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PAPER
Improving the Security Bounds against Differential Attacks for
Pholkos Family

Nobuyuki TAKEUCHI†a), Nonmember, Kosei SAKAMOTO††, Member, Takuro SHIRAYA†, Nonmember,
and Takanori ISOBE† ,†††, Member

SUMMARY At CT-RSA 2022, Bossert et al. proposed Pholkos family,
an efficient large-state tweakable block cipher. In order to evaluate the
security of differential attacks on Pholkos, they obtained the lower bounds
for the number of active S-boxes for Pholkos using MILP (Mixed Integer
Linear Programming) tools. Based on it, they claimed that Pholkos family is
secure against differential attacks. However, they only gave rough security
bounds in both of related-tweak and related-tweakey settings. To be more
precise, they estimated the lower bounds of the number of active S-boxes
for relatively-large number of steps by just summing those in the small
number of steps. In this paper, we utilize efficient search methods based on
MILP to obtain tighter lower bounds for the number of active S-boxes in
a larger number of steps. For the first time, we derive the exact minimum
number of active S-boxes of each variant up to the steps where the security
against differential attacks can be ensured in related-tweak and related-
tweakey settings. Our results indicate that Pholkos-256-128/256-256/512/
1024 is secure after 4/5/3/4 steps in the related-tweak setting, and after
5/6/3/4 steps in the related-tweakey setting, respectively. Our results enable
reducing the required number of steps to be secure against differential attacks
of Pholkos-256-256 in related-tweak setting, and Pholkos-256-128/256 and
Pholkos-1024 in the related-tweakey setting by one step, respectively.
key words: Pholkos, differential attack, active S-box, MILP

1. Introduction

1.1 Background

The differential attack, first introduced by Biham and
Shamir [1], is widely regarded as one of the most important
cryptanalytic techniques for symmetric-key primitives [2]–
[4]. New designs for symmetric-key primitives must be able
to be secure against this type of attack as it is considered a cru-
cial security requirement. However, evaluating the security
against differential attacks can be computationally demand-
ing, as the designer needs to exhaustively evaluate the space
that an attacker can exploit. To address this issue, in many
cases the designers take the aid of mathematical solvers, such
as anMILP (Mixed Integer Linear Programming) [5]–[8] and
SAT (Boolean Satisfiability Problem) [9]–[12].

At CT-RSA 2022, Bossert et al. proposed an efficient
large-state tweakable block cipher called Pholkos [13]. With
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support for 256-bit keys, Pholkos offers 128-bit security
against quantum key-recovery attacks. Moreover, even if
Pholkos is used inmodes having birthday security the scheme
has practically sufficient security. In order to evaluate the se-
curity of differential attacks on Pholkos, designers obtained
the lower bounds for the number of active S-boxes using
MILP tools. Based on it, they claimed that Pholkos family is
secure against differential attacks. However, they only gave
rough security bounds in both of related-tweak and related-
tweakey settings due to the computational hardness of the
security evaluation that comes from the large internal state.
To be more precise, they estimated the lower bounds of the
number of active S-boxes for relatively-large number of steps
by just summing those in the small number of steps.

1.2 Our Contribution

In this paper, we utilize efficient search methods based on
MILP to obtain lower bounds for the number of active S-
boxes in a larger number of steps. For the first time, we
derive the exact minimum number of active S-boxes of each
variant up to the steps where the security against differ-
ential attacks can be ensured in related-tweak and related-
tweakey settings. Our results indicate that Pholkos-256-
128/256-256/512/1024 is secure after 4/5/3/4 steps in the
related-tweak setting, and after 5/6/3/4 steps in the related-
tweakey setting, respectively. Our results enable reducing
the required number of steps to be secure against differ-
ential attacks of Pholkos-256-256 in related-tweak setting,
and Pholkos-256-128/256 and Pholkos-1024 in the related-
tweakey setting by one step, respectively. A summary of our
results is shown in Table 1. The details of our contributions
in each setting are summarized as follows:

(1) Single-key setting

Although the required number of rounds for differential at-
tacks is not changed from the designer’s evaluation, we show
the exact lower bounds for the number of active S-boxes
over all rounds for Pholkos-512 for the first time and those
for more steps for Pholkos-1024 than the designer’s evalua-
tion [13].

(2) Related-tweak setting

We reveal the lower bounds for the number of active S-boxes
over all rounds for Pholkos-256-128/256-256 in the related-
tweak setting. We show that Pholkos-256-128 can be secure
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Table 1 Summary of the required number of steps to be secure against
differential attacks for Pholkos family in each setting.

against differential attacks after 4 steps, which improves the
designer’s result by one round. For Pholkos-512 we derive
the bounds up to 7 steps while the designer’s evaluation [13]
can obtain it only up to 4 steps. For Pholkos-1024, we update
the number of lower bounds of active S-boxes in 5 steps.

(3) Related-tweakey setting

We update the lower bounds for the number of active S-boxes
in 3 steps of Pholkos-256-256. Moreover, we first derived
the lower bounds for the number of active S-boxes over all
rounds for Pholkos-256-128 in the related-tweakey setting.
Our results show that for Pholkos-256-128/256-256/1024,
5/6/4 steps are sufficient to be secure against differential
attacks, respectively, which update the designer’s result of
6/7/5 steps, respectively.

1.3 Organization

This paper is organized as follows. Section 2 provides the
differential attack and how to evaluate the security against
this attack with an MILP. Section 3 describes the specifica-
tion of Pholkos-256-128/256-256/512/1024. In Sect. 4, we
explain our method to evaluate the security of Pholkos in the
single-key, related-tweak, and related-tweakey settings. In
Sect. 5, we show our evaluation results and Sect. 6 discusses
them. Finally, we conclude this paper in Sect. 7.

2. Preliminaries

This section describes differential attacks and the method to
evaluate active S-boxes with MILP.

2.1 Differential Attack

The differential attack [1] is one of the most popular crypt-
analysis techniques for block ciphers. In order to evaluate
the resistance against differential attacks, we evaluate its dif-
ferential probability DPfb for all possible differences and
obtain the maximum one called maximum differential prob-
ability DPfbmax . Let fb , ∆x0, and ∆xr be the b-bit block

cipher, differences of plaintexts, and differences of cipher-
texts, respectively. DPfb is defined as follows:

DPfb (∆x0,∆xr ) =
#{x ∈ {0,1}b | fb(x) ⊕ fb(x ⊕ ∆x0) = ∆xr }

2b
.

If b is small, calculating DPfbmax is feasible. However, this
is not the case for ciphers having more than a 64-bit block
due to computational hardness. Therefore, the maximum
differential characteristic probability DCPfbmax is utilized
to approximate DPfbmax . DCPfbmax is defined as a product
of the differential characteristic probability DCPfb for each
round as follows:

DCPfb =

r∏
R=1

DPfb (∆xR,∆xR+1),

DCPfbmax = max
∆x1,0

∆x2 ,...,∆xr+1

DCPfb ,

where r is the number of rounds. For block ciphers whose
non-linear layer consists of only an S-box, DCPfbmax can
be calculated by multiplication of DPsmax for all active S-
boxes under a well-known Markov cipher assumption, i.e.
DCPfbmax = (DPsmax)

ASlbD where DPsmax and ASlbD are
the maximum differential probability of the S-box and the
lower bound for the number of active S-boxes, respectively.

2.2 MILP-Aided Security Evaluation

MILP (Mixed Integer Linear Programming) is one of the
methods for efficiently finding variables to maximize or min-
imize a particular objective function under some constraints
expressed by a linear inequality. Mouha et al. introduced
MILP into the field of symmetric-key cryptography to ef-
ficiently evaluate the lower bound for the number of active
S-boxes [5]. In their evaluation, we need to express all op-
erations in a symmetric-key primitive as linear inequalities
and assign them to the MILP model as constraints. Then,
the total number of active S-boxes is assigned to the MILP
model as the objective function. After constructing theMILP
model, we can obtain the lower bound for the number of ac-
tive S-boxes by giving it to an MILP solver. In this study, we
employ the Gurobi Optimizer [14] as the MILP solver.

3. Specification of Pholkos

The family of Pholkos was proposed by Bossert et al. at
CT-RSA 2022 [13]. Algorithm 1 shows the encryption pro-
cedures of Pholkos-n-t. Pholkos is specified as four variants
by the length of the plaintext and the tweak. Table 2 shows
each variant and its security level (claimed security) in the
single-key, related-tweak, and related-tweakey settings.

3.1 Notations

• r – the number of rounds.
• s – the number of steps. One step proceeds two rounds
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of AES round function and 2 tweakey XORs, i.e. s =
r/2.

• P – the plaintext of Pholkos. The plain-
text is divided into 128-bit substates, i.e. P =

P[0],P[1], . . . ,P[(n/128) − 1]. It is also divided into
eight 32-bit words. i.e. P = (P0,P1, . . . ,P(n/32)−1).

• IK – 256-bit initial key. It is expressed as follows:

IK = IK0, IK1, . . . , IK7.

• K i – n-bit i-th round expanded key (0 ≤ i ≤ r). It is
expressed as follows:

K i = K i
0,K

i
1, . . . ,K

i
(n/32)−1,

K i = K i[0],K i[1], . . . ,K i[(n/128) − 1].

• T i – t-bit i-th round tweak (0 ≤ i ≤ r). It is expressed
as follows:

T i = T i
0,T

i
1, . . . ,T

i
(n/32)−1,

T i = T i[0],T i[1], . . . ,T i[(t/128) − 1].

• RTK i – n-bit i-th round tweakey (0 ≤ i ≤ r). It is
expressed as follows:

RTKi = RTKi[0],RTKi[1], . . . ,RTKi[(n/128) − 1].

• RCi – The 128-bit i-th round constant (0 ≤ i ≤ r),
which is defined as in [13].

• πn – The 32-bit-wise permutation shown in Table 3,
where n is the length of input. For n = 1024, there are
two type permutations π1024,0 and π1024,1, which are
applied alternatingly, starting with π1024,0.

• πτ – The byte-wise permutation shown in Table 4. πτ
is used to update subkeys and tweaks.

• A(X) – one AES round function applied to the substate

Table 2 Parameters of Pholkos. n and t denote the size of the plaintext
and tweak, respectively.

Table 3 32-bit-wise permutation πn , where n is input length.

Table 4 Byte-wise permutation πτ .

X , is defined as follows:

A(X) = MixColumns ◦ ShiftRows ◦ SubBytes(X),

where MixColumns, ShiftRows, and SubBytes are the
same operations as in AES.

• Alast (X) – last AES round function applied to the sub-
state X , as defined follows:

Alast (X) = ShiftRows ◦ SubBytes(X).

3.2 Step Function

Figure 1 illustrates the first step ofPholkos-512 as an example
of the step function of Pholkos family. At the beginning of
the first step, the plaintext is first XORed to the pre-whitening
RTK0. Then, it will proceed into the step function. One step
consists of two rounds and the application of πn. Each round
consists of A(X) and XORed RTK i . The final step excludes
the final πn and employs Alast (X) instead of A(X).

3.3 Tweakey Scheduling

We show the overview of the tweakey scheduling function in
Fig. 2. The detailed procedure is described as follows.

(1) Key Expansion

For variants with n > 256, the key expansion ϕ shown in
Fig. 3 is first applied to the initial key. Function ϕ expand K

Fig. 1 First step of Pholkos-512 including pre-whitening RTK0. The A
denotes A(X).
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Fig. 2 Tweakey schedule of Pholkos.

Fig. 3 Key expansion function ϕ.

using IK and binary circulant matrices MA, MB, and MC

∈ (F232 )8×8 with branch numbers of four:

MA = circ(11001000), MB = circ(10101000),
MC = circ(10011000).

For Pholkos-512, the expanded key K meets the following
conditions:

K = IK ‖ MA · IK>.

For Pholkos-1024, the expanded key K meets the following
conditions:

K = IK ‖ MA · IK> ‖ MB · IK> ‖ MC · IK>.

(2) Generation of Tweakey

In order to generate the tweakey schedule, we need to ob-
tain the tweak and key schedule from the initial tweak T0

and (expanded) key K0. The function θ and κ provide T i

and K i from T i−1 and K i−1 in Figs. 4(a) and 4(b), respec-
tively. Subsequently, RTK i is generated using the function
γ that combines T i , K i and RCi as shown in Fig. 4(c). Each
function is performed as below:
θ (Fig. 4(a)) : The function θ obtains T i from T i−1, i.e.

T i = θ(T i−1). If t = 128, θ processes πτ . When
t = 256, θ first executes T i−1 using π256 and generates
intermediate tweak T i−1′. Next, T i−1′ is split into 128-
bit substates, and πτ is processed on each substate.

κ (Fig. 4(b)) : The function κ obtains K I from KI−1, I.e,
K i = κ(K i−1). For the variant has an n-bit plain-
text, πn is first applied to K I−1, and then the output
of πn is divided into 128-bit states, I.e, πn(K I−1) =
(K I−1′[0]| |K I−1′[1]| | . . . | |K I−1′[(n/128) − 1]) where
K I−1′[ j] ∈ GF(2). Lastly, πτ is applied to each
K I−1′[ j].

γ (Fig. 4(c)) : The function γ obtains RTK i from T i , K i ,
and RCi , i.e. RTK i = γ(T i,K i,RCi). If t = 128, let j be
the index of substate, γ has been computed as follows:

RTK i[ j] =

{
T i[0] ⊕ K i[ j] ⊕ RCi if j = 0,
T i[0] ⊕ K i[ j] otherwise.

When t = 256, γ has been computed as follows:

RTK i[ j] =

{
T i[ j] ⊕ K i[ j] ⊕ RCi if j = 0,
T i[ j] ⊕ K i[ j] otherwise.

These functions are iterated until generating RTKr .

4. Our MILP Model for Security Evaluation

In this section, we describe how to evaluate the lower bound
for the number of active S-box in Pholkos. We evaluate it
based on a byte-wise truncated difference, as Pholkos is con-
structed by the byte-wise operations. To guarantee 256-bit
security against the distinguishing attack, more than 42 active
S-boxes are needed, as the maximum differential probability
of an S-box in AES is 2−6. In order to assign the byte-wise
MILP model, we first need to define byte-wise truncated
difference vector ∆x = (∆x0,∆x1, . . . ,∆x7) as follows:

∆x =


0 if

7∑
i=0
∆xi = 0,

1 otherwise.

Based on this, we give the constraints to express the differen-
tial propagation of each operation and the objective function
according to [5]. In the following sections, we denoteMvar ,
Mcon, andMobj as the set of variables, the set of constraints,
and the objective function in an MILP model, respectively.

4.1 Basic MILP Model for Pholkos Family

(1) Constraints

As Pholkos consists of an XOR, Linear transformation, and
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Fig. 4 Components of the tweakey generated functions.

S-box, we describe the model of the differential propagation.

XOR : Let input difference vectors be x1, x2. An output
difference vector y = x1 ⊕ x2 is expressed as follows:

Mvar ← x1, x2, y as binary,
Mcon ← −x1 + x2 + y ≥ 0,
Mcon ← x1 − x2 + y ≥ 0,
Mcon ← x1 + x2 − y ≥ 0.

Remarks. In the evaluation of the truncated differences,
we have to consider the case of 1 ⊕ 1 = 1 with the case
of 1 ⊕ 1 = 0, i.e., 1 ⊕ 1 = 0 or 1.

Copy : Let an input difference vector be x. Output differ-
ence vectors (y1, y2) = (x, x) are expressed as follows:{

Mvar ← x, y1, y2 as binary,
Mcon ← x = y1 = y2.

Linear transformation : Let input difference vec-
tors be x0, x1, . . . , xn, output difference vectors be
y0, y1, . . . , yn, and the branch number be B. The linear
transformation is assigned as follows:



Mvar ← x0, x1, . . . , xn, y0, y1, . . . , yn as binary,

Mcon ←

n∑
i=0

xi +
n∑
i=0

yi ≥ B · d,

Mcon ← d ≥ xi(0 ≤ i ≤ n),
Mcon ← d ≥ yi(0 ≤ i ≤ n),

where d is A binary dummy variables.
S-box : Let an input difference vector be x. An output dif-

ference vector y = SubBytes(x) is expressed as follows:{
Mvar ← x, y as binary,
Mcon ← x = y.

(2) Objective Function

The objective function is defined as the total number of
active S-boxes. Let the S-box input difference vectors be
s0, s1, . . . , sn, the objective function is expressed as follows:

Mobj ← Minimize

(
n∑
i=0

si

)
.

If it is more than 42, the variant guarantees 256-bit security
against the differential attack. We evaluate the resistance of
Pholkos against differential attacks by assigning the above
constraints in accordance with the encryption scheme of it
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in Algorithm 1.
In this paper, we evaluate it in the single-key, related-

tweak, related-tweakey settings. The condition of these set-
tings are as follows:

4.2 MILP Model for Each Attack Scenario

We need to give additional constraints to the input differ-
ence depending on the attack scenarios. In this paper, we
evaluate the security against differential attacks in the single
and related-tweak, and related tweakey settings. Hence, we
show additional constraints about these settings one by one.

(1) Single-key Setting

The adversary can require a ciphertext corresponding to ar-
bitrary plaintext to an encryption oracle. Therefore, the
attacker can exploit arbitrary differences in a plaintext. We
assign the setting to the constraint in MILP. Let input mes-
sage differences be x0, x1, . . . , xn, we assign the constraint as
follows:

Mvar ← x0, x1, . . . , xn as binary,

Mcon ←

n∑
a=0

xa ≥ 0.

(2) Related-tweak Setting

The adversary can require a ciphertext corresponding to arbi-
trary plaintext and tweak to an encryption oracle. Therefore,
the attacker can exploit arbitrary differences in a plaintext
and tweak. We assign the setting to the constraint in MILP.
Let input message differences be x0, x1, . . . , xm and input
tweak differences be t0, t1, . . . , tn, we assign the constraint as
follows:

Mvar ← x0, x1, . . . , xm, t0, t1, . . . , tn as binary,

Mcon ←

m∑
a=0

xa +
n∑

b=0
tb ≥ 0.

(3) Related-tweakey Setting

The adversary can require a ciphertext corresponding to
arbitrary plaintext, tweak, and key to an encryption ora-
cle. Therefore, the attacker can exploit arbitrary differences
in a plaintext, tweak, and key. We assign the setting to
the constraint in MILP. Let input message differences be
x0, x1, . . . , xl , input tweak differences be t0, t1, . . . , tm, and
input key differences be k0, k1, . . . , kn, we assign the con-
straint as follows:
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Mvar← x0, x1, . . . , xl, t0, t1, . . . , tm, k0, k1, . . . , kn as binary,

Mcon←

l∑
a=0

xa +
m∑
b=0

tb +
n∑

c=0
kc ≥ 0.

The byte-wise evaluation in this setting causes the prob-
lem that the number of active S-boxes is zero. If all bytes of
the initial plaintext are inactive and all bytes of both the initial
key and the initial tweak are active, all S-boxes are always
inactive because all differences in the tweakey scheduling
function are canceled. However, this never happens in the
actual attack because a bit rotation in each word is applied
in the function κ. Hence, we have to add constraints to avoid
the case of all S-boxes being inactive. In this paper, as well
[13], we apply the assumption that each active byte in RTKs
are only canceled at most once. Based on this, we add con-
straints that the RTK through a one-byte active key path is
canceled at most once. Specifically, focusing on the RTK
generation process, if an input key is active, the total number
of active RTKs by XORed operations of keys and tweaks is
greater than or equivalent to the number of rounds multiplied
by the input key minus one. We assign it to the MILP model
as constraints. We show the example of Pholkos-256 in 2
steps in Algorithm 2.

5. Our Result by MILP-Based Search

In this section, we show the result for the lower bound on the
number of active S-boxes for Pholkos family in each setting
byMILP-based search. Our evaluations totally required three
weeks with three computers equipped with AMD Ryzen
Threadripper 3990X (64-Core) with 256GB RAM.

Table 5 summarizes our results of lower bounds of ac-
tive S-boxes for Pholkos.

Single-key Setting: Our results show that Pholkos-256-
128/256-256/512/1024 required 4/4/3/4 steps to be se-
cure against differential attacks in the single-key setting,
respectively, i.e. after these steps, each variant has more

than 42 active S-boxes.
Related-tweak Setting: We show that Pholkos-256-128/

256-256/512/1024 require 4/5/3/4 steps, respectively,
to be secure against differential attacks in the related-
tweak setting. We derived the lower bounds for the
number of active S-boxes of Pholkos-256-128/256-
256/512/1024 up to 8/9/7/5 steps, respectively.

Related-tweakey Setting: We show that the required num-
ber of steps is estimated as 5/6/3/4 steps for Pholkos-
256-128/256-256/512/1024 against differential attacks
in the related-tweakey setting.

6. Updating Security Bounds

In this section, we explain howour newbounds of the number
of active S-boxes affect the security of Pholkos. For the first
time, we derive the exact minimum number of active S-boxes
of each variant up to the steps where the security against dif-
ferential attacks can be ensured in related-tweak and related-
tweakey settings, while previous results estimated the lower
bounds of the number of active S-boxes for relatively-large
number of steps by just summing those in the small number
of steps.

6.1 Single-Key Setting

While existing results [13] presented the exact lower bounds
for the number of active S-boxes for 8 steps for Pholkos-256-
128/256-256/512 and those for 7 steps for Pholkos-1024,
respectively, we show the lower bounds of Pholkos-256-
128/256-256/512/1024 up to 10 steps for the first time. Al-
though our results cannot reduce the number of required steps
against differential attacks, it reveals the fine-grained secu-
rity of Pholkos against differential attacks. We believe that
these results are helpful for estimating the security against
known-key and hash function settings.

6.2 Related-Tweak Setting

In [13], the lower bounds for 4/7/5/6 or more steps for
Pholkos-256-128/256-256/512/1024 was obtained indirectly
by summing lower bounds of some previous steps, instead of
using the exact MILP-aided approach, respectively. We re-
veal the lower bounds for the number of active S-boxes over
all rounds for Pholkos-256-128/256-256 in the related-tweak
setting. Our results updates the number of required steps
for Pholkos-256-128 against differential attacks from 5 to 4.
For Pholkos-1024, we update the number of lower bounds of
active S-boxes in 5 steps.

6.3 Related-Tweakey Setting

In [13], the lower bounds for 4/5/4/4 or more steps for
Pholkos-256-128/256-256/512/1024 was also derived by
summing lower bounds of some previous steps. We show
the lower bounds of Pholkos-256-128/256-256/1024 can be
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Table 5 Lower bounds for the number of active S-boxes of Pholkos family over 1–10 steps. Bold is
the minimum secure number of steps against differential attacks. Gray is the bounds derived for more
steps from those results. Values in parentheses are the results of [13].

Table 6 Example of active input bytes of minimum #active S-boxes in 3
steps for Pholkos-256-256 in the related-tweakey setting.

found up to 8/7/5 steps, respectively. As a result, we success-
fully update the number of required steps for Pholkos-256-
128/256-256/1024 against differential attacks from 6/7/5
steps to 5/6/4 steps, respectively. Besides, we reveal that
the number of active S-boxes of 3 steps of Pholkos-256-256
is smaller than the results reported in [13]. Table 6 shows an
example of the active input bytes in 3 steps for Pholkos-256-
256, where 0 and 1 are defined as a non-active byte and an
active byte, respectively.

7. Conclusion

In this paper, we developed efficient search methods based
on MILP to obtain tighter lower bounds for the number of
active S-boxes in a larger number of steps. For the first time,
we derived the exact minimum number of active S-boxes of
each variant up to the steps where the security against dif-

ferential attacks can be ensure in related-tweak and related-
tweakey settings. Our results indicate that Pholkos-256-
128/256-256/512/1024 is secure after 4/5/3/4 steps in the
related-tweak setting, and after 5/6/3/4 steps in the related-
tweakey setting, respectively. Our results enable reducing
the required number of steps to be secure against differ-
ential attacks of Pholkos-256-256 in related-tweak setting,
and Pholkos-256-128/256 and Pholkos-1024 in the related
tweakey setting by one step, respectively.

Acknowledgments

This research comprises a part of the results of “Research
and Development of New Generation Cryptography for Se-
cure Wireless Communication Services,” which was com-
missioned by the Ministry of Internal Affairs and Commu-
nications of Japan under the “Research and Development for
Expansion ofRadioResources” grant (grant no.JPJ000254)”.
This work was supported by JST PRESTO (grant no. JP-
MJPR2031).

References

[1] E. Biham and A. Shamir, “Differential cryptanalysis of DES-like
cryptosystems,” J. Cryptology, vol.4, no.1, pp.3–72, 1991.

[2] E. Biham, “New types of cryptanalytic attacks using related keys,” J.
Cryptology, vol.7, no.4, pp.229–246, 1994.

[3] L.R. Knudsen, “Truncated and higher order differentials,” Fast Soft-
ware Encryption: Second InternationalWorkshop, Leuven, Belgium,

http://dx.doi.org/10.1007/bf00630563
http://dx.doi.org/10.1007/bf00630563
http://dx.doi.org/10.1007/bf00203965
http://dx.doi.org/10.1007/bf00203965
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16


1204
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

Proceedings, B. Preneel, ed., Lecture Notes in Computer Science,
vol.1008, pp.196–211, Springer, 1994.

[4] E. Biham and A. Shamir, “Differential cryptanalysis of the full
16-round DES,” Advances in Cryptology - CRYPTO’92, 12th An-
nual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, Proceedings, E.F. Brickell, ed., Lecture Notes in Computer
Science, vol.740, pp.487–496, Springer, 1992.

[5] N. Mouha, Q. Wang, D. Gu, and B. Preneel, “Differential and linear
cryptanalysis using mixed-integer linear programming,” Information
Security and Cryptology - 7th International Conference, Inscrypt
2011, Beijing, China, Revised Selected Papers, C. Wu, M. Yung,
and D. Lin, eds., Lecture Notes in Computer Science, vol.7537,
pp.57–76, Springer, 2011.

[6] Z. Xiang, W. Zhang, Z. Bao, and D. Lin, “Applying MILP method
to searching integral distinguishers based on division property for 6
lightweight block ciphers,” Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Hanoi, Vietnam, Pro-
ceedings, Part I, J.H. Cheon and T. Takagi, eds., Lecture Notes in
Computer Science, vol.10031, pp.648–678, 2016.

[7] S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song, “Auto-
matic security evaluation and (related-key) differential characteristic
search: Application to simon, present, lblock, DES(L) and other
bit-oriented block ciphers,” Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., Proceedings, Part I, P. Sarkar and T. Iwata, eds., Lecture
Notes in Computer Science, vol.8873, pp.158–178, Springer, 2014.

[8] Y. Sasaki and Y. Todo, “New impossible differential search tool from
design and cryptanalysis aspects: Revealing structural properties of
several ciphers,” Advances in Cryptology - EUROCRYPT 2017 -
36th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Paris, France, Proceedings, Part
III, J. Coron and J.B. Nielsen, eds., Lecture Notes in Computer Sci-
ence, vol.10212, pp.185–215, 2017.

[9] L. Sun, W. Wang, and M. Wang, “More accurate differential prop-
erties of LED64 and Midori64,” IACR Trans. Symmetric Cryptol.,
vol.2018, no.3, pp.93–123, 2018.

[10] L. Sun, W. Wang, and M. Wang, “Accelerating the search of differ-
ential and linear characteristics with the SAT method,” IACR Trans.
Symmetric Cryptol., vol.2021, no.1, pp.269–315, 2021.

[11] J. Guo, G. Liu, L. Song, and Y. Tu, “Exploring SAT for cryptanaly-
sis: (Quantum) collision attacks against 6-round SHA-3,” Advances
in Cryptology - ASIACRYPT 2022 - 28th International Conference
on the Theory and Application of Cryptology and Information Se-
curity, Taipei, Taiwan, Proceedings, Part III, S. Agrawal and D. Lin,
eds., Lecture Notes in Computer Science, vol.13793, pp.645–674,
Springer, 2022.

[12] J. Erlacher, F. Mendel, and M. Eichlseder, “Bounds for the security
of ascon against differential and linear cryptanalysis,” IACR Trans.
Symmetric Cryptol., vol.2022, no.1, pp.64–87, 2022.

[13] J. Bossert, E. List, S. Lucks, and S. Schmitz, “Pholkos – Efficient
large-state tweakable block ciphers from the AES round function,”
Topics in Cryptology - CT-RSA 2022 - Cryptographers’ Track at the
RSA Conference 2022, Virtual Event, Proceedings, S.D. Galbraith,
ed., Lecture Notes in Computer Science, vol.13161, pp.511–536,
Springer, 2022.

[14] G.O. Inc., “Gurobi optimizer 6.5,” Official webpage, http://www.
gurobi.com/, 2015.

Nobuyuki Takeuchi received the B.E. and
M.E. degree from University of Hyogo, Japan,
in 2021 and 2023, respectively. His research
interest had been cryptography. He has worked
at SECOM CO., LTD. from 2023.

Kosei Sakamoto received the B.E., M.E.,
and Ph.D. degrees from Kansai University,
Japan, in 2017, and University of Hyogo, Japan,
in 2020 and 2023, respectively. He has worked
at Mitsubishi Electric Corporation from 2023.
His current research interests include informa-
tion security and cryptography.

Takuro Shiraya received the B.E. degree
from University of Hyogo, Japan, in 2022. He is
currently a M.E. student at University of Hyogo,
Japan. His research interest is cryptography.

Takanori Isobe received the B.E., M.E., and
Ph.D. degrees from Kobe University, Japan, in
2006, 2008, and 2013, respectively. From 2008
to 2017, he worked at the Sony Corporation.
From 2017 to 2022, he has been an Associate
Professor at University of Hyogo. Since 2023,
he has been a Professor at University of Hyogo.
His current research interests include informa-
tion security and cryptography.

https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-48071-4_34
http://dx.doi.org/10.1007/3-540-48071-4_34
http://dx.doi.org/10.1007/3-540-48071-4_34
http://dx.doi.org/10.1007/3-540-48071-4_34
http://dx.doi.org/10.1007/3-540-48071-4_34
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-319-56617-7_7
http://dx.doi.org/10.46586/tosc.v2018.i3.93-123
http://dx.doi.org/10.46586/tosc.v2018.i3.93-123
http://dx.doi.org/10.46586/tosc.v2018.i3.93-123
http://dx.doi.org/10.46586/tosc.v2021.i1.269-315
http://dx.doi.org/10.46586/tosc.v2021.i1.269-315
http://dx.doi.org/10.46586/tosc.v2021.i1.269-315
http://dx.doi.org/10.1007/978-3-031-22969-5_22
http://dx.doi.org/10.1007/978-3-031-22969-5_22
http://dx.doi.org/10.1007/978-3-031-22969-5_22
http://dx.doi.org/10.1007/978-3-031-22969-5_22
http://dx.doi.org/10.1007/978-3-031-22969-5_22
http://dx.doi.org/10.1007/978-3-031-22969-5_22
http://dx.doi.org/10.1007/978-3-031-22969-5_22
http://dx.doi.org/10.46586/tosc.v2022.i1.64-87
http://dx.doi.org/10.46586/tosc.v2022.i1.64-87
http://dx.doi.org/10.46586/tosc.v2022.i1.64-87
http://dx.doi.org/10.1007/978-3-030-95312-6_21
http://dx.doi.org/10.1007/978-3-030-95312-6_21
http://dx.doi.org/10.1007/978-3-030-95312-6_21
http://dx.doi.org/10.1007/978-3-030-95312-6_21
http://dx.doi.org/10.1007/978-3-030-95312-6_21
http://dx.doi.org/10.1007/978-3-030-95312-6_21
http://www.gurobi.com/
http://www.gurobi.com/

