# PAPER Novel Constructions of Cross Z-Complementary Pairs with New Lengths\*

## Longye WANG<sup>†a)</sup>, *Member*, Chunlin CHEN<sup>†b)</sup>, Xiaoli ZENG<sup>††c)</sup>, Houshan LIU<sup>†d)</sup>, Lingguo KONG<sup>†e)</sup>, Qingping YU<sup>†f)</sup>, and Qingsong WANG<sup>†g)</sup>, Nonmembers

SUMMARY Spatial modulation (SM) is a type of multiple-input multiple-output (MIMO) technology that provides several benefits over traditional MIMO systems. SM-MIMO is characterized by its unique transmission principle, which results in lower costs, enhanced spectrum utilization, and reduced inter-channel interference. To optimize channel estimation performance over frequency-selective channels in the spatial modulation system, cross Z-complementary pairs (CZCPs) have been proposed as training sequences. The zero correlation zone (ZCZ) properties of CZCPs for auto-correlation sums and cross-correlation sums enable them to achieve optimal channel estimation performance. In this paper, we systematically construct CZCPs based on binary Golay complementary pairs and binary Golay complementary pairs via Turyn's method. We employ a special matrix operation and concatenation method to obtain CZCPs with new lengths 2M + N and 2(M + L), where M and L are the lengths of binary GCP, and N is the length of binary GCP via Turyn's method. Further, we obtain the perfect CZCP with new length 4N and extend the lengths of CZCPs.

key words: cross Z-complementary pairs (CZCPs), Golay complementary pairs (GCPs), Turyn's method, spatial moddulation (SM)

#### 1. Introduction

Since Fan et al. proposed Z-complementary sequences in 2007 [1], the research on Z-complementary sequences has been well developed [1]–[8]. Since traditional dense training sequences for MIMO are unsuitable for SM systems. Liu et al. proposed cross Z-complementary pairs (CZCPs) as a new type of complementary pairs that can be used to design sparse training matrices with optimal channel estimation performance in spatial modulation multiple-input multiple-

- f) E-mail: yuqingping1@qq.com
- g) E-mail: 1315354879@qq.com
- DOI: 10.1587/transfun.2023EAP1075

output (SM-MIMO) frequency-selective channels [9]. They discovered three characteristics of CZCPs and proposed two constructions of optimal CZCPs. They provided a general framework for designing optimal SM training matrices using CZCPs and show that these training matrices lead to the smallest channel estimation mean square error in quasi-static frequency-selective channels.

In recent years, there have been several types of research on cross Z-complementary pairs (CZCPs) and their constructions. Adhikary et al. continued the work of Liu et al. and proposed four constructions for CZCPs in [10], including using a generalized Boolean function, inserting functions, concatenating Barker sequences of different lengths, and Turyn's method. They obtained CZCPs with lengths  $2^{m-1} + 2$  $(m \ge 4), 2^{\alpha+1}10^{\beta}26^{\gamma} + 2 \ (\alpha \ge 1), 2 \times 10^{\beta} + 2 \ (\beta \ge 1),$  $2 \times 26^{\gamma} + 2 \ (\gamma \ge 1), \ 2 \times 10^{\beta} 26^{\gamma} + 2 \ (\beta \ge 1, \ \gamma \ge 1)$  (where  $\alpha, \beta$  and  $\gamma$  are non-negative integers), M + N (where M, Nis the length of Barker sequence). Fan et al. proposed three systematic constructions of binary CZCPs based on GCP cores and Turyn's method, with new lengths of  $2^{\alpha}10^{\beta}26^{\gamma}$  $(\alpha \ge 1), 10^{\beta} \ (\beta \ge 1), 10^{\beta} 26^{\gamma} \ (\beta \ge 1, \gamma \ge 1)$  [11]. Yang et al. proposed a binary CZCP construction based on ZCP kernels and sequence concatenation [12], which can be used to construct quadriphase CZCPs with length 2M (M is the length of the ZCP).

Huang et al. constructed binary CZCPs with new length of  $2^{m-1} + 2^{v+1}$   $(m \ge 4, 0 \le v \le m-3)$  by Boolean functions [13], and then extended CZCPs to the cross Zcomplementary sets (CZCS) in 2022 [14], [15]. Zhang et al. used the Turyn's method to systematically construct binary CZCPs with a new length of MN (where M is the length of optimal CZCP, N is the length of GCP), which has a large  $CZC_{ratio}$  [16]. Zeng et al. proposed eight constructions of quadriphase CZCPs with lengths of 3N, 7N, 9N, 11N, 12N, 14N, 18N, 24N, respectively (where N is the length of GCP), based on GCPs [17]. Shibsankar Das et al. applied generalized Boolean functions to construct q-ary CZCPs systematically [18]. The constructed CZCPs have length of  $2^{n-1} + 2^{v+1}$  ( $0 \le v \le n-3$ ) and a large zero correlation zone. These researches have provided new insights into CZCPs and their constructions.

Motivated by the works of Adhikary, Yang and Wang et al. [10], [12], [19], we propose constructions of CZCPs with lengths 2M + N, 2(M + L). Further, we construct the perfect CZCP with new length 4N.

The rest of the paper is organized as follows. In Sect. 2,

Manuscript received June 30, 2023.

Manuscript revised August 31, 2023.

Manuscript publicized October 10, 2023.

<sup>&</sup>lt;sup>†</sup>The authors are with the School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu Sichuan 610500, China.

<sup>&</sup>lt;sup>††</sup>The author is with the School of Information Science and Technology, Tibet University, Lhasa 850000, China.

<sup>\*</sup>This paper was presented in part at the 15th International Conference on Wireless Communications and Signal Processing (WCSP 2023), it's currently under review. This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant No.62161047.

a) E-mail: utibetwly@qq.com

b) E-mail: 595374320@qq.com (Corresponding author)

c) E-mail: zxl\_zeng@qq.com

d) E-mail: 770054784@qq.com

e) E-mail: 1539154095@qq.com

we have given the relevant definitions, theorems and operations that need to be used in this paper. In Sect. 3, we have proposed constructions of CZCPs with new lengths. Our constructions are compared with the previous works in Sect. 4, We concluded our work in Sect. 5.

## 2. Preliminaries

Let us mention essential definitions, theorems and operations which will be used throughout this paper.

- 1, -1 and -i are denoted by +, and  $\hat{i}$ , respectively.
- For a sequence a of length L, it is always denoted as  $a = (a_0, a_1, \ldots, a_{L-1}).$
- $\overleftarrow{a}$  denotes the reverse of the sequence a.
- $\mathbf{0}_L$  denotes the all-zero vector of length L.
- *a*||*b* denotes the horizontal concatenation of sequences *a* and *b*.
- $a|_M$  denotes the first *M* elements of sequence *a*.
- $\otimes$  denotes the Kronecker product.
- *xa* means *x* is multiplied to all the elements of sequence *a*.
- *xA* means *x* is multiplied to all the elements of matrix *A*.

**Definition 1:** Let *a* and *b* be two *q*-ary sequences of length *N*. The aperiodic cross-correlation function (ACCF)  $\rho_{a,b}(\tau)$  of *a* and *b* at time-shift  $\tau$  is defined as

$$\rho_{\boldsymbol{a},\boldsymbol{b}}(\tau) = \begin{cases} \sum_{\substack{k=0\\N-1+\tau\\\sum\\k=0}}^{N-1-\tau} a_k b_{k+\tau}^*, & 0 \le \tau \le N-1; \\ \sum_{\substack{k=0\\0, \\ 0, \\ 0, \\ 0 \end{cases}} a_{k-\tau} b_k^*, & -(N-1) \le \tau \le -1; \end{cases}$$
(1)

When a = b,  $\rho_{a,b}(\tau)$  is called aperiodic auto-correlation function (AACF) of a and is denoted as  $\rho_a(\tau)$ . Here  $a^*$  denotes the conjugate of a complex number a.

**Definition 2:** [1] Let (a, b) be a pair of sequences of identical length N, (a, b) is said to be a Z-complementary pair (ZCP) if

$$\rho_{a}(\tau) + \rho_{b}(\tau) = 0, \quad (0 < \tau < Z).$$
(2)

Where  $1 \le Z \le N$ , when Z = N, (a, b) is called a Golay complementary pair (GCP).

**Definition 3:** Let (a, b) be a pair of sequences of identical length *N*. For a positive integer *Z*, define  $\mathcal{T}_1 \triangleq \{1, 2, \dots, Z\}$ ,  $\mathcal{T}_2 \triangleq \{N - Z, N - Z + 1, \dots, N - 1\}$ , where  $Z \leq N$ . (a, b) is called an (N, Z)-CZCP, if the following two properties *P*1 and *P*2 are satisfied at the same time.

$$P1: \rho_{a}(\tau) + \rho_{b}(\tau) = 0, \quad (|\tau| \in \mathcal{T}_{1} \cup \mathcal{T}_{2});$$
  

$$P2: \rho_{a,b}(\tau) + \rho_{b,a}(\tau) = 0, \quad (|\tau| \in \mathcal{T}_{2}).$$
(3)

**Definition 4:** For an (N, Z)-CZCP, define  $CZC_{ratio}$  as follows,

$$CZC_{ratio} = \frac{Z}{Z_{max}}.$$
(4)

where  $Z_{max}$  denotes the possible maximum achievable ZCZ width for a given sequence length *N*.

**Definition 5:** For an (N, Z)-CZCP, when CZCP is also GCP,  $Z_{max} = \frac{N}{2}$ , it's called perfect CZCP; otherwise,  $Z_{max} = \frac{N}{2} - 1$ . Obviously  $CZC_{ratio} \leq 1$ . When  $CZC_{ratio} = 1$ , which implies that  $Z_{max}$  is achieved, such CZCP is called optimal.

**Definition 6:** Suppose  $A_{M_1 \times N_1}^1$ ,  $A_{M_1 \times N_2}^2$ ,  $A_{M_2 \times N_1}^3$  and  $A_{M_2 \times N_2}^4$  are four matrix blocks, which are abbreviated as  $A_1, A_2, A_3$  and  $A_4$ . We define a matrix A as follows,

$$\boldsymbol{A} = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \quad \text{and} \quad \boldsymbol{H} = \begin{bmatrix} h_{00} & h_{01} \\ h_{10} & h_{11} \end{bmatrix},$$

where  $h_{ij}$   $(i, j \in \{0, 1\})$  is a number. Then we define a new operation  $\odot$  as follows,

$$\boldsymbol{H} \odot \boldsymbol{A} = \begin{bmatrix} h_{00}\boldsymbol{A}_1 & h_{01}\boldsymbol{A}_2 \\ h_{10}\boldsymbol{A}_3 & h_{11}\boldsymbol{A}_4 \end{bmatrix}.$$
(5)

**Definition 7:** Let *G* be a complex matrix. If  $G^{H}G = eI$ , then *G* is said to be a column orthogonal matrix, where *e* is a constant, *I* is a unit matrix and  $G^{H}$  denotes the Hermitian matrix of *G*.

Throughout the paper, for a matrix H we have assumed  $|h_{ij}|^2 = 1$ , and H is expressed as follows,

$$\boldsymbol{H} = \begin{bmatrix} h_{00} & h_{01} \\ h_{10} & h_{11} \end{bmatrix} = \begin{bmatrix} \boldsymbol{H}_0 & \boldsymbol{H}_1 \end{bmatrix}.$$
(6)

Where  $H_i$  is the *j*th column of matrix H.

**Lemma 1:** (Turyn's method [20]): Let A = (a, b) and B = (c, d) be binary GCP of length N and M, respectively. And A as the 1st pair and B as the 2nd pair, then  $(e, f) \triangleq$ Turyn(A, B) is a GCP of length-MN, where

$$e = c \otimes (a+b)/2 - d \otimes (b-a)/2,$$
  

$$f = d \otimes (a+b)/2 + \overleftarrow{c} \otimes (b-a)/2.$$
(7)

**Corollary 1:** [10] Let A = (a, b) be a binary GCP kernel  $K_N$ , where  $N \in \{2, 10, 26\}$ , B = (c, d) be a GCP of length M and (e, f) = Turyn(A, B). If the *i*-th column of B have elements with same sign, then  $e_t = f_t$ , where  $Ni \leq t < N(i + 1)$ . If the *i*-th column of B has elements with different signs, then have  $e_t = -f_t$ , where  $Ni \leq t < N(i + 1)$ . Three results can be obtained based on this corollary and the binary GCP kernel  $K_2, K_{10}$  and  $K_{26}$ .

This corollary assumes that A = (a, b) is a fixed kernel GCP, as listed in Table 1. Then, there are the following three cases.

- 1) When  $A = K_2$ , then  $a_0 = b_0$  and  $a_1 = -b_1$ .
- 2) When  $A = K_{10}$ , then  $a_i = b_i$  for  $i \in \{0, 1, 2, 3, 5\}$ ,  $a_i = -b_i$  for  $i \in \{4, 6, 7, 8, 9\}$ .
- 3) When  $A = K_{26}$ , then  $a_i = b_i$  for  $i \in \{0, 1, \dots, 11, 13\}$ ,  $a_i = -b_i$  for  $i \in \{12, 14, 15, \dots, 25\}$ .

Therefore, the following three results hold true.

Table 1GCP kernels of lengths 2, 10 and 26.

| N  |                                                                     | notion                 |
|----|---------------------------------------------------------------------|------------------------|
| 2  |                                                                     | <b>K</b> <sub>2</sub>  |
| 10 | $\left(\begin{array}{c} ++-+++\\ ++-++++\end{array}\right)$         | <b>K</b> <sub>10</sub> |
| 26 | $\left(\begin{array}{c} ++++-++++-++-+-+++++++++\\ ++++-++++++++++$ | <b>K</b> <sub>26</sub> |

**Result 1:** Let (e, f) be a GCP of length  $2^{\alpha}P$  constructed iteratively by employing Turyn's method on  $K_2$ ,  $K_{10}$  or  $K_{26}$  as follows,

$$(e_0, f_0) = K_2, \quad A = K_2, K_{10} \text{ or } K_{26}, (e_i, f_i) = \text{Turyn}(A, (e_{i-1}, f_{i-1})).$$
(8)

Where  $P = 10^{\beta}26^{\gamma}$ ,  $\alpha \ge 1$  and  $\alpha, \beta, \gamma$  are non-negative integers. The first  $2^{\alpha-1}P$  columns of (e, f) will have the same element in each column, while the last  $2^{\alpha-1}P$  columns will have the opposite element in each column.

**Result 2:** Let (e, f) be a GCP of length  $10^{\beta}$  or  $26^{\gamma}$ , constructed iteratively using Turyn's method on  $K_{10}$  or  $K_{26}$ , respectively. Then the first  $4 \times 10^{\beta-1}$  or  $12 \times 26^{\gamma-1}$  columns of (e, f) will have the same element in each column, while the last  $4 \times 10^{\beta-1}$  or  $12 \times 26^{\gamma-1}$  columns will have the opposite element in each column.

**Result 3:** Let (e, f) be a GCP of length  $10^{\beta}26^{\gamma}$ , constructed iteratively by employing Turyn's method on  $K_{10}$  and  $K_{26}$  as follows,

Where  $\beta$  and  $\gamma$  are non-negative integers. Then the first  $12 \times 26^{\gamma-1}10^{\beta}$  columns of (e, f) will have the same element in each column, while the last  $12 \times 26^{\gamma-1}10^{\beta}$  columns of (e, f) will have the opposite element in each column.

#### 3. Proposed Constructions

In this section, we present several constructions of CZCPs. In Theorem 1 we give the construction of CZCP with new length 2M + N; In Theorem 2 we give the construction of CZCP with new length 2(M + L); Further, we give the construction of perfect CZCP with new length 4N in Theorem 3.

**Theorem 1:** Suppose (a, b) is a binary GCP of length M and (c, d) is a binary GCP of length N. H is a column orthogonal matrix of order 2, and  $h_{00}h_{10}^* = h_{10}h_{00}^*$ . Define A and B as follows,

$$A = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$$
 and  $B = \begin{bmatrix} c \\ d \end{bmatrix}$ .

Let  $\binom{e}{f}$  be given by Eq. (10) as follows,

$$\begin{pmatrix} \boldsymbol{e} \\ \boldsymbol{f} \end{pmatrix} = (\boldsymbol{H} \odot \boldsymbol{A} \| \boldsymbol{H}_0 \odot \boldsymbol{B}) = \begin{pmatrix} h_{00}\boldsymbol{a} \| h_{01}\boldsymbol{b} \| h_{00}\boldsymbol{c} \\ h_{10}\boldsymbol{a} \| h_{11}\boldsymbol{b} \| h_{10}\boldsymbol{d} \end{pmatrix}.$$
(10)

- 1. When  $M \leq \frac{N}{2}$ ,  $N = 2^{\alpha} 10^{\beta} 26^{\gamma}$  ( $\alpha \geq 1$  and  $\alpha, \beta, \gamma$  are non-negative integers) and (c, d) is a binary GCP via Turyn's method Result 1, then (e, f) is a (2M + N, M)-CZCP.
- 2. When  $M \le 4 \times 10^{\beta-1}$ ,  $N = 10^{\beta}$  ( $\beta \ge 1$  and  $\beta$  is nonnegative integer) and (c, d) is a binary GCP via Turyn's method Result 2, then (e, f) is a (2M + N, M)-CZCP.
- 3. When  $M \le 12 \times 26^{\gamma-1}$ ,  $N = 26^{\gamma}$  ( $\gamma \ge 1$  and  $\gamma$  is nonnegative integer) and (c, d) is a binary GCP via Turyn's method Result 2, then (e, f) is a (2M + N, M)-CZCP.
- 4. When  $M \le 12 \times 26^{\gamma-1}10^{\beta}$ ,  $N = 10^{\beta}26^{\gamma}$  ( $\beta \ge 1$ ,  $\gamma \ge 1$  and  $\beta, \gamma$  are non-negative integers) and (c, d) is a binary GCP via Turyn's method Result 3, then (e, f) is a (2M + N, M)-CZCP.

**Example 1:** Let us consider (a, b) a GCP of length 4 and (c, d) a GCP of length 8 via Turyn's method Reslut 1 as follows,

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} ++-+ \\ +++- \end{pmatrix}$$
 and  $\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} +++-++-+ \\ +++--+- \end{pmatrix}$ .

1) Let  $H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$  be a column orthogonal matrix. According to Theorem 1-1, (e, f) is given by

$$\begin{pmatrix} e \\ f \end{pmatrix} = \begin{pmatrix} ++-++++-+++-++-+ \\ ++-+---++++---+- \end{pmatrix}$$

Then,

$$\begin{split} \left| \rho_{\boldsymbol{e}}(\tau) + \rho_{\boldsymbol{f}}(\tau) \right|_{\tau=0}^{15} &= (32, \boldsymbol{0}_{6}, 8, 0, 8, \boldsymbol{0}_{6}), \\ \left| \rho_{\boldsymbol{e}, \boldsymbol{f}}(\tau) + \rho_{\boldsymbol{f}, \boldsymbol{e}}(\tau) \right|_{\tau=0}^{15} &= (\boldsymbol{0}_{5}, 4, 0, 4, 0, 4, 0, 4, \boldsymbol{0}_{4}). \end{split}$$

Hence, (e, f) is a (16, 4)-binary CZCP, it's  $CZC_{ratio} = \frac{1}{2}$ .

2) Let  $H = \begin{bmatrix} i & -1 \\ i & 1 \end{bmatrix}$  be a column orthogonal matrix. According to Theorem 1-1, (e, f) is given by

$$\begin{pmatrix} \boldsymbol{e} \\ \boldsymbol{f} \end{pmatrix} = \begin{pmatrix} i \ i \ \hat{i} \ i - - - + i \ i \ \hat{i} \ \hat{i} \ \hat{i} \ \hat{i} \ \hat{i} \\ i \ \hat{i} \ \hat{i} \ i + + - i \ i \ \hat{i} \ \hat{i} \ \hat{i} \ \hat{i} \ \hat{i} \ \hat{i} \end{pmatrix}.$$

Then,

$$\begin{aligned} \left| \rho_{\boldsymbol{e}}(\tau) + \rho_{\boldsymbol{f}}(\tau) \right|_{\tau=0}^{15} &= (32, \mathbf{0}_4, 2.8, 0, 6.3, 0, 6.3, 0, 2.8, \mathbf{0}_4), \\ \left| \rho_{\boldsymbol{e},\boldsymbol{f}}(\tau) + \rho_{\boldsymbol{f},\boldsymbol{e}}(\tau) \right|_{\tau=0}^{15} &= (\mathbf{0}_5, 2.8, 0, 6.3, 0, 6.3, 0, 2.8, \mathbf{0}_4). \end{aligned}$$

Hence, (e, f) is a (16, 4)-quadriphase CZCP, it's  $CZC_{ratio} = \frac{1}{2}$ .

*Proof*: Due to limited space and the proving process of Theorem 1-1 to 1-4 are similar, we only give the proof of Theorem 1-1 as follows. According to the statement of Theorem 1-1, we have  $e = h_{00}a ||h_{01}b||h_{00}c$ ,  $f = h_{10}a ||h_{11}b||h_{10}d$ .

According to Turyn's method Result 1 and  $M \leq \frac{N}{2}$ , we can conclude that  $c|_M = d|_M$ , so the following three conclusions can be obtained.

• When  $0 < \tau \leq M$ ,

 $\rho_{\boldsymbol{c}|_{\boldsymbol{M},\boldsymbol{b}}}(\boldsymbol{M}-\tau) = \rho_{\boldsymbol{d}|_{\boldsymbol{M},\boldsymbol{b}}}(\boldsymbol{M}-\tau);$ 

• When 
$$M < \tau < 2M$$
,

$$\rho_{\boldsymbol{c}|_{\boldsymbol{M}},\boldsymbol{a}}(2M-\tau) = \rho_{\boldsymbol{d}|_{\boldsymbol{M}},\boldsymbol{a}}(2M-\tau);$$

• When  $M + N \le \tau < 2M + N$ , because  $\frac{N}{2} \le \tau - 2M \le$ *N*, so  $c(\tau - 2M) = -d(\tau - 2M)$ , and

$$\sum_{s=0}^{2M+N-\tau-1} \sum_{t=\tau-2M}^{N-1} a(s)c(t) = -\sum_{s=0}^{2M+N-\tau-1} \sum_{t=\tau-2M}^{N-1} a(s)d(t).$$

Firstly, we analyze the auto-correlation property P1 of Theorem 1 in Definition 3.

*Case 1*: For  $M \le \frac{N}{2}$  and  $0 < \tau < M$ , the aperiodic auto-correlation sums for each  $\tau$  is given in (12) as follows,

$$\rho_{e}(\tau) = |h_{00}|^{2} \rho_{a}(\tau) + |h_{01}|^{2} \rho_{b}(\tau) + |h_{00}|^{2} \rho_{c}(\tau) + h_{00} h_{01}^{*} \rho_{b,a}(M-\tau) + h_{01} h_{00}^{*} \rho_{c|_{M},b}(M-\tau), \rho_{f}(\tau) = |h_{10}|^{2} \rho_{a}(\tau) + |h_{11}|^{2} \rho_{b}(\tau) + |h_{10}|^{2} \rho_{d}(\tau) + h_{10} h_{11}^{*} \rho_{b,a}(M-\tau) + h_{11} h_{10}^{*} \rho_{d|_{M},b}(M-\tau).$$
(11)

$$\rho_{e}(\tau) + \rho_{f}(\tau)$$

$$= 2(\rho_{a}(\tau) + \rho_{b}(\tau)) + (\rho_{c}(\tau) + \rho_{d}(\tau))$$

$$+ h_{00}h_{01}^{*}\rho_{b,a}(M - \tau) + h_{01}h_{00}^{*}\rho_{c|_{M},b}(M - \tau)$$

$$+ h_{10}h_{11}^{*}\rho_{b,a}(M - \tau) + h_{11}h_{10}^{*}\rho_{d|_{M},b}(M - \tau)$$

$$= (h_{00}h_{01}^{*} + h_{10}h_{11}^{*})\rho_{b,a}(M - \tau)$$

$$+ (h_{01}h_{00}^{*} + h_{11}h_{10}^{*})\rho_{d|_{M},b}(M - \tau).$$
(12)

Because **H** is a column orthogonal matrix, that is  $h_{00}h_{01}^*$  +  $h_{10}h_{11}^* = 0$  and  $h_{01}h_{00}^* + h_{11}h_{10}^* = 0$ . So  $\rho_e(\tau) + \rho_f(\tau) = 0$ . Case 2: For  $M \le \frac{N}{2}$  and  $\tau = M$ , the aperiodic auto-

correlation sums is given in (13) as follows,

$$\rho_{\boldsymbol{e}}(\tau) + \rho_{\boldsymbol{f}}(\tau)$$
  
=  $(h_{00}h_{01}^{*} + h_{10}h_{11}^{*})\rho_{\boldsymbol{b},\boldsymbol{a}}(0) + (\rho_{\boldsymbol{c}}(M) + \rho_{\boldsymbol{d}}(M))$   
+  $(h_{01}h_{00}^{*} + h_{11}h_{10}^{*})\rho_{\boldsymbol{d}|_{\boldsymbol{M}},\boldsymbol{b}}(0)$   
= 0. (13)

*Case 3*: For  $M \leq \frac{N}{2}$  and  $M < \tau < 2M$ , the aperiodic auto-correlation sums for each  $\tau$  is given in (14) as follows,

$$\begin{aligned} \rho_{\boldsymbol{e}}(\tau) + \rho_{\boldsymbol{f}}(\tau) \\ = &(h_{00}h_{01}^{*} + h_{10}h_{11}^{*})\rho_{\boldsymbol{a},\boldsymbol{b}}(\tau - M) \\ &+ h_{01}h_{00}^{*}\sum_{s=0}^{M-1}\sum_{t=\tau-M}^{\tau-1}b(s)c(t) + h_{11}h_{10}^{*}\sum_{s=0}^{M-1}\sum_{t=\tau-M}^{\tau-1}b(s)d(t) \\ &+ (\rho_{\boldsymbol{c}}(\tau) + \rho_{\boldsymbol{d}}(\tau)) + (|h_{00}|^{2} + |h_{10}|^{2})\rho_{\boldsymbol{d}|_{\boldsymbol{M}},\boldsymbol{a}}(2M - \tau) \\ &= h_{01}h_{00}^{*}\sum_{s=0}^{M-1}\sum_{t=\tau-M}^{\tau-1}b(s)c(t) + 2\rho_{\boldsymbol{d}|_{\boldsymbol{M}},\boldsymbol{a}}(2M - \tau) \quad (14) \\ &+ h_{11}h_{10}^{*}\sum_{s=0}^{M-1}\sum_{t=\tau-M}^{\tau-1}b(s)d(t). \end{aligned}$$

*Case 4*: For  $M \leq \frac{N}{2}$  and  $2M \leq \tau < N$ , the aperiodic auto-correlation sums for each  $\tau$  is given in (15) as follows,

$$\begin{aligned} \rho_{\boldsymbol{e}}(\tau) &+ \rho_{f}(\tau) \\ &= \sum_{s=0}^{M-1} \sum_{t=\tau-2M}^{\tau-M-1} a(s)c(t) + \sum_{s=0}^{M-1} \sum_{t=\tau-2M}^{\tau-M-1} a(s)d(t) \\ &+ h_{01}h_{00}^{*} \sum_{s=0}^{M-1} \sum_{t=\tau-M}^{\tau-1} b(s)c(t) + (\rho_{\boldsymbol{c}}(\tau) + \rho_{\boldsymbol{d}}(\tau)) \\ &+ h_{11}h_{10}^{*} \sum_{s=0}^{M-1} \sum_{t=\tau-M}^{\tau-1} b(s)d(t) \end{aligned} \tag{15}$$

$$&= \sum_{s=0}^{M-1} \sum_{t=\tau-2M}^{\tau-M-1} a(s)c(t) + \sum_{s=0}^{M-1} \sum_{t=\tau-2M}^{\tau-M-1} a(s)d(t) \\ &+ h_{01}h_{00}^{*} \sum_{s=0}^{M-1} \sum_{t=\tau-M}^{\tau-1} b(s)c(t) + h_{11}h_{10}^{*} \sum_{s=0}^{M-1} \sum_{t=\tau-M}^{\tau-1} b(s)d(t). \end{aligned}$$

*Case 5*: For  $M \le \frac{N}{2}$  and  $N \le \tau < M + N$ , the aperiodic auto-correlation sums for each  $\tau$  is given in (16) as follows,

$$\rho_{e}(\tau) + \rho_{f}(\tau)$$

$$= \sum_{s=0}^{M-1} \sum_{t=\tau-2M}^{\tau-M-1} a(s)c(t) + \sum_{s=0}^{M-1} \sum_{t=\tau-2M}^{\tau-M-1} a(s)d(t)$$

$$+ h_{01}h_{00}^{*} \sum_{s=0}^{M+N-\tau-1} \sum_{t=\tau-M}^{N-1} b(s)c(t)$$

$$+ h_{11}h_{10}^{*} \sum_{s=0}^{M+N-\tau-1} \sum_{t=\tau-M}^{N-1} b(s)d(t).$$
(16)

Case 6: For  $M \le \frac{N}{2}$  and  $M + N \le \tau < 2M + N$ , the aperiodic auto-correlation sums for each  $\tau$  is given in (17) as follows,

$$\begin{aligned} \rho_{e}(\tau) + \rho_{f}(\tau) \\ = |h_{00}|^{2} \sum_{s=0}^{2M+N-\tau-1} \sum_{t=\tau-2M}^{N-1} a(s)c(t) \\ + |h_{10}|^{2} \sum_{s=0}^{2M+N-\tau-1} \sum_{t=\tau-2M}^{N-1} a(s)d(t) \end{aligned}$$
(17)  
$$= (|h_{00}|^{2} - |h_{10}|^{2}) \sum_{s=0}^{2M+N-\tau-1} \sum_{t=\tau-2M}^{N-1} a(s)c(t) \\ = 0. \end{aligned}$$

Therefore, for  $M \leq \frac{N}{2}$  and  $0 < \tau < 2M + N$ , according to the given conditions, we have (18), so (e, f) satisfies property P1 in Definition 3.

$$\rho_{\boldsymbol{e}}(\tau) + \rho_{\boldsymbol{f}}(\tau) = \begin{cases} 0, & 1 \le \tau \le M; \\ \text{other values,} & M < \tau < M + N; \\ 0, & M + N \le \tau < 2M + N. \end{cases}$$
(18)

Secondly, we analyse the cross-correlation property P2 of Theorem 1 in Definition 3.

992

| Based on                                                                                                                                                                                    | Length                                                                                                                                                                                                                                                                                                                        | ZCZ width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CZC <sub>ratio</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Constraints                                                                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| GBFs                                                                                                                                                                                        | $2^{\alpha}$                                                                                                                                                                                                                                                                                                                  | $2^{\alpha-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\alpha \ge 2$                                                                         |  |
| GCPs                                                                                                                                                                                        | 2 <i>N</i>                                                                                                                                                                                                                                                                                                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $N = 2^{\alpha} 10^{\beta} 26^{\gamma} (\alpha \ge 1)$                                 |  |
| GBFs                                                                                                                                                                                        | $2^{m-1} + 2$                                                                                                                                                                                                                                                                                                                 | $2^{m-3} + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ≈ 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $m \ge 4$                                                                              |  |
| Turyn's method, GCPs                                                                                                                                                                        | 2N + 2                                                                                                                                                                                                                                                                                                                        | N/2+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ≈ 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $N = 2^{\alpha} 10^{\beta} 26^{\gamma} (\alpha \ge 1)$                                 |  |
|                                                                                                                                                                                             | 2N + 2                                                                                                                                                                                                                                                                                                                        | 4N/10 + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≈ 2/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $N = 10^{\beta} (\beta \ge 1)$                                                         |  |
|                                                                                                                                                                                             | 2N + 2                                                                                                                                                                                                                                                                                                                        | 12N/26 + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ≈ 6/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N = 26^{\gamma} (\gamma \ge 1)$                                                       |  |
|                                                                                                                                                                                             | 2N + 2                                                                                                                                                                                                                                                                                                                        | 12N/26 + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ≈ 6/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $N = 10^{\beta} 26^{\gamma} (\gamma \ge 1)$                                            |  |
| Barker sequence                                                                                                                                                                             | M + N                                                                                                                                                                                                                                                                                                                         | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2M)/(M+N-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M and N are lengths of Barker sequence, $M \leq N$                                     |  |
|                                                                                                                                                                                             | 12N                                                                                                                                                                                                                                                                                                                           | 5N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≈ 5/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |  |
| GCPs, CZCPs                                                                                                                                                                                 | 24N                                                                                                                                                                                                                                                                                                                           | 11 <i>N</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≈ 11/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N is length of GCP                                                                     |  |
| Turyn's method, GCPs                                                                                                                                                                        | $2^{\alpha}10^{\beta}26^{\gamma}$                                                                                                                                                                                                                                                                                             | $2^{\alpha-1}10^{\beta}26^{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\alpha \ge 1$                                                                         |  |
|                                                                                                                                                                                             | 10 <sup>β</sup>                                                                                                                                                                                                                                                                                                               | $4 \cdot 10^{\beta - 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\beta \ge 1$                                                                          |  |
|                                                                                                                                                                                             | 26 <sup>γ</sup>                                                                                                                                                                                                                                                                                                               | $12 \cdot 26^{\gamma-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\gamma \ge 1$                                                                         |  |
|                                                                                                                                                                                             | $10^{\beta}26^{\gamma}$                                                                                                                                                                                                                                                                                                       | $12 \cdot 26^{\gamma-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\beta \ge 1, \gamma \ge 1$                                                            |  |
| ZCPs                                                                                                                                                                                        | 2 <i>M</i>                                                                                                                                                                                                                                                                                                                    | Z – 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2Z-2)/(M-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>M</i> is length of ZCP, <i>Z</i> is ZCZ width of ZCP                                |  |
| BFs                                                                                                                                                                                         | $2^{m-1} + 2^{v+1}$                                                                                                                                                                                                                                                                                                           | $2^{\pi(v+1)-1} + 2^{v-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ≈ 2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m > 4.0 < v < m - 3                                                                    |  |
| Turyn's method, GCPs,                                                                                                                                                                       | MN                                                                                                                                                                                                                                                                                                                            | (M/2 - 1)N + Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{MN-2N+2Z}{MN-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N is length of GCPs (where GCP is also CZCP). $M$                                      |  |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | is length of optimal CZCPs. Z is ZCZ width of GCPs.                                    |  |
| GCPs                                                                                                                                                                                        | 3N                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |  |
|                                                                                                                                                                                             | 7N                                                                                                                                                                                                                                                                                                                            | 2N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |  |
|                                                                                                                                                                                             | 9N                                                                                                                                                                                                                                                                                                                            | 3N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |  |
|                                                                                                                                                                                             | 11N                                                                                                                                                                                                                                                                                                                           | 4N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $N = 2^{\alpha} 10^{\beta} 26^{\gamma}$                                                |  |
|                                                                                                                                                                                             | 12N                                                                                                                                                                                                                                                                                                                           | 5N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |  |
|                                                                                                                                                                                             | 14N                                                                                                                                                                                                                                                                                                                           | 6N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |  |
|                                                                                                                                                                                             | 18N                                                                                                                                                                                                                                                                                                                           | 7N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                        |  |
|                                                                                                                                                                                             | 24N                                                                                                                                                                                                                                                                                                                           | 11N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |  |
| GBEs                                                                                                                                                                                        | $2^{n-1} + 2^{v+1}$                                                                                                                                                                                                                                                                                                           | $2\pi(v+1)+2^{v}-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0 \le n \le n - 3$                                                                    |  |
| Turvn's method Result 1                                                                                                                                                                     | 2 12                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $N = 2^{\alpha} 10^{\beta} 26^{\gamma} (\alpha > 1)$                                   |  |
| $H_{\rm D} \sim GCPs$                                                                                                                                                                       | 2M + N                                                                                                                                                                                                                                                                                                                        | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\approx \frac{2M}{2M+N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $M = 2 - 10^{-20^{-1}} (M \ge 1),$<br>$M$ is length of binary GCPs $(M < \frac{N}{2})$ |  |
| $H_{2\times 2}$ , GCFs $2M + M_{2\times 2}$ Turyn's method Result 2,<br>$H_{2\times 2}$ , GCPs $2M + M_{2\times 2}$ Turyn's method Result 2,<br>$H_{2\times 2}$ , GCPs $2M + M_{2\times 2}$ |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\approx \frac{2M}{2M+N}$ $\approx \frac{2M}{2M+N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $N = 10^{\beta} (\beta > 1)$                                                           |  |
|                                                                                                                                                                                             | 2M + N                                                                                                                                                                                                                                                                                                                        | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $N = 10^{\circ} (p \ge 1),$<br><i>M</i> is length of binary GCPs $(M < \frac{4N}{N})$  |  |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $N = 26^{\gamma} (\alpha > 1)$                                                         |  |
|                                                                                                                                                                                             | 2M + N                                                                                                                                                                                                                                                                                                                        | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $N = 20^{\circ} (\gamma \ge 1),$<br>M is length of binary CCPs $(M < 12N)$             |  |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $M$ is length of binary OCFS ( $M \le \frac{1}{26}$ )                                  |  |
| $\frac{H_{2\times2}, \text{ GCPs}}{H_{2\times2}, \text{ GCPs}}$                                                                                                                             | 2M + N                                                                                                                                                                                                                                                                                                                        | M + N M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\approx \frac{2M}{2M+N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $N = 10^{-2} 0^{2} (\beta \ge 1, \gamma \ge 1),$                                       |  |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>M</i> is length of binary GCPs $(M \le \frac{1}{26})$                               |  |
| $H_{2\times 2}$ , GCPs                                                                                                                                                                      | 2(M+L)                                                                                                                                                                                                                                                                                                                        | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $pprox rac{M}{M+L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $M$ and $L$ are lengths of binary GCPs ( $M \leq L$ )                                  |  |
| $H_{2\times 2}$ , GCPs                                                                                                                                                                      | 4 <i>M</i>                                                                                                                                                                                                                                                                                                                    | 2 <i>M</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>M</i> is length of binary GCPs                                                      |  |
|                                                                                                                                                                                             | Based onGBFsGCPsGBFsTuryn's method, GCPsBarker sequenceTuryn's method, GCPsCCPsZCPsBFsTuryn's method, GCPs, optimal CZCPsGCPsGCPsGCPsTuryn's method Result 1, $H_{2\times2}$ , GCPsTuryn's method Result 2, $H_{2\times2}$ , GCPsTuryn's method Result 3, $H_{2\times2}$ , GCPsTuryn's method Result 3, $H_{2\times2}$ , GCPs | $ \begin{array}{ c c c c } \hline Based on & Length \\ \hline GBFs & 2^{\alpha} \\ \hline GCPs & 2N \\ \hline GBFs & 2^{m-1} + 2 \\ \hline 2N + 2 \\ \hline 10^{\beta} 26^{\gamma} \\ \hline 2CPs & 2M \\ \hline 10^{\beta} 26^{\gamma} \\ \hline 10^{\beta} 26^{\gamma} \\ \hline 2CPs & 2M \\ \hline BFs & 2^{m-1} + 2^{\mu+1} \\ \hline Turyn's method, GCPs \\ \hline 10^{\beta} 26^{\gamma} \\ \hline 2CPs & 3N \\ \hline NN \\ \hline GCPs & 11N \\ \hline 12N \\ \hline 11N \\ \hline 12N \\ \hline 4N \\ \hline 2N \\ \hline 4N \\ \hline CPs & 11N \\ \hline 12N \\ \hline 4N \\ \hline 2N \\ \hline Uryn's method Result 1, \\ H_{2\times2}, GCPs \\ \hline Turyn's method Result 2, \\ H_{2\times2}, GCPs \\ \hline Uryn's method Result 3, \\ H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline 2M + N \\ \hline H_{2\times2}, GCPs \\ \hline EM \\ \hline E$ | $ \begin{array}{ c c c c c } \hline Based on & Length & ZCZ width \\ \hline GBFs & 2^{\alpha} & 2^{\alpha-1} \\ \hline GCPs & 2N & N \\ \hline GBFs & 2^{m-1} + 2 & 2^{m-3} + 1 \\ \hline & 2N + 2 & 2N + 2 & N/2 + 1 \\ \hline & 2N + 2 & 2N + 2 & 4N/10 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & 2N + 2 & 12N/26 + 1 \\ \hline & & 2N + 2 & 12N/26 + 1 \\ \hline & & & & & & & & \\ \hline & & & & & & & &$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                |  |

Table 2Parameters of CZCPs.

For  $M \le \frac{N}{2}$  and  $M + N \le \tau < 2M + N$ , the aperiodic cross-correlation sums for each  $\tau$  is given in (19) as follows, so (e, f) satisfies property *P*2 in Definition 3 too.

$$\begin{aligned} \rho_{\boldsymbol{e},\boldsymbol{f}}(\tau) &+ \rho_{\boldsymbol{f},\boldsymbol{e}}(\tau) \\ &= h_{00}h_{10}^* \sum_{s=0}^{2M+N-\tau-1} \sum_{t=\tau-2M}^{N-1} a(s)d(t) \\ &+ h_{10}h_{00}^* \sum_{s=0}^{2M+N-\tau-1} \sum_{t=\tau-2M}^{N-1} a(s)c(t) \end{aligned} \tag{19} \\ &= (h_{00}h_{10}^* - h_{10}h_{00}^*) \sum_{s=0}^{2M+N-\tau-1} \sum_{t=\tau-2M}^{N-1} a(s)d(t) \\ &= 0. \end{aligned}$$

Similarly, we can also prove Theorem 1 for  $M > \frac{N}{2}$  in the same way. This completes the proof.

**Theorem 2:** Let (a, b) and (c, d) be binary GCPs of length M and L respectively,  $M \le L$ . H is a column orthogonal matrix of order 2, and  $h_{00}h_{11}^* + h_{10}h_{01}^* = 0$ . Let  $A = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$ ,  $B = \begin{bmatrix} c & d \\ c & d \end{bmatrix}$ .

$$\begin{pmatrix} \boldsymbol{e} \\ \boldsymbol{f} \end{pmatrix} = (\boldsymbol{H} \odot \boldsymbol{A} \| \boldsymbol{H} \odot \boldsymbol{B}) = \begin{pmatrix} h_{00} \boldsymbol{a} \| h_{01} \boldsymbol{b} \| h_{00} \boldsymbol{c} \| h_{01} \boldsymbol{d} \\ h_{10} \boldsymbol{a} \| h_{11} \boldsymbol{b} \| h_{10} \boldsymbol{c} \| h_{11} \boldsymbol{d} \end{pmatrix}. \quad (20)$$

Then (e, f) is a (2(M + L), M)-CZCP.

**Example 2:** Let us consider (a, b) a GCP of length 8 and (c, d) a GCP of length 10 as follows,

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} +++-++-+ \\ +++---+- \end{pmatrix},$$
$$\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} ++--+++-+-+ \\ +++++-+--+ \end{pmatrix}.$$

Let  $H = \begin{bmatrix} i & i \\ i & -i \end{bmatrix}$  be a column orthogonal matrix. According to Theorem 2, (e, f) is given by

Then,

$$\begin{aligned} \left| \rho_{\boldsymbol{e}}(\tau) + \rho_{\boldsymbol{f}}(\tau) \right|_{\tau=0}^{35} &= (72, \mathbf{0}_{8}, 2, 0, 4, 4, 0, 8, 0, 4, 2, 0, \\ 6, 12, 4, 8, 4, 4, 4, 0, 2, \mathbf{0}_{8}), \\ \left| \rho_{\boldsymbol{e},\boldsymbol{f}}(\tau) + \rho_{\boldsymbol{f},\boldsymbol{e}}(\tau) \right|_{\tau=0}^{35} &= (0, 8, 8, 0, 8, 8, 0, 8, 0, 2, \mathbf{0}_{2}, \\ 4, 4, 0, 12, 4, 10, 16, 2, 4, 8, \mathbf{0}_{2}, 4, \mathbf{0}_{2}, 2, \mathbf{0}_{8}). \end{aligned}$$

Hence, (e, f) is a (36, 8)-quadriphase CZCP with  $CZC_{ratio} = \frac{4}{9}$ .

**Theorem 3:** Suppose (*a*,*b*) is a binary GCP of length *M*.  $G = \begin{bmatrix} g_{00} & g_{01} \\ g_{10} & g_{11} \end{bmatrix}$  and  $H = \begin{bmatrix} h_{00} & h_{01} \\ h_{10} & h_{11} \end{bmatrix}$  are both matrices of order 2, where  $|g_{ii}|^2 = 1$ ,  $|h_{ii}|^2 = 1$  and

$$\begin{cases} g_{00} = g_{10}, \\ g_{01} = g_{11}, \\ h_{00} + h_{10} = 0, \\ h_{01} + h_{11} = 0, \\ g_{00}g_{01}^* + h_{00}h_{01}^* = 0. \end{cases}$$
(21)

Let  $A = \begin{bmatrix} a & b \\ a & b \end{bmatrix}$ ,

$$\begin{pmatrix} \boldsymbol{e} \\ \boldsymbol{f} \end{pmatrix} = (\boldsymbol{G} \odot \boldsymbol{A} \| \boldsymbol{H} \odot \boldsymbol{A}) = \begin{pmatrix} g_{00} \boldsymbol{a} \| g_{01} \boldsymbol{b} \| h_{00} \boldsymbol{a} \| h_{01} \boldsymbol{b} \\ g_{10} \boldsymbol{a} \| g_{11} \boldsymbol{b} \| h_{10} \boldsymbol{a} \| h_{11} \boldsymbol{b} \end{pmatrix}. \quad (22)$$

Then (e, f) is a (4M, 2M)-perfect CZCP.

**Example 3:** Suppose (a, b) is a GCP of length 8 as follows,

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} +++-++-+ \\ +++---+- \end{pmatrix}.$$

Let  $G = \begin{bmatrix} i & i \\ i & i \end{bmatrix}$  and  $H = \begin{bmatrix} i & -i \\ -i & i \end{bmatrix}$  be matrices. According to Theorem 3, (e, f) is given by

Then,

$$\begin{split} \left| \rho_{\boldsymbol{e}}(\tau) + \rho_{\boldsymbol{f}}(\tau) \right|_{\tau=0}^{31} &= (64, \boldsymbol{0}_{31}), \\ \left| \rho_{\boldsymbol{e},\boldsymbol{f}}(\tau) + \rho_{\boldsymbol{f},\boldsymbol{e}}(\tau) \right|_{\tau=0}^{31} &= (0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 12, 0, 20, 0, 4, 0, 4, \boldsymbol{0}_{16}). \end{split}$$

Hence, (e, f) is a perfect quadriphase CZCP with length 32, it's  $CZC_{ratio} = 1$ .

#### 4. Comparison with the Previous Works

The proposed constructions obtain CZCPs with fewer constraints. In this paper, we obtain CZCPs with new lengths 2M + N, 2(M + L) and 4M. Compared to the constructions of Adhikary in [10] and Fan in [11], which are based on a binary GCP via Turyn's method, we obtain CZCPs with new length 2M + N based on a binary GCP and a binary GCP via Turyn's method. The length of our proposed CZCP is more flexible, allowing for the generation of more new lengths. Compared to the constructions of Zeng in [17], which are based on a binary GCP, we obtain CZCPs with new length 2(M + L) based on two binary GCPs with different lengths. Our construction can generate some new lengths that Zeng's constructions could not. Only Liu in [9] and Fan in [11] constructed the perfect CZCPs in previous works. In this paper, we adopt a simpler and more flexible method to construct the perfect CZCP with a new length 4N. Table 2 contains a detailed comparison with the previous works.

### 5. Conclusion

In this paper, first we proposed the construction of CZCPs with new sequence length of 2M + N based on binary GCPs and binary GCPs via Turyn's method, where M is the length of binary GCPs exists, N is the length of binary GCPs via Turyn's method; Second we proposed construction of CZCPs with new sequence length of 2(M + L) based on binary GCPs, where M and L are the lengths of binary GCPs exists; Third we proposed construction of perfect CZCPs with new sequence length of 4M based on binary GCPs, where M is the length of binary GCPs exists. More CZCPs with new sequence length of 4M based on binary GCPs, where M is the length of binary GCPs exists. More CZCPs with new lengths were obtained, and the length of CZCPs is further extended. With the help of the matrix of order 2 with certain properties, our constructions are simpler and more efficient than previous constructions.

#### References

- P. Fan, W. Yuan, and Y. Tu, "Z-complementary binary sequences," IEEE Signal Process. Lett., vol.14, no.8, pp.509–512, Aug. 2007.
- [2] Z. Liu, U. Parampalli, and Y.L. Guan, "Optimal odd-length binary Z-complementary pairs," IEEE Trans. Inf. Theory, vol.60, no.9, pp.5768–5781, Sept. 2014.
- [3] A.R. Adhikary, S. Majhi, Z. Liu, and Y.L. Guan, "New optimal binary Z-complementary pairs of odd lengths," 2017 8th International Workshop on Signal Design and Its Applications in Communications (IWSDA), Sapporo, Japan, pp.14–18, 2017.
- [4] B. Shen, Y. Yang, Z. Zhou, P. Fan, and Y. Guan, "New optimal binary Z-complementary pairs of odd length 2<sup>m</sup> + 3," IEEE Signal Process. Lett., vol.26, no.12, pp.1931–1934, Dec. 2019.
- [5] F. Zeng, X. He, Z. Zhang, G. Xuan, Y. Peng, and L. Yan, "Optimal and Z-optimal type-II odd-length binary Z-complementary pairs," IEEE Commun. Lett., vol.24, no.6, pp.1163–1167, June 2020.
- [6] A.R. Adhikary, S. Majhi, Z. Liu, and Y.L. Guan, "New sets of optimal odd-length binary Z-complementary pairs," IEEE Trans. Inf. Theory, vol.66, no.1, pp.669–678, Jan. 2020.
- [7] Z. Gu, Z. Zhou, Q. Wang, and P. Fan, "New construction of optimal type-II binary Z-complementary pairs," IEEE Trans. Inf. Theory,

vol.67, no.6, pp.3497-3508, June 2021.

- [8] T. Yu, A.R. Adhikary, Y. Wang, and Y. Yang, "New class of optimal Z-complementary code sets," IEEE Signal Process. Lett., vol.29, pp.1477–1481, 2022.
- [9] Z. Liu, P. Yang, Y.L. Guan, and P. Xiao, "Cross Z-complementary pairs for optimal training in spatial modulation over frequency selective channels," IEEE Trans. Signal Process., vol.68, pp.1529–1543, 2020.
- [10] A.R. Adhikary, Z. Zhou, Y. Yang, and P. Fan, "Constructions of cross Z-complementary pairs with new lengths," IEEE Trans. Signal Process., vol.68, pp.4700–4712, 2020.
- [11] C. Fan, D. Zhang, and A.R. Adhikary, "New sets of binary cross Zcomplementary sequence pairs," IEEE Commun. Lett., vol.24, no.8, pp.1616–1620, Aug. 2020.
- [12] M. Yang, S. Tian, N. Li, and A.R. Adhikary, "New sets of quadriphase cross Z-complementary pairs for preamble design in spatial modulation," IEEE Signal Process. Lett., vol.28, pp.1240–1244, 2021.
- [13] Z.M. Huang, C.Y. Pai, and C.Y. Chen, "Binary cross Zcomplementary pairs with flexible lengths from Boolean functions," IEEE Commun. Lett., vol.25, no.4, pp.1057–1061, April 2021.
- [14] Z.M. Huang, C.Y. Pai, and C.Y. Chen, "Cross Z-complementary sets for training design in spatial modulation," IEEE Trans. Commun., vol.70, no.8, pp.5030–5045, Aug. 2022.
- [15] Z.M. Huang, C.Y. Pai, and C.Y. Chen, "A novel construction of optimal cross Z-complementary sets based on generalized Boolean functions," 2022 IEEE International Symposium on Information Theory (ISIT), Espoo, Finland, pp.1725–1730, 2022.
- [16] H. Zhang, C. Fan, Y. Yang, and S. Mesnager, "New binary cross Zcomplementary pairs with large CZC ratio," IEEE Trans. Inf. Theory, vol.69, no.2, pp.1328–1336, Feb. 2023.
- [17] F. Zeng, X. He, Z. Zhang, and L. Yan, "Quadriphase cross Zcomplementary pairs for pilot sequence design in spatial modulation systems," IEEE Signal Process. Lett., vol.29, pp.508–512, 2022.
- [18] S. Das, A. Banerjee, and Z. Liu, "New family of cross Zcomplementary sequences with large ZCZ width," 2022 IEEE International Symposium on Information Theory (ISIT), Espoo, Finland, pp.522–527, 2022.
- [19] L. Wang, H. Liu, X. Zeng, G. Zhang, and Q. Yu, "A novel construction of complementary sequences set from complementary sequences pairs," 2022 10th International Workshop on Signal Design and Its Applications in Communications (IWSDA), Colchester, United Kingdom, pp.1–4, 2022.
- [20] R.J. Turyn, "Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings," Journal of Combinatorial Theory A, vol.16, no.3, pp.313–333, May 1974.





Chunlin Chen was born in Sichuan Province, P. R. China, on March 1995. He received the B.S. degree in School of Information Science and Engineering of Chengdu University, Chengdu, P. R. China, in 2019. He is currently pursuing the M.S. degree with the School of Electrical Information at Southwest Petroleum University (SWPU). His current interests focus on sequence design and its applications in modern communication systems.

Xiaoli Zeng was born in Sichuan Province, P. R. China, on March 1981. She received the M.S. degree in the School of Information Science and Technology at Southwest Jiaotong University in 2007. Then, she has been at Tibet University, where she is currently a Professor. Her interests include sequences and its applications.





ince, P. R. China, on September 1997. He received the B.S. degree in School of Electrical Engineering of Yanshan University, Qinhuangdao, P. R. China, in 2019. He is currently pursuing the M.S. degree with the School of Electrical Information at Southwest Petroleum University (SWPU). His current interests focus on sequence design and its applications in modern communication systems.

was born in Sichuan Prov-

Houshan Liu

Lingguo Kong was born in Sichuan Province, P. R. China, on September 1999. He received the B.S. degree in school of Electronic Information of Huaihua University, Huaihua, P. R. China, in 2022. He is currently pursuing the M.S. degree with the School of Electrical Information at Southwest Petroleum University (SWPU). His current interests focus on sequence design and the application of Integrated Sensing and Communication Systems.



Longye Wang was born in Gansu Province, P. R. China, on March 1976. He received the M.S. degree in School of Information Science and Technology of Southwest Jiaotong University, Chengdu, P. R. China, in 2005. He pursued his Ph.D. degree from the National Key Laboratory of Science and Technology on Communications at UESTC, Chengdu, P. R. China. Then, he worked as a professor at Tibet University, P. R. China. Since September 2020, he has been at SWPU, where he currently holds a Professor

position. His current interests include sequences and its applications.



**Qingping Yu** was born in Shandong Province, P. R. China in 1984. She received Ph.D. degree in communication and information systems from the National Key Laboratory of Science and Technology on Communications at UESTC, Chengdu, P. R. China, in 2020. She is currently a lecturer with the School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu, China. Her current research interests include information theory, coding theory and wireless communications.



Qingsong Wang was born in Sichuan Province, P. R. China, on March 1996. He received the B.S. degree in School of Electronic Engineering of Xi'an Shiyou University, Xi'an, P. R. China, in 2021. He is currently pursuing the M.S. degree with the School of Electrical Information at Southwest Petroleum University (SWPU). His current interests focus on image processing and wireless communications.