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PAPER
Joint 2D and 3D Semantic Segmentation with Consistent Instance
Semantic

Yingcai WAN†, Student Member and Lijin FANG†a), Nonmember

SUMMARY 2D and 3D semantic segmentation play important roles in
robotic scene understanding. However, current 3D semantic segmentation
heavily relies on 3D point clouds, which are susceptible to factors such as
point cloud noise, sparsity, estimation and reconstruction errors, and data
imbalance. In this paper, a novel approach is proposed to enhance 3D
semantic segmentation by incorporating 2D semantic segmentation from
RGB-D sequences. Firstly, the RGB-D pairs are consistently segmented
into 2D semantic maps using the tracking pipeline of Simultaneous Local-
ization and Mapping (SLAM). This process effectively propagates object
labels from full scans to corresponding labels in partial views with high
probability. Subsequently, a novel Semantic Projection (SP) block is in-
troduced, which integrates features extracted from localized 2D fragments
across different camera viewpoints into their corresponding 3D semantic
features. Lastly, the 3D semantic segmentation network utilizes a combina-
tion of 2D-3D fusion features to facilitate a merged semantic segmentation
process for both 2D and 3D. Extensive experiments conducted on public
datasets demonstrate the effective performance of the proposed 2D-assisted
3D semantic segmentation method.
key words: semantic segmentation, 3D reconstruction, SLAM, consistent
segmentation

1. Introduction

Scene understanding systems play a crucial role in enabling
robots and smart devices to intelligently interact with unfa-
miliar environments by providing spatial and semantic in-
formation about the 3D scene. However, most existing 3D
semantic segmentation methods [1]–[3] heavily rely on the
availability of a complete and accurate 3D point cloud model
as input, which is challenging to obtain in realistic scenarios.
Therefore, leveraging 2D semantic labels that correspond to
3D scenes is a crucial approach to enhance the understanding
of 3D scenes and improve the performance of 3D semantic
segmentation.

The 2D semantic segmentation have achieved remark-
able performance in terms of accuracy and speed [4], [5].
Compared to 3D semantic segmentation methods based on
point clouds, such as PointNet++ [1], MCCNN [6], and
MinkowskiNet [7], [8], 2D images provide detailed texture
and color information that can assist 3D semantic segmen-
tation, enhancing the robustness and generalization ability
of 3D models. Recently, researchers have proposed end-
to-end joint semantic segmentation methods that combine
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multi-view RGB-D data with 3D models to improve 3D se-
mantic segmentation. For example, 3D-SIS [9] introduced
a multi-modal instance semantic segmentation method that
effectively fuses 2D context and 3D geometry information.
Following the 2D-3D fusion strategy, BPNet [3] proposed a
bidirectional projectionmodule to improve the 2D and 3D se-
mantic segmentation performance of RGB images and point
clouds. However, these attempts were made without fully
leveraging the additional 2D information that complements
the existing 2D-3D fusion methods.

In addition, object instance semantic segmentation for
a single RGB image is performance, but degenerates sharply
in the continuous frame and partial scans, which affects 2D-
3D joint semantic segmentation. Although video semantic
segmentation considers temporal and spatial consistency for
continuous frame segmentation [10], [11], motion blur, oc-
clusion, viewpoint changes, lighting variations, and object
incompleteness pose significant challenges in the field of
video semantic segmentation. This leads to the fact that
video segmentation methods cannot be directly applied to
2D-3D joint semantic segmentation. Compared to the exist-
ing 3D segmentation networks [3], [7], [9] and scene graph
generation approach [12], our 2D-3D joint semantic segmen-
tation framework utilizes temporal and spatial consistency of
SLAM to achieve high probability labels, fusing 2D seman-
tic feature into 3D features, and output dense 3D semantic
model. The whole process is shown in Fig. 1. The input of
our framework is RGB-D frames, and the output is consistent
2D semantic segmentation Fig. 1(b), dense 3D reconstruc-
tion model Fig. 1(c), and 3D semantic segmentation model
Fig. 1(d), realizing the end-to-end process from RGB-D im-
age to 3D semantic reconstruction.

Based on the 2D segmentation methods [13], [14] and
SLAM [15], [16], we maintain a semantic sparse map that
saves the probability semantic mask of each object. Since
semantic predictions from partial views are not as reliable
as global views, the semantic sparse map of SLAM is used
to correct 2D segments that existed in bad cases. After ob-
taining camera poses, consistent 2D semantic masks, and
a dense 3D reconstruction model, the proposed Semantic
propagation Block (SP-Block) is responsible for extracting
the multi-scale features from 2D consistent object segments
and projecting channels of features into volumes that are
fused with those extracted from the encoder of Minkowsk-
iNet [7] after the Domain Transformation (DoT) operation.
Compared with MinkowskiNet [7] and BPNet [3], our 2D
semantic masks of different views provide accurate 2D ob-
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Fig. 1 System’s Input (a) and Outputs (b, c, d). The consistent semantic
masks (b) and a comprehensive mesh model (c) facilitate our network’s
prediction of semantic instances (d).

jects’ regions that make traditional 3D semantic predictions
more accurate.

The contributions of this paper are summarized as fol-
lows:

• A 2D-3D joint semantic segmentation framework is
proposed that integrates the SLAM-based 2D consistent
semantic segmentation with 3D semantic segmentation
enhancement.

• A novel strategy is proposed to obtain accurate and
consistent 2D semantic masks by leveraging 2D seg-
ments and a sparse semantic map in a consistent object
prediction framework.

• SP-Block is built to extract and project multi-scale deep
features from a 2D semantic map, which are trans-
formed to the feature domain from point clouds by the
DoT operation.

2. Related Work

2.1 Object Instance Segmentation

Early 2D semantic segmentation methods, including Faster
R-CNN [4], Mask R-CNN [5], make instance mask pre-
dictions before object semantic recognition. More recent
networks [17]–[19] are anchor-based approaches that pre-
dict boxes’ offsets relative to a collection of fixed boxes. Al-
though semantic instance segmentation has achieved reliable
results, more and more segmentation tasks have put forward
requirements for efficiency. YOLACT [13] is the real-time
(more than 30 fps) instance segmentation algorithm that is
updated as YOLACT++ [14] by incorporating deformable
convolutions into the backbone network. However, those
approaches focus on single image processing topics, leading
to inconsistent scene interpretation issues due to illumination
changes, occlusions and other variations over time. To solve

the problem, video-based instance segmentation (VIS) [20]
tracks object instances interested in a video sequence, but
these methods require the target information determined in
the first frame. Different from them, each RGB-D pair is seg-
mented in geometric and semantic manners to obtain correct
boundaries in this paper. Moreover, we build a global sparse
semantic map in real-time to maintain 2D consistent seman-
tic segments.

2.2 2D-3D Segmentation

Point clouds are prevalent for representing 3D scenes due
to their efficiency and superior geometric details over 2D
imagery. 3D ShapeNet [21] pioneered this field, using a
3D convolutional deep belief network trained on a shape
database. Subsequently, PointNet [22] and PointNet++ [1]
introduced more effective 3D surface representations.

Research highlights the complementary nature of joint
2D and 3D features, leading to enhanced local performance.
3DMV [23] integrates spatial and RGB attributes in an end-
to-end design. Building on this, 3D-SIS [9] merges 2D
color images with 3D geometry by projecting 2D RGB view
features into a voxel grid. BPNet [3] offers a bidirectional
feature exchange between 2D and 3D CNNs across pyramid
levels using a proposed module. In our work, after procuring
2D consistent semantic maps, the SP-Block captures 2D
semantic segment features and transfers them to a domain
encoded by MinkowshiNet [7].

2.3 Scene Understanding from RGB-D Sequences

Using RGB-D images, tracking and mapping methods
like [24] construct global 3D maps essential for scene com-
prehension. While multi-feature trackers optimize indoor
scenes’ robustness, their emphasis is on minimizing camera
pose drift with sparse features, not dense map reconstruc-
tion. In contrast, KinectFusion [25] and BundleFusion [26]
prioritize GPU-driven dense 3D reconstruction.

SemanticFusion [27] introduced 3D semantic segmen-
tation by incrementally integrating neural network-labeled
semantic surfels. PanopticFusion [28] furthered this with
a 2D-to-3D approach using pixel-wise predictions. While
intuitive, these methods are bottlenecked by 2D segmenta-
tion accuracy. Our method ensures 2D label consistency and
employs a 3D network for mesh segmentation, enhancing
accuracy by jointly considering global and local features.

3. System Overview

In this section, we introduce the main modules of the
pipeline, as shown in Fig. 2, the system is divided into three
parts, 1) SLAM system; 2) 2D Consistent semantic segmen-
tation; 3) 2D-3D semantic segmentation.

3.1 SLAM System

The 3D segmentation method takes a 3D point cloud model
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Fig. 2 Pipeline of the proposed system that is fed by sequential RGB-D pairs and generates 2D
consistent semantic masks, a dense mesh model, and a 3D semantic segmentation result.

Fig. 3 Sparse semantic instancemap building and consistent 2D semantic
image generation.

as input, which is generated by the Simultaneous Localiza-
tion and Mapping (SLAM) system [15]. The RGB-D video
stream captured by the SLAM system serves as the primary
input of 3D reconstruction, thus SLAM plays a bridge role to
RGB-D frames and 3D semantic segmentation. SLAM sys-
tem consists of key components including frontend, backend,
map representation, data association, loop closure detection,
and pose estimation [15], [16], [24].

To correct the consistency of continuous 2D semantic
segmentation labels and fuse them with 3D semantics seg-
mentation, we add a sparse semantic map into the SLAM
system and maintain and update the 2D semantic map dur-
ing system operation, as shown in Fig. 3. In the mapping
component, we extract 2D semantic information from each
keyframe and combine them with geometry structure to ob-
tain a 3D object semantic map. 3D objects’ semantic labels
are obtained from geometric and semantic segments of ev-
ery keyframe, which are fused into a global sparse semantic
map, as shown in Fig. 3. These local sparse semantic maps
are then fused into a global sparse semantic map by using
camera poses to achieve global semantic consistency. After
that, the consistent object instance maps are fed to 3D seg-
mentation pipeline to enhance 3D semantic segmentation, as
shown in Fig. 2.

3.2 2D Consistent Semantic Segmentation

The consistent semantic segmentation strategy in this ar-
chitecture is also an important module that is responsible
to provides stable 2D semantic instance predictions of dif-
ferent views. In this module, two segmentation branches,
learned [13] (Fig. 3(b)) and geometric [29] (Fig. 3(c&d))
methods, are used to deal with RGB and depth maps, re-
spectively. As we all know, images that only capture part
information of objects are useful for 3D semantic segmen-
tation, since more details and boundary information can be
obtained from there. Those partial scans, however, bring
huge challenges to 2D semantic segmentation networks. To
keep the consistency of segments, we take advantage of cam-
era poses and the global semantic sparsemap to correct those
ill-posed results.

3.3 2D-3D Semantic Segmentation Network

In this module, an encoder-decoder network is implemented
for the final 3D dense semantic segmentation task. In the
encoder module, the proposed SP-Block is connected with
the original encoder of MinkowskiNet [7] to build deep em-
bedding features that are decoded in semantic predictions.
Benefiting from the SP-Block, deep features from 2D and
3D domains can be fused to predict 3D semantic segments
from the 3D dense reconstruction.

4. Odometry Based Consistent 2D Semantic Segmenta-
tion

Inconsistent semantic segmentation prediction between dif-
ferent RGB images of the same scene is a common issue
in semantic segmentation methods [13], [14]. To solve this
issue, an incremental joint 2D segmentation strategy is pro-
posed to achieve sharp and consistent segments from each
keyframe.

4.1 Segments from a Single RGB-D Pair

In this paper, each RGB image is fed to YOLACT [13] to
segment instances and predict objects’ labels, there are two
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Fig. 4 Consistent semantic segmentation performances in the ICL se-
quence.

types of outputs, label Rrgb and probability maps Rp , from
the network, where the first one codes each index of detected
objects as shown in Fig. 3(c) while the three channels of the
second map (see Fig. 3(d)) is used to save the corresponding
probabilities.

Since boundaries of semantic masks generated from an
RGB image are commonly noisy, we extract areas with dis-
continuous depth information from the corresponding depth
map, as shown in Fig. 3(b). Given depth maps, geometric-
based shape segmentation methods [2], [29] are used to seg-
ment the scene into different instances according to the nor-
mal edge analysis. As shown in Fig. 4, the TV is segmented
from a wall since the normal map detects disconnection re-
gions between them.

Therefore, a filtered segmentation map R∗ is obtained
by

R∗ = Rrgb · Rd (1)

here Rd is a binary map where instance-covered pixels are
denoted as 1. We have to note that those segments extracted
from the RGB image will be removed if they do not exist
in the geometric map, which will be completed when the

Fig. 5 The fusion of 2D image segmentation from different viewpoints.

information appears in both semantic and geometric images.

4.2 Semantic Propagation

According to the principle of multi-view geometry, objects
in a 3D scene can be decomposed into RGB-D images with
different viewpoints, which provide the basis for the 2D-
assisted 3D scene understanding in this paper, as shown in
Fig. 5. To ensure object consistency across varied views,
we preserve a semantic sparse point cloud map composed
of distinct geometric landmarks and semantic entities. This
map aids in rectifying incorrect semantic labels deduced
from partial scans and is constructed upon the foundational
sparse map generated by visual odometry techniques.

To maintain consistent object representation across var-
ious views, a semantic sparse point cloud map, which em-
beds different geometric landmarks and semantic objects, is
employed. This map serves as an anchor to refine the se-
mantic labels derived from partial or erroneous scans, and is
founded upon the preliminary sparse map provided by visual
odometry methods.

4.2.1 Initialization of Semantic Labels

For each 3D object in the map, initialization is paramount to
ensure coherent tracking throughout. The initial value of an
object Oi is derived from the very first object segmentation.

4.2.2 Matching and Rectifying 2D Semantic Labels

When integrating a new keyframe, 3D objects denoted as
Oi, i ∈ (1,n) (where n symbolizes the count of 3D objects
within the map) are re-projected to yield 2D re-projections,
represented as orpi . The alignment of these projections with
detected semantic labels is ascertained through the Intersec-
tion over Union (IoU) metric:

IoU(Orp
i ,oj) =

|Orp
i ∩ oj |

|Orp
i ∪ oj |

(2)

Where |Orp
i ∩ oj | represents the area (or pixel count) of the

intersection between Orp
i and oj . |Orp

i ∪ oj | represents the
area (or pixel count) of the union of the two regions.
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To determine if Orp
i and oj are matched, two condi-

tions must be satisfied: 1) they must share the same index,
implying they belong to the same semantic class. 2) their
associated probabilities must meet a predefined threshold to
ensure a confident match. Let’s assume the probability of oj

is represented as P(oj) and the probability associated with
the re-projection Orp

i is P(Orp
i ). A match is considered

when:

Index(Orp
i ) = Index(oj) (3)

|P(Orp
i ) − P(oj)| ≤ ε (4)

where, ε is a small tolerance value to account forminor differ-
ences in probability estimates due to noise, inconsistencies,
or other factors. If the difference between the probabilities
is less than or equal to ε , they’re deemed to be effectively the
same, and thus, the objects are considered matched.

This calculation is undertaken for every oj, j ∈ (1,m),
where m corresponds to the total number of identified ob-
jects in R∗. If the calculated IoU exceeds the predetermined
threshold tiou = 0.4, the next step involves evaluating the
probability P(oj). A successful match between orpi and oj

is ascertained when both the object index and P(oj) concur
with those of orpi . In instances where they don’t align, an
examination of the probabilities of other semantic labels in
R∗ is conducted. Objects showcasing probabilities that sur-
pass the threshold tp1 = 0.9 are identified as new additions
and consequently incorporated into the map.

4.2.3 Updating Object Probabilities

During the object fusion phase, when the re-projected data
resonateswith the current keyframe’s semantic labels, there’s
a modification in the probability P(Oi). Specifically, if the
probabilities of the 2D segments exceed tp1, an increment is
applied to P(Oi) as:

P(Oi) = P(Oi) + α (5)

Here, α denotes an increment factor, reflecting object
reconfirmation across different perspectives. In the experi-
ment, we set α = 0.1. Conversely, in situations where these
new segments achieve the required IoU but present varied
semantic labels, the weights W(Oi) of the corresponding 3D
objects undergo a decrement:

W(Oi) = W(Oi) − β (6)

In this context, β represents the decrement factor. In
the experiment, we set α = 0.1. 3D objects that plummet to
a weight below the set threshold tp2 = 0.7 are subsequently
excised from the map.

5. 2D-3D Semantic Segmentation

Given consistent 2D semantic images, camera poses, and a
dense 3D model within the same coordinate, an encoder-
decoder architecture as shown in Fig. 6 is introduced in this
section to predict semantic segmentation.

5.1 Interested Regions Selection

Mapping 2D features onto their 3D counterparts is a fun-
damental process in many 3D semantic segmentation meth-
ods. A notable approach in this domain is presented by
3DMV [23] and 3D-SIS [9], where they utilize differentiable
projection layers to achieve this mapping. While promising,
there’s a pertinent challenge: introducing undesired noise
into the 3D branch, particularly when 2D features lack cor-
responding matches in the 3D models.

To mitigate this challenge and achieve a cleaner projec-
tion, we adopt a bidirectional projection strategy. In the
Fig. 6, the bidirectional arrow signifies a reciprocal pro-
jection mechanism between 2D imagery and 3D models.
Specifically, 2D images can be projected onto the 3D model
leveraging viewpoint and depth cues. Conversely, the 3D

Fig. 6 2D-3D semantic segmentation network. The input including 2D semantic segmentation is as-
sociated with 3D voxels, and the corresponding relationship mask is established through back projection.
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model can be back-projected onto 2D images. This reci-
procity ensures that, within the 3D realm, only regions pos-
sessing definitive and meaningful correspondences in 2D
imagery are contemplated. This strategy produces a binary
mask Bk that indicates the intersection of the projections,
inspired by the literature [3].

Formally, the mask can be defined as:

Bk = KTkwP # R∗k (7)

Here, # denotes the and operation, signifying an inter-
section between the k th semantic input image, represented
by R∗

k
, and the re-projected image derived from the 3D

model. The transformation matrix Tkw , capturing the 6 De-
grees of Freedom (DoFs) pose, facilitates the conversion
from the world coordinates to the k th camera coordinate.
Additionally, K signifies the intrinsic matrix, capturing the
camera’s internal characteristics, essential for the accurate
re-projection process.

By employing this approach, we not only reduce noise
in our projections but also ensure that our 2D-3D mapping
remains consistent, meaningful, and directly relevant to the
scene’s semantics.

5.2 Semantic Projection Block

As shown in Fig. 6, the embedding F̃3D is constructed by
two branches, F3D from the encoder of MinkowskiNet [7]
and F̂V

3D from our semantic projection block introduced in
this section, where V is the number of views which chose
4. The view selection is based on the adjacency principle to
ensure capturing the same object from different angles and
to simplify the 2D-3D mapping computation.

First, we extract deep feature pyramids by usingResNet-
18 [30] from multi-view semantic images. For each view,
there are four levels of feature maps Fl

2D, l ∈ [1 . . . 4] ex-
tracted from 2D image. To maintain compatibility with deep
features from the encoder of 3D-Net [7], we project each
feature channel of Fl

2D to the shape of N × 1 based on the
camera pose and intrinsic matrix, where N is the number of
voxels in the 3Dmodel. Therefore, each level’s feature maps
(with C channels) are transferred to a shape as N × C. And
then at the same level of V views, following [3] we concate-
nate those transferred shapes along the channel direction to
obtain F̂v,l

3D with the size of N × C × V .
Then the Domain Transformation (DoT) operation that

is constructed by four 3D sparse convolutional layers and a
sparse max-pooling layer is proposed to aggregate feature
volumes F̂v,l

3D from different views, as shown in Fig. 7.

F̂V
3D =

V∑
v=1

L∑
l=1

DoT(F̂v,l
3D) (8)

where L is the size of feature levels while V is the number
of views. Via the DoT operation, the shape of F̂v,l

3D is trans-
ferred with the same size of F3D . Moreover, the spatial and
semantic information from different views is fused.

Fig. 7 Detail of DoT.

Finally, corresponding levels of encodes’ features F3D
based on MinkowskiNet and F̂V

3D based on our SP-Block are
fused by a concatenation operation as

F̃3D = F3D ⊕ F̂V
3D (9)

where F̃3D is the fusion embedding that is fed to the decoder
to obtain semantic prediction results.

5.3 Decoder and Training

In our work, we’ve integrated the decoder from Minkowsk-
iNet [7] to facilitate the generation of semantic labels for indi-
vidual 3D points. This choice was made due to Minkowsk-
iNet’s robust architecture and proven performance in han-
dling 3D data. For those who wish to delve deeper into
its mechanics, we direct them to the original MinkowskiNet
paper [7].

To optimize our encoder-decoder structure, we’ve incor-
porated the conventional cross entropy method [31], known
for its effectiveness in segmentation tasks. It’s worth noting
that during the training phase, we rigorously ensure that our
network is fed with accurate ground truth data. This includes
both 2D semantic labels and the respective 3D reconstruction
models for each scenario, ensuring comprehensive training
and improved accuracy in results.

5.4 Implementation Details

The network is implemented on the PyTorch platform, which
exploits the SGD optimizer with a learning rate of 0.01 and
a momentum of 0.9. Furthermore, the network is trained
on the machine with 4 NVIDIA GeForce 2080TI GPUs and
64GB RAM, where the batch size is set to 12 in 100 training
epochs.

The size of RGB-D images fed to our tracking system is
480×640, while the size of semantic images for SP-Block is
downsampled to 240×320. The channels’ size of four layers
in the feature pyramid are 512, 256, 128 and 96, respectively.
After the DoT operation, the channels’ size of four layers in
F̂V

3D are 256, 128, 128 and 96, respectively.
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Table 1 The quantitative accuracy comparison of the final semantic segmentation results on the
ScanNetV2 validation dataset. We use bold and blue numbers to mark the best and second results per
instance, respectively.

Fig. 8 Dense reconstruction results. Up: ScanNet ground truth. Down:
ours.

6. Experiments

In this section, the performances, including dense mapping
and 3D segmentation, of the system are evaluated on public
datasets and compared with state-of-the-art methods.

6.1 Dataset

6.1.1 ScanNetV2

The ScanNetV2 [32] dataset includes 1513 sequences
(around 2.5 million RGB-D frames) from 70 unique indoor
scenes, which provides ground truth annotations for train-
ing, validation, and testing directly on 3D reconstructions.
Those sequences are split into training, validation, and test-
ing datasets where the semantic labels are defined according
to the rule of NYU40 [33].

6.2 Accuracy of Dense Reconstruction

We compare the qualitative reconstruction results between
ours and the ground truth of ScanNetv2 that is built from
BundleFusion [26]. As shown in Fig. 8(a), our method can
reconstruct the chair completely. Benefiting from our ac-
curate pose estimation module and the smooth dense re-
construction strategy, the refrigerator is reconstructed more
accurately than the ground truth. Related semantic segmen-
tation results are shown in Fig. 8(b).

Table 2 3D semantic segmentationmIoU andmAccu results on the Scan-
NetV2 validation set. ‘Y’ meams that a method has a dense reconstruction
function. We use ‘-’ to mark unsure situations and ‘*’ means the result
coming from [37].

6.3 3D Semantic Segmentation Results

6.3.1 Quantitativeanalysis

Following the common evaluationmetrics in previousworks,
the standard mean Intersection over Union (mIoU) and mean
Accuracy (mAcc) as used to evaluate the performance of our
network. Our 3D semantic segmentation results are shown
in Table 1 and Table 2, where we compare our network with
state-of-the-art pipelines. Similar to our methods, SF [27],
SR [34], SPV [37] and PF [28] are semantic reconstruction
systems based RGB-D images, while BPNet [3] deals with
point clouds. To demonstrate the efficacy of 2D-assisted
3D semantic segmentation and the efficiency of 2D consis-
tent semantic segmentation, in the subsequent experiments,
the label ‘our’ signifies outcomes from our 2D-3D fusion
technique without 2D consistency correction. In contrast,
‘ours+’ denotes results from our method with the ‘2D con-
sistent semantic segmentation’ correctionmodule integrated.

In Table 1, our approach achieves higher mIoU and
mAcc scores across various semantic classes. Significantly,
our method, denoted as “Ours,” seamlessly integrates 2D
semantic information with 3D semantics. Additionally,
we introduce an enhanced version of our method, referred
to as “Ours+,” which incorporates a consistency correc-
tion step based on the 2D semantic results. Our method
directly fuses 2D instance semantic, which demonstrates
superior performance in accurately predicting tables and
chairs, as indicated by the highest scores in these cate-
gories. Our method achieves even better results, with in-
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Fig. 9 Aqualitative comparison of 3D semantic segmentation betweenMinkowskiNet and ourmethod.
We use pink boxes to highlight the difference between them. Different classification information is
represented by different colors, and the classification information corresponds to the bottom color
palette.

creased mIoU and mAcc scores in multiple classes, includ-
ing “bath”, “bed”, “bkshf”, “cab”, “chair”, “cntr”, “curt”,
“desk”, “door”, “floor”, “other”, “pic”, “fridge”, “shower”,
“sink”, “sofa”, “table”, “toilet”, “wall”, and “window”. The
results highlight the effectiveness and superiority of our pro-
posed method in enhancing semantic segmentation accuracy
compared to state-of-the-art approaches. The incorporation
of 2D semantic information, along with the consistency cor-
rection step, contributes to improved performance across
various semantic classes. The experimental results demon-
strate the potential of ourmethod for advancing robotic scene
understanding tasks.

Furthermore, we conducted a comprehensive evalua-
tion by comparing the mean Intersection over Union (mIoU)
and mean Accuracy (mAcc) metrics among different meth-
ods, as presented in Table 2. It is important to note that for
both BPNet [3] and our proposed method, the voxel size uti-
lized was set to 5 cm. In contrast, SPV [37] employed a voxel
size of 1 cm. The choice of voxel size plays a crucial role in
balancing the trade-off between accuracy and computational
complexity. When using a smaller voxel size, the models are
able to capture more fine-grained and detailed information,
leading to potentially more accurate predictions. However,
it is worth noting that this finer voxel resolution also requires
more intensive computational resources and imposes higher
hardware requirements.

In our experiments, we evaluated the performance of
various methods for semantic segmentation based on the re-
construction capability and voxel size used. Table 2 summa-

rizes the results in terms of mIoU and mAcc metrics. Com-
pared to these methods, our approach demonstrates promis-
ing results in terms of mIoU and mAcc scores. Specifically,
ourmethod achieves anmIoUof 67.8, outperforming SF, SR,
and PF by 25.6%, 23.8%, and 14.7%, respectively. Similarly,
our approach achieves an mAcc of 88.5, surpassing SF, SR,
and PF by 41.1%, 22.9%, and 19.8%, respectively. Further-
more, we introduce a refined version of our method, denoted
as “Ours+,” which incorporates a consistency correction step
based on 2D semantic results. Ours+ achieves even better
results, with an mIoU of 68.7, representing an improvement
of 0.9% over our basemethod, and anmAcc of 89.3, showing
an improvement of 0.8%. These results highlight the effec-
tiveness of our proposed method in achieving competitive
performance in semantic segmentation. The incorporation
of 2D semantic information, along with the consistency cor-
rection step, contributes to improved accuracy compared to
existing methods. The experimental results demonstrate the
potential of ourmethod for enhancing the quality of semantic
segmentation in robotic scene understanding tasks.

These results highlight the effectiveness of our proposed
method in achieving competitive performance in semantic
segmentation. The incorporation of 2D semantic informa-
tion, along with the consistency correction step, contributes
to improved accuracy compared to existing methods. The
experimental results demonstrate the potential of our method
for enhancing the quality of semantic segmentation in robotic
scene understanding tasks.
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Table 3 3D semantic segmentation results of different 2D view numbers
on the validation set of ScanNetV2.

Table 4 3D semantic segmentation results of different levels on the val-
idation set of ScanNetV2.

6.3.2 Qualitative Analysis

As depicted in Fig. 9, we present a qualitative comparison of
the 3D semantic segmentation results between our method
andMinkowskiNet [9], along with the corresponding ground
truth, in three different scenes. The experimental results
demonstrate that our method is capable of accurately and
comprehensively segmenting the scenes, especially for ob-
jects that are challenging to segment using traditional 3D
point cloud methods, as indicated by the highlighted red
regions in Fig. 9. These findings highlight the enhanced
effectiveness of our method in achieving 3D semantic seg-
mentation by incorporating 2D semantic consistency.

6.4 Ablation Experiment

6.4.1 Ablation for the Number of 2D Views

In Sect. 5.2, we use four distinct 2D views for projecting
onto 3D to enhance the 3D features. We subsequently inves-
tigate the impact of the number of 2D views on 3D semantic
segmentation, and present the results in Table 3. For 3D se-
mantic segmentation, as the number of 2D views increases,
the segmentation accuracy improves gradually. However,
when the number of views reaches five, the accuracy slightly
declines. This suggests that too few views fail to provide suf-
ficient 2D information, while an excessive number of views
hinders the network from effectively extracting useful infor-
mation and discarding redundant data.

6.4.2 Ablation for 2D to 3D Projection Level

As shown in Fig. 6, the SP-Block integrates four 2D pyramid-
level features into their corresponding 3D feature hierarchies.
For ablation, we perform 2D-3D fusion at certain feature lev-
els and compare the fusion results with the baseline method
(MinkowskiUNet40) at each level. From the first four rows
of Table 4, we observe that the 3D segmentation results are
similar at each level. This indicates that individual levels of
2D features can enhance the 3D segmentation results, but the
effect is comparable. However, as the feature fusion levels

increase, as seen in rows 5 to 7 of Table 4, the 3D segmen-
tation results significantly improve. This suggests that the
combination of low-level and high-level features can better
assist 3D semantic segmentation.

7. Conclusion

In conclusion, this paper introduces a novel approach to en-
hance 3D semantic segmentation by utilizing 2D semantic
segmentation from RGB-D sequences. This approach in-
corporates SLAM’s tracking pipeline to generate consistent
2D semantic maps and integrates features from localized 2D
fragments into their corresponding 3D semantic features us-
ing the SP block. The 3D semantic segmentation network
employs a combination of 2D-3D fusion features to achieve
a merged semantic segmentation process for both 2D and 3D
data. Extensive experiments on public datasets demonstrate
the state-of-the-art performance of the proposed 2D-assisted
3D semantic segmentation method. By leveraging the com-
plementary capabilities of 2D and 3D segmentation, our ap-
proach effectively addresses the limitations of 3D semantic
segmentation.
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