. 3.3
is set to 64 if the methods use random walk step (RW). And
N equals to 16 if methods perform without RW. For fair
comparison, experiments are conducted in training set as in
[26]. The quantitative results are shown in Table 1. For all
scenarios, the integration of basic model and CyCSNet has
better performance than basic model. Without using region
growing (RW in this experiment), the proposed approach
only slightly outperforms baselines on mIoU. The reason is
that CyCSNet activates more seeds (as shown in Fig. 1) but
they can not cover the entire regions of objects. Combin-
ing with RW, CyCSNet can bring 1.6mIoU improvement for
CAMs+RW, and 1.0mIoU improvement for SSENet+RW.
And our method achieves state-of-the-art performance un-
der the same setting of image-level weak supervision.

Table 3 Quantitative results of the proposed approach and baselines on
the PASCAL VOC 2012 validation set and the backbone is set to VGG16.

Table 4 Quantitative results of the proposed approach on the PASCAL
VOC 2012 validation set when N takes different values.

(2) Results on PASCAL VOC 2012 Validation Set:

The number of images N is set to 128. The backbone of
classification network is resnet38 in this experiment. The
quantitative results on validation set images are shown in
Table 2. AffinityNet [6] achieves a very successful result
with only image-level supervision, and the source code is
available on GitHub platform. Thus, we choose AffinityNet
as baseline. As a result, with the help of CyCSNet, we can
improve the AfinityNet with 1.0% mIoU performance on
the very high baseline. Specifically, the proposed approach
recovers 77.6%of its upper bound (i.e. trainedwith full pixel-
level annotations) when resnet38 is used as the backbone.

Furthermore, the proposed model can enhance State-
of-the-Art Activation Map Extraction. We augment our
CYCSNet with the state-of-the-art LPCAM method [19].
It becomes evident that the combined deployment of LP-
CAM and CYCSNet yields superior results in comparison
to using either model individually. Specifically, this com-
bined approach outperforms CYCSNet in isolation by 0.8%.
It’s worth noting that, in our experiments, we observed that
LPCAM requires a longer convergence time compared to
CYCNet alone. To maintain a fair comparison, we stream-
lined this process and conducted experiments under identi-
cal settings. These results underscore the synergistic per-
formance improvement achieved by these two models when
used together. It becomes apparent that CYCSNet represents
an effective means to enhance the performance of weakly-
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Fig. 3 Visualization of CyCSNet: Images in the first column are source images, and red points in
images are vectors to map i.e.V(x , y) in Eq. (3). Images shown from the second to fifth columns are the
similarity map (Eq. (4)) betweenV(x , y) and other images. It is worth mentioning that images in the last
column are the failure cases.

supervised semantic segmentation.

(3) Results of Another backbone:

When the backbone is set toVGG16, the experimental results
are shown in Table 3. The proposed method achieves well
performance with VGG16 as a classification network. The
result of our method does not obviously outperform MDC
[16], but the most important thing is that CyCSNet can make
the state of the art model, such as AffinityNet, to be more
powerful.

4.3 Effects of N

In the following, we will explore the impact of super pa-
rameter N (see in Sect. 3.3). In this experiment, we use
resnet38 as the backbone and report the results on the PAS-
CAL VOC 2012 validation set. Except for super parameter
N , all settings are the same as that mentioned in Sect. (2).

The results of this experiment are shown in Table 4. At
the beginning, the result of mIoU increases with the increase
of N . However, when N = 128, the result of the network

just slightly outperforms than that N = 256. The reason is
that more pictures will significantly activate more seeds of
different parts of objects. However, too much pictures may
incorrectly activate some seeds.

4.4 Analysis of Dynamic β2

In this section, we conduct a comprehensive analysis of the
influence of β2 as outlined in Eq. (9). Our initial approach
involves setting β2 to a constant value, establishing it as the
baseline for subsequent experiments. We then employ our
Dynamic Correlation Feature Selection (DCFS) model and
present the results in Table 5.

Our findings indicate that dynamic updates outperform
pre-defined values, and dynamic updates with moment val-
ues yield the best results.

To provide a more detailed understanding of the evolv-
ing behavior of β2 over time, we chart its progression across
training epochs in Fig. 4. An in-depth analysis of this chart
reveals a distinct pattern as the value gradually converges to
0.4, and the loss function stabilizes without further reduc-
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Table 5 The Dynamic β2 Ablation Study: In this study, we examine the
impact of varying coefficients, with the first row representing the baseline.

Fig. 4 The evolution of β2 over time: we present the average β2 values
and observe a smooth transition, attributed to the introduction of moment
values. These values ultimately converge to 0.4.

tion.

4.5 Visualization of CyCSNet

To better illustrate the effectiveness of CyCSNet, we conduct
a visual experiment. Some samples of the results are shown
in Fig. 3. Even if there are some differences between image
pairs, such as scale sizes, posture, object numbers, CyCSNet
can calculate a good similarity map of high-level semantics.

4.5.1 Analysis of Failure Cases

In this experimental section, we present an analysis of failure
cases encounteredwith CyCSNet. As illustrated in Fig. 3, we
display both the source images and their corresponding map
vectors in the target frame. It is apparent that on occasion,
the region of focus in the map vector may exhibit similar-
ity to another region, as seen in the second row. Moreover,
there are instances when the method erroneously directs at-
tention to irrelevant regions, such as in the last row, where
the attention is drawn to the cat’s body instead of its eye.
These issues can be attributed, in part, to the high similarity
between regions in the source and target images.

5. Conclusion

This paper has introduced a novel CyCSNet network for
weakly supervised semantic segmentation based on image-
level annotations. Experiments on PASCAL VOC 2012
demonstrate that the proposed CyCSNet outperforms state-
of-the-art approaches. Since the proposed method is trained
by utilizing other images information to generate better seeds
than CAM, it can achieve much better performance after re-
gion growing. To train CyCSNet better, we proposed DCFS
(Dynamic Correlation Feature Selection) to remove feature

vectors which may not be beneficial for learning CyCSNet.
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