
DOI:10.1587/transfun.2023EAP1103

Publicized:2024/08/21

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Hierarchical Chaotic Wingsuit Flying Search Algorithm with
Balanced Exploitation and Exploration for Optimization

Sicheng LIU†, Kaiyu WANG†, Haichuan YANG††, Tao ZHENG†, Zhenyu LEI†, Meng JIA†††a), Nonmembers,
and Shangce GAO†b), Member

SUMMARY
Wingsuit flying search is a meta-heuristic algorithm that effectively

searches for optimal solutions by narrowing down the search space itera-
tively. However, its performance is affected by the balance between ex-
ploration and exploitation. We propose a four-layered hierarchical pop-
ulation structure algorithm, multi-layered chaotic wingsuit flying search
(MCWFS), to promote such balance in this paper. The proposed algorithm
consists of memory, elite, sub-elite, and population layers. Communication
between the memory and elite layers enhances exploration ability while
maintaining population diversity. The information flow from the popula-
tion layer to the elite layer ensures effective exploitation. We evaluate the
performance of the proposed MCWFS algorithm by conducting compara-
tive experiments on IEEE Congress on Evolutionary Computation (CEC)
benchmark functions. Experimental results prove that MCWFS is superior
to the original algorithm in terms of solution quality and search perfor-
mance. Compared with other representative algorithms, MCWFS obtains
more competitive results on composite problems and real-world problems.
key words: Evolutionary algorithm, Exploration and exploitation, Popu-
lation structure, Wingsuit flying search

1. Introduction

In recent decades, evolutionary algorithms (EAs) have
emerged as effective approaches for addressing high-
dimensional, complex, multi-modal, and challenging opti-
mization problems [1]. The mechanisms of EAs are derived
from biological evolution theory and encompass a variety of
paradigms, including differential evolution [2] [3], genetic
algorithm [4], and particle swarm optimization [5]. EAs
have demonstrated impressive performance in solving real-
world problems, such as protein structure prediction [6] [7],
dynamic evolution event processes [8], and wind farm lay-
out optimization [9]. Consequently, an increasing number
of researchers are dedicated to enhancing the performance
of EAs.

Wingsuit flying search (WFS) algorithm is a population-
based algorithm inspired by wingsuit flying sport [10] to
solve global optimization problems. It simulates the pilot’s
landing point shifting to a lower area as a clearer image is
obtained during landing. The process of finding the lowest

†Faculty of Engineering, University of Toyama, Toyama 930-
8555, Japan.
††Graduate School of Technology, Industrial and Social Sci-

ences, Tokushima University, Tokushima 770-8506, Japan.
†††School of Computer Science and Engineering, Xi’an Univer-

sity of Technology, Xi’an, Shaanxi 710048, China.
a) E-mail: jiameng112@163.com
b) E-mail: gaosc@eng.u-toyama.ac.jp

point of landing is considered to be the search for the opti-
mal solution in the minimum value optimization. The search
area is confirmed by generating initial points using the Hal-
ton sequence [11] and forming a grid in the search space.
The initial points present a grid distribution and are located
on grid nodes. The initial points are candidate solutions and
promote the grid to shrink towards the current optimal solu-
tion. WFS arrives at the global best solution by reaching the
maximum number of iterations. Besides population size and
maximal iteration number, WFS doesn’t have to set any ad-
ditional parameters. The grid formed by laying points sus-
tains a huge area to explore the search space and find better
solutions in promising areas. Many researchers have also
conducted further research on WFS. Some researchers are
committed to improving its performance [12] [13]. Yang
et al. [13] utilized chaos perceptron to diversify the popula-
tion and explore the search space. But as the search range
shrinks, it suffers from convergence stagnation and losing
the ability to identify other potential solution areas. Some
researchers use WFS to solve real-world problems [14] [15].
Venkatesh et al. [15] proposed a hybrid strategy with joint
implementation of WFS and artificial cell swarm optimiza-
tion for controllable device-based load shifting to manage
demand in micro-grids. Therefore, it is worthwhile to in-
depthly study the performance of WFS.

Since WFS is population-based and consists of indi-
viduals, the structure of the population affects the commu-
nication and organization of individuals as well as the effec-
tiveness and efficiency [16]. An organized population struc-
ture should have an essential impact on the performance of
EAs [17] [18]. The basic and common structure is a panmic-
tic structure, in which every individual has the possibility to
interact with each other, and the selection for information
communication is random. However, due to its disorganized
population structure, information spreads rapidly, leading to
the rapid vanishing of population diversity and causing con-
vergence prematurely. Various population structures have
been proposed to address such problems, which can be clas-
sified into four main groups: distributed, cellular, hierarchi-
cal, and other structures. The distributed structure builds
upon the panmictic structure by dividing the population into
several sub-populations [19]. Using a divide-and-conquer
mechanism, the sub-populations iterate independently and
communicate with each other through the migration of in-
dividuals among the population [20]. This helps maintain
population diversity. In 2019, Luo et al. [21] proposed a

Copyright© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

distributed multiple population structure, dividing the popu-
lation into several sub-populations and testing it on dynamic
optimization problem benchmarks in IEEE CEC2009. As a
result, population diversity increased significantly. The cel-
lular structure [22] organizes the population in a grid and
allows individuals to communicate only with adjacent in-
dividuals. It includes several population topologies, such as
ring topology [23] and Von Neumann topology [17]. Hierar-
chical structures are hybrid structures [24] that combine two
or more other structures hierarchically [25]. The popula-
tion is often divided into several colonies, with each colony
iterating using its own strategy [26]. Wang et al. [27] intro-
duced a three-layered hierarchical gravitational search al-
gorithm (HGSA) with a gravitational constant, which mit-
igates premature convergence and enhances the search ca-
pability of GSA. In 2022, another differential evolution al-
gorithm with a three-layer hierarchical structure [28] was
proposed to maintain high population diversity while pro-
moting convergence speed. There are other types of pop-
ulation structures, such as small-world [29] [30], niching
technique [31–33], and scale-free structure [34] [35].

WFS has significant ability in fast convergence but
lacks the ability to explore new regions. Although CWFS
expands the search area of WFS, it still falls into local op-
tima and can’t jump out with the search area shrinking in
the iterative process. Neither WFS nor CWFS consider en-
hancing exploration behavior when the grid shrinks. In this
paper, we propose a four-layered hierarchical chaotic wing-
suit flying search, abbreviated as MCWFS. The hierarchi-
cal structure disposes the population into several layers with
different targets. We divide the population into population
layer, sub-elite layer, elite layer, and memory layer. The
communication between each layer improves the ability of
MCWFS to increase the likelihood of discovering global op-
tima while avoiding local optima and improving population
diversity.

The proposed MCWFS makes contributions to the fol-
lowing three aspects: 1) A four-layered hierarchical struc-
ture is firstly proposed to improve the wingsuit flying search
algorithm, 2) The system of MCWFS makes it have a sig-
nificant performance on balancing exploitation and explo-
ration, and 3) The experimental results indicate MCWFS
can be investigated on real-world problems.

The rest of this paper is organized as follows: Sec-
tion 2 introduces previous research. MCWFS is proposed in
Section 3. Experimental results are compared and analyzed
with other representative algorithms in Section 4. Finally,
Section 5 introduces conclusions and our future works.

2. Previous Research

2.1 Wingsuit flying search (WFS)

WFS is a population-based minimum optimization method
inspired by wingsuit flying, and the process of WFS can be
described as follows:

(I) Initialize N individuals: Initial points, which are

candidate solutions, are generated by the Halton sequence
[11] in a D-dimensional box-constrained search space, and
are described as:

x = [x1, x2, x3, ..., xD−1, xD]T ∈ RN , xmin ⩽ x ⩽ xmax (1)

In each dimension, each point xi(t) of the current itera-
tion t is located at a node in the grid, where i ∈ 1, 2, ...,N.
The lower and upper bounds of the grid’s boundary in the
coordinate axis are xi,min(t) and xi,max(t). The distance be-
tween each point is ∆xi(t) = [∆x1(t),∆x2(t), ...∆xD(t)]T . N0 is
introduced to define the number of nodes and is set as D√N.
The initial discretization of ∆xi(t) is described as:

∆x(t)
i =

x(t)
i,max − x(t)

i,min

N0
(2)

(II) Determine point’s neighborhood size: In the first
iteration t = 1, the grid includes a large area of individu-
als. In the first iteration, each point’s neighborhood size is
P(t)(max). For t ≥ 2 iteration, the point is allocated with less
neighborhood points P(t)(i). The points’ objective function
values of the previous iteration are sorted in ascending order.
When a point increases to the N(t)th, there will be no neigh-
borhood points. The linear dependence of points delivered
to the (t + 1)th iteration is defined as:

P(t)(i) = ⌈P(t)
max(1 −

i − 1
N(t) − 1

)⌉ (3)

N(t) =

⌈
2N

P(t)
max

⌉
(4)

P(t)
max =

⌈
a(t) · N

⌉
(5)

a(t) = 1 − v−
t−1
T−1 (6)

where search sharpness parameter a(t) ∈ (0, 1), and T de-
scribes the number of algorithm iterations. According to
flier’s velocity, the WFS’s parameter is v > 0.

(III) Generate neighborhood points: The search range
of WFS starts to shrink with iteration number increasing.

∆x(t) = (1 − a(t)) · ∆x(1), t ≥ 2 (7)

Then, the new neighborhood points are generated, and
denoted as y j

(
x(t)

i

)
, j ∈

{
1, 2, ..., P(t)(i)

}
. In order to deter-

mine the generated direction, the vector v(t)
i = x(t)

i − x(t)
1 is

created for each point x(t)
i . And its coordinates update as:

S k,1(x(t)
i) = {x(t)

k,i − ∆x(t)
k , x

(t)
k,i}, if v(t)

k,i < 0 (8)

S k,2(x(t)
i) = {x(t)

k,i, x
(t)
k,i + ∆x(t)

k }, if v(t)
k,i > 0 (9)

S k,3(x(t)
i) = S k,1(x(t)

i)
⋃

S k,2(x(t)
i), if v(t)

k,i = 0 (10)

where k is a random index from [1, 2, ...,D].
WFS is distinguished from other evolutionary algo-

rithms by its simple operation. In the iteration process, ∆x(t)
i

determines the grid boundaries, and the search space nar-
rows down as the iteration number increases. This can lead

LIU et al.: HIERARCHICAL CHAOTIC WINGSUIT FLYING SEARCH ALGORITHM WITH BALANCED EXPLOITATION AND EXPLORATION FOR OPTIMIZATION
3

to premature convergence and decreased search ability for
the algorithm.

2.2 Wingsuit flying search improved by chaos perceptron

CWFS generates a new matrix of points by chaos percep-
tron in the external area to explore for identifying various
solution areas. CWFS divides the population into n sub-
populations, bi, i = 1, 2, ...n. Each sub-population consists
of two sub-components, bh

i and bl
i. Sub-component bh

i up-
dates according to the Halton sequence principle [11], and
the number of individuals is defined as uh. The other sub-
component bl

i is generated in the external area by the logistic
map [36], proposed by May in 2004. The number of indi-
viduals is called ul. The logistic map principle, uh, and ul
are described as:

lt+1 = r · lt · (1 − lt) (11)

ul = N · p (12)

uh = N · (1 − p) (13)

where lt represents the chaotic number in generation t, lt ∈
(0, 1). The parameter r is set as 4 in CWFS. The p is the
occupation rate of bl

i among bi, which is a decimal from 0 to
1, and at the same time, bh

i occupies 1 − p of bi. In CWFS,
p is set as 0.2.

The updating equations of bl
i and bh

i are, respectively,
following as:

l f ,k = (2 · L f ,k − 1) · ∆x(t)
i,k + xg,k (14)

he,k = (2 · He,k − 1) · ∆x(t)
i,k + xg,k (15)

where l f ,k and he,k are the individuals of the matrix bl
i,

f = 1, 2, 3, ...ul, and bh
i , e = 1, 2, 3, ...uh, respectively. H

is a matrix of all values obtained by the principle of the
Halton sequence [11], while L is a matrix of all values ob-
tained by the principle of the logistic map [36]. Both sub-
populations bh

i and bl
i iterate around the parent individual xg,

g = 1, 2, 3, ...,N(t).
The individuals with the minimum objective function

value in bl
i and bh

i are defined as Xl and Xh, respectively. The
search range adjustment parameter d = 0.1 is used in CWFS
to decrease ∆xt

i+1 to exploit for the global optimum in the
internal grid or increase ∆xt

i+1 to explore in the external grid
generated by the logistic map.

∆x(t)
i+1 = (1 − d) · ∆x(t)

i , f (Xh) < f (Xl) (16)

∆x(t)
i+1 = (1 + d) · ∆x(t)

i , f (Xh) > f (Xl) (17)

3. Four-layered hierarchical Chaotic Wingsuit Flying
Search Algorithm

3.1 Motivation

In CWFS, it is notable to divide the population into two sub-
components with different iteration methods. CWFS delays

1 2 3
, , ,
h h h h

n
b b b b ⋯

1 2 3
, , ,
l l l l

n
b b b b ⋯

h
X

l
X

e
X

1
, , ,

m m m m n
X X X X

 2 3
 ⋯

 ⋯

Fig. 1 The four-layered hierarchical structure of MCWFS.

the convergence velocity and avoids prematurely falling into
local optima. As a result, CWFS efficiently exploits the
search area among ∆x(t), and the local search ability is en-
hanced. However, CWFS always iterates and generates new
offspring around ∆x(t), limiting its ability to find a better area
for an improved solution. Consequently, CWFS is exces-
sively inclined towards exploitation, leading to premature
convergence and falling into local optima. CWFS is weak
in global search and exploration behavior, so that it cannot
balance the search ability between exploitation and explo-
ration.

To strike a balance between the two aspects and find
a solution closer to the optimal value, we introduce a hier-
archical population structure to improve CWFS. According
to previous research, population topology guides the indi-
vidual’s evolution direction, and improving communication
between individuals has proven to be significant. In this pa-
per, we innovatively introduce a four-layered hierarchical
chaotic wingsuit flying search, abbreviated as MCWFS.

3.2 Proposed MCWFS

In MCWFS, a four-layered hierarchical population structure
is applied to promote information interaction and balance
between exploration and exploitation. These four layers
are named the population layer, sub-elite layer, elite layer,
and memory layer. The four-layered hierarchical structure
is shown in Fig. 1.

Population layer: This layer contains all populations
representing the current iteration’s individuals. It is regarded
as the fundamental layer. Individuals are provided with an
integrated search space for evaluation, mutation, and selec-
tion. As the iteration increases, the population layer’s in-
dividuals are guided by individuals in the sub-elite layer,
which describes the composition of a function assembled
by numerous evolved individuals. We divide the popula-
tion into an inner search area bh

i and an outer search area
bl

i based on CWFS. Individuals in the inner search area fol-
low the Halton sequence principle [11] for updates, while in
the outer search area, the logistic map [36] generates new
offspring.

Sub-elite layer: To guide the iteration of ordinary
individuals, we showcase current best individuals in this
layer. The current best individual generated by the Halton

4
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

sequence principle is defined as Xh. Meanwhile, the cur-
rent best individual generated by the logistic map is known
as Xl. The sub-elite layer accelerates convergence speed
towards Xh and Xl, and the local search in these areas is
strengthened with each iteration. As a result, the popula-
tion layer achieves complete individuals’ update velocity
under the guidance of the sub-elite layer. Information ex-
change flows one way, from the population layer to the sub-
elite layer. Cooperation between these two layers enhances
the exploitation behavior of the MCWFS algorithm and in-
creases the orderliness of information interaction between
individuals in the population.

Elite layer: Since some potential individuals are dis-
covered in the sub-elite layer, the global optimal individual
Xe is generated by comparing values of Xh and Xl. The flow
of information between individuals is unidirectional, from
the sub-elite layer to the elite layer.

Xe =

{
Xh, if Xh ≤ Xl
Xl, otherwise (18)

The elite layer provides the MCWFS algorithm with
two advantages: it keeps the global optimal individual at-
tracting current best individuals from falling into local op-
tima, and it accumulates the speed of individuals’ move-
ment, reducing the distance between individuals and the
global optimum.

Memory layer: To find different areas with a variety
of solutions in the search space, we establish this layer to
generate new trial solutions based on the elite layer. The
individuals in this layer are initialized and set as Xm, m =
{1, 2, 3, ...N}. Communication between the elite and mem-
ory layers is bidirectional. On one hand, the elite layer is
guided by the memory layer to update towards the increased
probability of finding solutions with better objective func-
tion values. Two random individuals Xmr2 and Xmr1 from
the memory layer are selected to generate a temporary indi-
vidual Xe′ . The process is defined as:

Xe′ = Xe + pr · (Xmr2 − Xmr1) (19)

Xe(t) =
{

Xe′ (t), if f (Xe′ (t)) ≤ f (Xe(t))
Xe(t), otherwise (20)

where t denotes the algorithm’s iteration numbers. Through
experimentation, pr is a fixed value set as pr = 0.5. The
fitness function is recorded as f .

On the other hand, the memory layer also records pre-
vious global best individuals and evolves with the iteration
of the elite layer. The update process for Xm, based on
greedy selection, is described as:

Xmbest =

{
Xe′ (t), if Xe′ (t) ≤ Xmbest
Xmbest, otherwise (21)

where Xmbest is the individual with best objective function
value in the memory layer.

Thus, information provided by the elite layer promotes
the iteration of individuals in the memory layer. Communi-
cation between these two layers increases the probability of

discovering underlying areas of solutions and avoids the cost
of decline in convergence. As a result, the exploration be-
havior of the MCWFS algorithm is significantly improved.

3.3 Framework of MCWFS

The pseudocode for MCWFS is presented in Algorithm 1.
The framework of MCWFS is divided into three main parts:
1) Initialization; 2) Information flows from the population
layer to the elite layer; and 3) Information exchanges be-
tween the memory layer and the elite layer. First, initial-
ize the parameters according to lines 3-10. The fixed value
pr is set as 0.5, and the population X is generated through
N,N0,△x. The initial discretization step △x is defined in
line 7. Then, lines 13-27 show how MCWFS explores the
search space efficiently. The maximal number of neighbor-
hood points Pmax is calculated in line 13. Referred to as
flier’s velocity, the algorithm parameter v > 0 (line 15). bl

i
and bh

i are generated around xg by the logistic map and Hal-
ton sequence, respectively (lines 17-18). The smallest indi-
viduals Xh and Xl are generated on the sub-elite layer (lines
19-20). The global optimum Xe is also determined by com-
paring f (Xh) and f (Xl) (lines 23-27). Finally, a temporary
individual Xe′ is generated by two random individuals in the
memory layer to enhance exploitation behavior and avoid
falling into local optima (lines 29-30). The best individuals
of the elite layer and memory layer are updated by Eq. (20)
and Eq. (21), respectively (lines 31-32).
4. Experiment

The results of MCWFS and other competing algorithms are
evaluated by using MATLAB R2019b on a Windows 10 op-
erating system, Intel i7-9700 with 8GB RAM. Their per-
formance is tested on the IEEE CEC2017 and 2011 bench-
mark function suites under the same experimental environ-
ment. IEEE CEC competitions includes variant benchmark
test sets to measure the performance of algorithms [37].
IEEE CEC2017 is a single-objective benchmark to verify
the work-ability of the algorithms [38]. IEEE CEC2011
is a benchmark set to distinguish the effectiveness of the
algorithms on real-world numerical optimization problems
[39]. Its detailed description is shown in Supplementary File
[40]. IEEE CEC2017 consists of 30 functions, including
uni-modal functions (F1-F3), multi-modal functions (F4-
F10), hybrid functions (F11-F20), and composite functions
(F21-F30) in dimensions (i.e., D) 30, 50, and 100. IEEE
CEC2011 (G1-G22) is a real-world problem benchmark
function suite with 51 independent runs on 22 functions. We
have chosen seven representative algorithms to validate the
effectiveness of MCWFS. Initially, we selected the original
algorithms WFS [10] and CWFS [13] to illustrate the ad-
vancement achieved by MCWFS. Additionally, we included
CCWFSSE [12] which is a improved variant of WFS to
further establish the performance of MCWFS. Simultane-
ously, we have also chosen a hierarchical population struc-
ture algorithm HGSA [27], a variant of the classical algo-
rithm GLPSO [41], the IEEE CEC2020 champion algorithm

LIU et al.: HIERARCHICAL CHAOTIC WINGSUIT FLYING SEARCH ALGORITHM WITH BALANCED EXPLOITATION AND EXPLORATION FOR OPTIMIZATION
5

Algorithm 1: Pseudocode of MCWFS
1 begin
2 /*Initialization */
3 p = 0.5
4 v = rand(10, 100)
5 N = N∗ − 2
6 N0 = Ceil(N(1/n))
7 △x = (xmax − xmin) ∗ N0
8 Generate and evaluate population X
9 while Terminal Condition do

10 /*Information flows from population layer to elite
layer*/

11 Pmax = Ceil(α ∗ N)
12 N = Ceil(2 ∗ N/Pmax)
13 α = 1 − v−(t−1)/(T−1)

14 Sort X, and generate Nth point
15 bl

i ← Generating individuals by logistic map around xg

point using △x
16 bh

i ← Generating individuals by Halton sequence
around xg point using △x

17 f (bl
i) = evaluate(bl

i); f (bh
i) = evaluate(bh

i); f (Xl) =
min[f (bl

i)]; f (Xh) = min[f (bh
i)]

18 if f (Xl) < f (Xh) then
19 f (Xe)← f (Xl)
20 else
21 f (Xe)← f (Xh)
22 end
23 /*Information exchanges between memory layer and

elite layer*/
24 Initialize memory layer’s individuals Xm and select

two random individuals Xmr2 and Xmr1.
25 Xe′ = Xe + pr · (Xmr2 − Xmr1)
26 Update elite layer’s best individual Xe(t) using (20)
27 Update memory layer’s best individual Xmbest using

(21)
28 end
29 end

IMODE [42], and a state-of-the-art algorithm SIS [43], to
underscore the competitiveness of MCWFS within the do-
main of EAs. The experimental settings of all algorithms
are obtained by its relevant paper and are listed in Table
6. Population size N is 101 for MCWFS, and the maximal
number of function evaluations (MFES) of all algorithms is
set as 104 · D for a fair comparison. We calculate the ab-
solute error and the optimal results for IEEE CEC2017 and
CEC2011, respectively. Evaluation criteria are introduced
as follows:

(1) Non-parametric statistical test: The statistical re-
sults of the Wilcoxon rank-sum test distinguish significant
differences between two algorithms with a significant level
of 0.05. “ + ” (W) ,“ ≈ ” (T), and “ − ” (L) mean MCWFS
is significantly better, draw, and worse than its competitors,
respectively.

(2) Convergence curve graph: The trend of conver-
gence over iteration can be visually represented on this
graph. The horizontal axis represents MFES, while the ver-
tical axis indicates the average error value.

(3) Box-whisker plot diagram: This graph infers infor-
mation about solutions’ distribution and dispersion. The val-

Table 1 Experimental result comparisons of MCWFS and other algo-
rithms on IEEE CEC2017.

CEC2017

D=30

MCWFS CWFS WFS CCWFSSE
+/ ≈ /− 14/15/1 30/0/0 29/1/0
HGSA GLPSO IMODE SIS
17/4/9 25/1/4 14/0/16 22/2/6

D=50

MCWFS CWFS WFS CCWFSSE
+/ ≈ /− 15/15/0 30/0/0 30/0/0
HGSA GLPSO IMODE SIS
19/1/10 25/1/4 19/1/10 25/2/3

D=100

MCWFS CWFS WFS CCWFSSE
+/ ≈ /− 13/17/0 27/1/2 30/0/0
HGSA GLPSO IMODE SIS
18/2/10 29/0/1 18/0/12 27/1/2

Table 2 Experimental result comparisons of MCWFS and other algo-
rithms on IEEE CEC2011.

CEC2011

MCWFS CWFS WFS CCWFSSE
+/ ≈ /− 10/12/0 20/2/0 17/1/4
HGSA GLPSO IMODE SIS
13/4/5 18/1/3 21/0/1 18/4/0

ues of maximum, first quartile, median, third quartile, and
minimum are respectively denoted by the lines of the upper
block, upper blue, red, lower blue and lower block. The red
“ + ” represents extreme values.

4.1 Comparison with WFS Variants

MCWFS is adopted to verify its performance among WFS
variants by comparing it with WFS [10], CWFS [13], and
CCWFSSE [12]. Table 1 presents the results on IEEE
CEC2017 with 30, 50, and 100 dimensions, while the results
on IEEE CEC2011 are summarized in Table 2. The detailed
experiment results are given in Supplementary File [40].
To directly show performance of our algorithm, its results
are summarized in Table 3. From the W/T/L comparison,
it is evident that MCWFS outperforms other WFS variants
across different dimensions. Building on the original algo-
rithm, MCWFS retains the advantages of CWFS and im-
proves performance impressively. Figs. 2-7 illustrate the
convergence graphs and box-and-whisker diagrams of some
typical functions across various dimensions. From conver-
gence graphs, WFS and CCWFSSE converge and stagnate
at local optima quickly. However, MCWFS and CWFS con-
tinue to converge. In terms of convergence speed, MCWFS
outperforms CWFS and exhibits a lower average error value.
The box-and-whisker diagrams show that MCWFS obtains
the minimum mean value, which indicates MCWFS has a
better ability to find the global optimum than other WFS
variants. Additionally, the distribution and quality of solu-
tions are more stable. The results on IEEE CEC2011 sug-
gest that MCWFS has great potential for solving real-world
problems. Therefore, MCWFS is a superior variant of WFS.

4.2 Comparison with Competitive Algorithms

MCWFS is not only compared with WFS variants but also
with other hierarchical algorithms (HGSA) [27], a variant
of classical algorithm (GLPSO) [41], the first-ranked al-
gorithm of IEEE CEC2020 (IMODE) [42], and a state-of-
the-art algorithm (SIS) [43] published in 2022. The experi-

6
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Table 3 Experimental results of MCWFS on IEEE CEC2017 and CEC2011.

CEC2017 D=30 CEC2017 D=50 CEC2017 D=100 CEC2011
Mean Std Mean Std Mean Std Mean Std

F1 4.276.E+03 4.200.E+03 7.205.E+03 6.452.E+03 1.631.E+05 7.890.E+04 G1 1.773.E+01 4.551.E+00
F2 1.016.E+06 4.190.E+06 1.042.E+13 5.386.E+13 1.000.E+30 2.843.E+14 G2 -1.907.E+01 3.378.E+00
F3 2.336.E-01 2.783.E-01 6.751.E+00 2.415.E+00 1.513.E+03 7.281.E+02 G3 1.151.E-05 2.249.E-14
F4 8.043.E+01 2.464.E+01 1.223.E+02 4.548.E+01 2.699.E+02 4.843.E+01 G4 1.692.E+01 2.841.E+00
F5 6.645.E+01 1.702.E+01 1.359.E+02 2.768.E+01 4.262.E+02 5.135.E+01 G5 -3.382.E+01 1.767.E+00
F6 3.159.E+00 2.555.E+00 1.002.E+01 4.584.E+00 3.144.E+01 5.729.E+00 G6 -2.422.E+01 3.023.E+00
F7 9.825.E+01 1.457.E+01 2.039.E+02 3.239.E+01 6.194.E+02 5.643.E+01 G7 6.830.E-01 1.007.E-01
F8 6.307.E+01 1.348.E+01 1.313.E+02 2.112.E+01 4.228.E+02 4.756.E+01 G8 2.272.E+02 9.827.E+00
F9 9.448.E+00 9.583.E+00 9.700.E+02 9.093.E+02 1.450.E+04 3.088.E+03 G9 1.574.E+05 5.913.E+04
F10 2.371.E+03 4.400.E+02 4.212.E+03 6.525.E+02 1.088.E+04 1.124.E+03 G10 -1.913.E+01 2.427.E+00
F11 1.009.E+02 3.197.E+01 1.777.E+02 4.343.E+01 1.124.E+03 1.390.E+02 G11 5.188.E+04 5.637.E+02
F12 1.786.E+05 2.096.E+05 1.825.E+06 1.263.E+06 1.481.E+07 6.317.E+06 G12 2.248.E+07 4.894.E+05
F13 2.015.E+04 1.241.E+04 3.598.E+04 1.595.E+04 4.720.E+04 1.576.E+04 G13 1.548.E+04 2.185.E+01
F14 1.967.E+02 4.116.E+01 6.352.E+02 3.988.E+02 4.816.E+04 2.599.E+04 G14 1.907.E+04 1.206.E+02
F15 6.704.E+03 5.253.E+03 1.116.E+04 6.935.E+03 3.085.E+04 1.007.E+04 G15 3.308.E+04 9.287.E+01
F16 4.530.E+02 1.733.E+02 7.773.E+02 1.845.E+02 2.189.E+03 3.864.E+02 G16 1.336.E+05 2.883.E+03
F17 1.459.E+02 7.120.E+01 6.670.E+02 1.544.E+02 1.688.E+03 3.764.E+02 G17 1.920.E+06 1.420.E+04
F18 2.428.E+04 1.406.E+04 5.694.E+04 2.707.E+04 1.675.E+05 6.138.E+04 G18 9.434.E+05 2.552.E+03
F19 7.107.E+03 1.163.E+04 1.878.E+04 1.938.E+04 1.314.E+05 9.160.E+04 G19 9.773.E+05 3.055.E+04
F20 2.436.E+02 9.637.E+01 5.289.E+02 1.657.E+02 1.646.E+03 3.334.E+02 G20 9.436.E+05 2.544.E+03
F21 2.597.E+02 1.314.E+01 3.270.E+02 2.243.E+01 6.649.E+02 5.354.E+01 G21 1.531.E+01 2.837.E+00
F22 1.000.E+02 1.525.E-02 3.798.E+03 1.929.E+03 1.254.E+04 1.249.E+03 G22 2.010.E+01 3.349.E+00
F23 4.157.E+02 1.555.E+01 5.698.E+02 3.489.E+01 1.055.E+03 7.272.E+01
F24 4.735.E+02 1.452.E+01 6.266.E+02 2.781.E+01 1.378.E+03 7.467.E+01
F25 3.873.E+02 2.454.E+00 5.056.E+02 2.809.E+01 7.989.E+02 5.564.E+01
F26 1.476.E+03 4.442.E+02 2.619.E+03 4.509.E+02 7.872.E+03 6.258.E+02
F27 5.180.E+02 1.354.E+01 6.206.E+02 5.209.E+01 7.759.E+02 6.236.E+01
F28 3.614.E+02 4.767.E+01 4.695.E+02 1.786.E+01 6.112.E+02 4.052.E+01
F29 5.965.E+02 7.869.E+01 9.624.E+02 2.068.E+02 3.097.E+03 4.447.E+02
F30 1.346.E+05 1.151.E+05 1.219.E+07 3.024.E+06 4.538.E+06 2.110.E+06

Table 4 Running time of MCWFS and other algorithms on IEEE CEC2017.

Algorithm MCWFS CWFS WFS CCWFSSE HGSA GLPSO IMODE SIS
Running time 102.17 187.40 301.50 61.16 403.51 1022.36 89.62 92.75

Table 5 Friedman test ranking of MCWFS.

MCWFS pr=0.01 pr=0.1 pr=0.2 pr=0.3 pr=0.4 pr=0.5 pr=0.6 pr=0.7 pr=0.8 pr=0.9 pr=1
Score 8.4000 7.1667 6.7000 5.4333 5.1333 4.7667 5.1333 5.1000 5.8667 5.4333 6.8667

Ranking 10 9 7 5 3 1 3 2 6 5 8

0 50000 100000 150000 200000 250000 300000

Number of Function Evaluations

10
2

10
3

A
v

er
ag

e
E

rr
o

r

F5 D=30

MCWFS

CWFS

WFS

CCWFSSE

HGSA

GLPSO

IMODE

SIS

0 50000 100000 150000 200000 250000 300000

Number of Function Evaluations

10
3

10
4

A
v

er
ag

e
E

rr
o

r

F16 D=30

MCWFS

CWFS

WFS

CCWFSSE

HGSA

GLPSO

IMODE

SIS

0 50000 100000 150000 200000 250000 300000

Number of Function Evaluations

10
3

10
4

A
v

er
ag

e
E

rr
o

r

F29 D=30

MCWFS

CWFS

WFS

CCWFSSE

HGSA

GLPSO

IMODE

SIS

Fig. 2 Convergence diagrams of F5, F16, and F29.

ment results are detailly showed in Supplementary File [40].
From the W/T/L comparison, MCWFS is significantly bet-
ter than GLPSO, and SIS. Based on the experimental data,
the performance of MCWFS on IEEE CEC2017 is highly
competitive with that of HGSA, and outperforms in address-
ing more complex problems. Furthermore, MCWFS ex-
hibits superior performance over HGSA in real-world prob-
lems, particularly demonstrating significant advantages over
HGSA in addressing the economic load dispatch problems

on IEEE CEC2011 [44]. The convergence graphs reveal
that although HGSA has a higher convergence speed than
MCWFS, it stagnates and falls into local optima quickly, re-
sulting in a worse average error value than MCWFS. Com-
parisons with IMODE indicate that MCWFS performs bet-
ter on higher dimensions but still achieves competitive re-
sults with IMODE on 30 dimensions. Moreover, results on
IEEE CEC2011 reveal that MCWFS is more suitable than
IMODE for solving real-world problems. Thus, MCWFS is

LIU et al.: HIERARCHICAL CHAOTIC WINGSUIT FLYING SEARCH ALGORITHM WITH BALANCED EXPLOITATION AND EXPLORATION FOR OPTIMIZATION
7

0 100000 200000 300000 400000 500000

Number of Function Evaluations

10
1

10
2

10
3

A
v

er
ag

e
E

rr
o

r
F6 D=50

MCWFS

CWFS

WFS

CCWFSSE

HGSA

GLPSO

IMODE

SIS

0 100000 200000 300000 400000 500000

Number of Function Evaluations

500

1000

1500

2000

2500

3000

3500

4000

A
v

er
ag

e
E

rr
o

r

F20 D=50

MCWFS

CWFS

WFS

CCWFSSE

HGSA

GLPSO

IMODE

SIS

0 100000 200000 300000 400000 500000

Number of Function Evaluations

1000

1500

2000

2500

3000

3500

4000

4500

A
v

er
ag

e
E

rr
o

r

F24 D=50

MCWFS

CWFS

WFS

CCWFSSE

HGSA

GLPSO

IMODE

SIS

Fig. 3 Convergence diagrams of F6, F20, and F24.

0 200000 400000 600000 800000 1000000

Number of Function Evaluations

10
3

10
4

10
5

10
6

A
v

er
ag

e
E

rr
o

r

F11 D=100

MCWFS

CWFS

WFS

CCWFSSE

HGSA

GLPSO

IMODE

SIS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Function Evaluations

10
4

A
v

er
ag

e
E

rr
o

r

F16 D=100

MCWFS

CWFS

WFS

CCWFSSE

HGSA

GLPSO

IMODE

SIS

0 200000 400000 600000 800000 1000000

Number of Function Evaluations

2000

3000

4000

5000

6000

7000

A
v

er
ag

e
E

rr
o

r

F20 D=100

MCWFS

CWFS

WFS

CCWFSSE

HGSA

GLPSO

IMODE

SIS

Fig. 4 Convergence diagrams of F11, F16, and F20.

MCWFS CWFS WFS CCWFSSE HGSA GLPSO IMODE SIS

10
2

O
p
ti

m
iz

at
io

n
 E

rr
o
r

MCWFS CWFS WFS CCWFSSE HGSA GLPSO IMODE SIS

10
2

10
3

O
p
ti

m
iz

at
io

n
 E

rr
o
r

MCWFS CWFS WFS CCWFSSE HGSA GLPSO IMODE SIS

10
3

O
p
ti

m
iz

at
io

n
 E

rr
o
r

Fig. 5 Box-and-whisker plot diagrams of F5, F16, and F29.

MCWFS CWFS WFS CCWFSSE HGSA GLPSO IMODE SIS

10
1

10
2

O
p
ti

m
iz

at
io

n
 E

rr
o
r

MCWFS CWFS WFS CCWFSSE HGSA GLPSO IMODE SIS

400

600

800

1000

1200

1400

1600

1800

O
p
ti

m
iz

at
io

n
 E

rr
o
r

MCWFS CWFS WFS CCWFSSE HGSA GLPSO IMODE SIS

600

700

800

900

1000

1100

1200

O
p
ti

m
iz

at
io

n
 E

rr
o
r

Fig. 6 Box-and-whisker plot diagrams of F6, F20, and F24.

Table 6 Parameter settings of MCWFS and other algorithms.

Algorithm Parameters
MCWFS N = 101, p = 0.2, pr = 0.5
CWFS N = 101, p = 0.2
WFS N = 100
CCWFSSE N = 100, ν ∼ U(10, 100)
HGSA L = 100,G(0) = 100,w1(t) = 1 − t6/T 6,

w2(t) = 1 − t6/T 6,K ∈ [1, 2]
GLPSO ω = 0.9 ∼ 0.4, c1 = c2 = 2.0
IMODE Ninit = 6 × D2,Nmin = 4, ψ = 20, p = 0.1 × D
SIS N = 100, b ∈ (0, 0.1]

not only a superior WFS variant but also a competitive algo-
rithm in the series of EAs. Besides, we analyze the running
time of all algorithms in Table 4, where the test is adjusted
to run once on 30 IEEE CEC2017 functions with 30 dimen-

sions. It is observed that MCWFS is competitive. It is better
than almost algorithms.

4.3 Population Diversity

To verify the features of MCWFS and validate its ability to
balance exploration and exploitation, the population diver-
sity is introduced as follows:

Div (x) =
1
N

N∑
i=1

∥xi − x∥ /max1≤i, j≤N

∥∥∥xi − x j

∥∥∥ (22)

x =
1
N

N∑
i=1

xi (23)

8
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

MCWFS CWFS WFS CCWFSSE HGSA GLPSO IMODE SIS

10
3

10
4

10
5

O
p
ti

m
iz

at
io

n
 E

rr
o
r

MCWFS CWFS WFS CCWFSSE HGSA GLPSO IMODE SIS

10
3

10
4

O
p
ti

m
iz

at
io

n
 E

rr
o
r

MCWFS CWFS WFS CCWFSSE HGSA GLPSO IMODE SIS

1000

1500

2000

2500

3000

3500

4000

4500

5000

O
p
ti

m
iz

at
io

n
 E

rr
o
r

Fig. 7 Box-and-whisker plot diagrams of F11, F16, and F20.

0 500 1000 1500 2000 2500 3000

0

0.1

0.2

0.3

0.4

0.5

0.6

MCWFS

CWFS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

MCWFS

CWFS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MCWFS

CWFS

Fig. 8 Population diversity diagrams of (a) F5 D=30, (b) F17 D=50, and (c) F23 D=100.

where N represents the population size, while x is the aver-
age point. High population diversity causes the algorithm to
prefer to explore, whereas low population diversity leads to
focus on exploitation [1]. Three kinds of functions, includ-
ing uni-modal functions, multi-modal functions, and hybrid
functions, are selected to analyze the population diversity
of MCWFS with 30, 50, and 100 dimensions, as shown in
Fig. 8. Both MCWFS’s and CWFS’s population diversi-
ties decline rapidly at the beginning because the information
flows from the population layer to the elite layer and the
exploitation behavior is emphasized. However, the popu-
lation diversity of CWFS exhibits an irreversible downward
trend as the number of iterations increases, ultimately falling
into a local optimum. In contrast, under the cooperation of
the memory layer and elite layer, MCWFS has the ability
to maintain population diversity at a high level, especially
showing an upward trend towards the end of the iteration.

4.4 Parameters Sensitivity Analysis

In MCWFS, we set a new parameter pr ∈ (0, 1] to adjust in-
formation feedback from the memory layer to the elite layer.
We test pr = {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}
on 30 benchmark functions in CEC2017. The variance is
measured using the Friedman test, the ranking score and
final ranking of parameters are given in Table 5. The pa-
rameter pr demonstrates the variation range of the tempo-
rary individual Xe′ . From results of the Friedman test, we
know that the performance of MCWFS lacks of compet-
itive results when pr is close to 0 or 1. The top ranking
among all parameters is pr = 0.5. It shows that the infor-
mation from memory layer to elite layer plays an important
role in improving WFS. If the temporary individual is gen-
erated around Xe, MCWFS can’t find another potential area
and jump out from local optimum. The exploration behav-
ior is not enhanced. On the other hand, if we generate Xe′

too far away from Xe, excessive exploration makes the al-
gorithm lose the ability to explore, resulting in MWFS not
being able to converge to the optimal. Therefore, pr = 0.5 is
the optimal parameter obtained from the experiment, which
not only improves the exploration ability of the algorithm
but also maintains the characteristic of fast convergence.

5. Conclusions

In this paper, a four-layered hierarchical chaotic wingsuit
flying search algorithm is proposed. The information ex-
change between the memory layer and the elite layer pro-
motes exploration behavior, while the information flow from
the population layer to the elite layer enhances the abil-
ity of exploitation. In general, the four-layered hierarchical
structure proposed significantly improves MCWFS’s perfor-
mance in balancing exploration and exploitation. MCWFS
is verified for its superiority by comparing it with seven
representative algorithms on 30 IEEE CEC2017 benchmark
functions. Additionally, its performance on real-world op-
timization is confirmed on 22 IEEE CEC2011 benchmark
functions. In the future, MCWFS is worth investigating for
its potential applications and improvements in real-world
problems, such as structural optimization [45], solar param-
eter estimation problem [46], and wind farm layout opti-
mization problem [47].

Acknowledgments

This research was partially supported by the Japan Soci-
ety for the Promotion of Science (JSPS) KAKENHI under
Grant JP22H03643, Japan Science and Technology Agency
(JST) Support for Pioneering Research Initiated by the Next
Generation (SPRING) under Grant JPMJSP2145, and JST
through the Establishment of University Fellowships to-
wards the Creation of Science Technology Innovation under

LIU et al.: HIERARCHICAL CHAOTIC WINGSUIT FLYING SEARCH ALGORITHM WITH BALANCED EXPLOITATION AND EXPLORATION FOR OPTIMIZATION
9

Grant JPMJFS2115, supported by the Key Research and De-
velopment Project of Shaanxi Province (No. 2023-YBGY-
222); Beilin District Science and Technology Project (No.
GX2246).

References

[1] K. Wang, Y. Wang, S. Tao, Z. Cai, Z. Lei, and S. Gao, “Spherical
search algorithm with adaptive population control for global con-
tinuous optimization problems,” Applied Soft Computing, vol.132,
p.109845, 2023.

[2] K.R. Opara and J. Arabas, “Differential evolution: A survey of the-
oretical analyses,” Swarm and Evolutionary Computation, vol.44,
pp.546–558, 2019.

[3] K. Wang, S. Gao, M. Zhou, Z.H. Zhan, and J. Cheng, “Fractional or-
der differential evolution,” IEEE Transactions on Evolutionary Com-
putation, 2024. doi: 10.1109/TEVC.2024.3382047.

[4] M. Squires, X. Tao, S. Elangovan, R. Gururajan, X. Zhou, and
U.R. Acharya, “A novel genetic algorithm based system for the
scheduling of medical treatments,” Expert Systems with Applica-
tions, vol.195, p.116464, 2022.

[5] R. Kuo and S.S. Li, “Applying particle swarm optimization
algorithm-based collaborative filtering recommender system consid-
ering rating and review,” Applied Soft Computing, p.110038, 2023.

[6] Y. Zhang, S. Gao, P. Cai, Z. Lei, and Y. Wang, “Information entropy-
based differential evolution with extremely randomized trees and
lightgbm for protein structural class prediction,” Applied Soft Com-
puting, vol.136, p.110064, 2023.

[7] Z. Lei, S. Gao, Z. Zhang, M. Zhou, and J. Cheng, “MO4: A
many-objective evolutionary algorithm for protein structure pre-
diction,” IEEE Transactions on Evolutionary Computation, vol.26,
no.3, pp.417–430, 2021.

[8] G. Yuan, J. Cheng, M. Zhou, S. Cheng, S. Gao, C. Jiang, and
A. Abusorrah, “A dynamic evolution method for autonomous vehi-
cle groups in an urban scene,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 2022.

[9] Z. Lei, S. Gao, Y. Wang, Y. Yu, and L. Guo, “An adaptive replace-
ment strategy-incorporated particle swarm optimizer for wind farm
layout optimization,” Energy Conversion and Management, vol.269,
p.116174, 2022.

[10] N. Covic and B. Lacevic, “Wingsuit flying search—a novel global
optimization algorithm,” IEEE Access, vol.8, pp.53883–53900,
2020.

[11] J.H. Halton, “Algorithm 247: Radical-inverse quasi-random point
sequence,” Communications of the ACM, vol.7, no.12, pp.701–702,
1964.

[12] J. Yang, Y. Zhang, Z. Wang, Y. Todo, B. Lu, and S. Gao, “A coop-
erative coevolution wingsuit flying search algorithm with spherical
evolution,” International Journal of Computational Intelligence Sys-
tems, vol.14, pp.1–19, 2021.

[13] H. Yang, S. Tao, Z. Zhang, Z. Cai, and S. Gao, “Spatial information
sampling: another feedback mechanism of realising adaptive param-
eter control in meta-heuristic algorithms,” International Journal of
Bio-Inspired Computation, vol.19, no.1, pp.48–58, 2022.

[14] A. Karami, B. Ranjbar, M. Rahimi, and F. Mohammadi, “Novel hy-
brid neuro-fuzzy model to anticipate the heat transfer in a heat ex-
changer equipped with a new type of self-rotating tube insert,” The
European Physical Journal E, vol.45, no.11, p.92, 2022.

[15] B. Venkatesh, P. Sankaramurthy, B. Chokkalingam, and L. Mihet
Popa, “Managing the demand in a micro grid based on load shifting
with controllable devices using hybrid wfs2acso technique,” Ener-
gies, vol.15, no.3, p.790, 2022.

[16] T. Zheng, H. Zhang, B. Zhang, Z. Cai, K. Wang, Y. Todo, and
S. Gao, “Umbrellalike hierarchical artificial bee colony algorithm,”
IEICE Transactions on Information and Systems, vol.106, no.3,
pp.410–418, 2023.

[17] N. Lynn, M.Z. Ali, and P.N. Suganthan, “Population topologies for
particle swarm optimization and differential evolution,” Swarm and
Evolutionary Computation, vol.39, pp.24–35, 2018.

[18] J. Yang, K. Wang, Y. Wang, J. Wang, Z. Lei, and S. Gao, “Dy-
namic population structures-based differential evolution algorithm,”
IEEE Transactions on Emerging Topics in Computational Intelli-
gence, 2024.

[19] W. Deng, H. Liu, J. Xu, H. Zhao, and Y. Song, “An improved
quantum-inspired differential evolution algorithm for deep belief
network,” IEEE Transactions on Instrumentation and Measurement,
vol.69, no.10, pp.7319–7327, 2020.

[20] Y.J. Gong, W.N. Chen, Z.H. Zhan, J. Zhang, Y. Li, Q. Zhang, and J.J.
Li, “Distributed evolutionary algorithms and their models: A survey
of the state-of-the-art,” Applied Soft Computing, vol.34, pp.286–
300, 2015.

[21] X.W. Luo, Z.J. Wang, R.C. Guan, Z.H. Zhan, and Y. Gao, “A dis-
tributed multiple populations framework for evolutionary algorithm
in solving dynamic optimization problems,” IEEE Access, vol.7,
pp.44372–44390, 2019.

[22] J.G. Falcón-Cardona, R.H. Gómez, C.A.C. Coello, and M.G.C.
Tapia, “Parallel multi-objective evolutionary algorithms: A com-
prehensive survey,” Swarm and Evolutionary Computation, vol.67,
p.100960, 2021.

[23] V. Giammarino, S. Baldi, P. Frasca, and M.L. Delle Monache, “Traf-
fic flow on a ring with a single autonomous vehicle: An inter-
connected stability perspective,” IEEE Transactions on Intelligent
Transportation Systems, vol.22, no.8, pp.4998–5008, 2020.

[24] J.C.L. López, E. Solares, and J.R. Figueira, “An evolutionary ap-
proach for inferring the model parameters of the hierarchical electre
iii method,” Information Sciences, vol.607, pp.705–726, 2022.

[25] X. Xue and J. Zhang, “Matching large-scale biomedical ontolo-
gies with central concept based partitioning algorithm and adaptive
compact evolutionary algorithm,” Applied Soft Computing, vol.106,
p.107343, 2021.

[26] P. Pławiak, M. Abdar, J. Pławiak, V. Makarenkov, and U.R. Acharya,
“Dghnl: A new deep genetic hierarchical network of learners for pre-
diction of credit scoring,” Information Sciences, vol.516, pp.401–
418, 2020.

[27] Y. Wang, Y. Yu, S. Gao, H. Pan, and G. Yang, “A hierarchical grav-
itational search algorithm with an effective gravitational constant,”
Swarm and Evolutionary Computation, vol.46, pp.118–139, 2019.

[28] Z. Zhou, J. Abawajy, M. Shojafar, and M. Chowdhury, “Dehm: an
improved differential evolution algorithm using hierarchical multi-
strategy in a cybertwin 6g network,” IEEE Transactions on Industrial
Informatics, vol.18, no.7, pp.4944–4953, 2022.

[29] N. Chen, T. Qiu, Z. Lu, and D.O. Wu, “An adaptive robustness evo-
lution algorithm with self-competition and its 3d deployment for in-
ternet of things,” IEEE/ACM Transactions on Networking, vol.30,
no.1, pp.368–381, 2021.

[30] Q. Li, Z. Cao, W. Ding, and Q. Li, “A multi-objective adaptive evo-
lutionary algorithm to extract communities in networks,” Swarm and
Evolutionary Computation, vol.52, p.100629, 2020.

[31] Z. Liao, W. Gong, and L. Wang, “Memetic niching-based evolu-
tionary algorithms for solving nonlinear equation system,” Expert
Systems with Applications, vol.149, p.113261, 2020.

[32] W. Sheng, X. Wang, Z. Wang, Q. Li, Y. Zheng, and S. Chen, “A
differential evolution algorithm with adaptive niching and k-means
operation for data clustering,” IEEE Transactions on Cybernetics,
vol.52, no.7, pp.6181–6195, 2020.

[33] Z. Hu, T. Zhou, Q. Su, and M. Liu, “A niching backtracking search
algorithm with adaptive local search for multimodal multiobjec-
tive optimization,” Swarm and Evolutionary Computation, vol.69,
p.101031, 2022.

[34] Y. Yu, S. Gao, M. Zhou, Y. Wang, Z. Lei, T. Zhang, and J. Wang,
“Scale-free network-based differential evolution to solve function
optimization and parameter estimation of photovoltaic models,”
Swarm and Evolutionary Computation, vol.74, p.101142, 2022.

10
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

[35] T. Qiu, J. Liu, W. Si, and D.O. Wu, “Robustness optimization
scheme with multi-population co-evolution for scale-free wireless
sensor networks,” IEEE/ACM Transactions on Networking, vol.27,
no.3, pp.1028–1042, 2019.

[36] R.M. May, “Simple mathematical models with very complicated dy-
namics,” Nature, vol.261, no.5560, pp.459–467, 1976.

[37] I. Fister, J. Brest, A. Iglesias, A. Galvez, and S. Deb, “On selec-
tion of a benchmark by determining the algorithms’ qualities,” IEEE
Access, vol.9, pp.51166–51178, 2021.

[38] V. Stanovov, S. Akhmedova, and E. Semenkin, “Lshade algorithm
with rank-based selective pressure strategy for solving cec 2017
benchmark problems,” 2018 IEEE congress on evolutionary com-
putation (CEC), pp.1–8, IEEE, 2018.

[39] S.M. Elsayed, R.A. Sarker, and D.L. Essam, “Differential evolution
with multiple strategies for solving cec2011 real-world numerical
optimization problems,” 2011 IEEE Congress of Evolutionary Com-
putation (CEC), pp.1041–1048, IEEE, 2011.

[40] S. Liu, K. Wang, H. Yang, T. Zheng, Z. Lei, M. Jia,
and S. Gao, “https://github.com/liusc1996/supplementary-file-for-
mcwfs-paper.”

[41] Y.J. Gong, J.J. Li, Y. Zhou, Y. Li, H.S.H. Chung, Y.H. Shi, and
J. Zhang, “Genetic learning particle swarm optimization,” IEEE
Transactions on Cybernetics, vol.46, no.10, pp.2277–2290, 2015.

[42] K.M. Sallam, S.M. Elsayed, R.K. Chakrabortty, and M.J. Ryan,
“Improved multi-operator differential evolution algorithm for solv-
ing unconstrained problems,” 2020 IEEE Congress on Evolutionary
Computation (CEC), pp.1–8, IEEE, 2020.

[43] H. Yang, Y. Yu, J. Cheng, Z. Lei, Z. Cai, Z. Zhang, and S. Gao,
“An intelligent metaphor-free spatial information sampling algo-
rithm for balancing exploitation and exploration,” Knowledge-Based
Systems, vol.250, p.109081, 2022.

[44] S. Das and P.N. Suganthan, “Problem definitions and evaluation cri-
teria for cec 2011 competition on testing evolutionary algorithms on
real world optimization problems,” Jadavpur University, Nanyang
Technological University, Kolkata, pp.341–359, 2010.

[45] J. Liu, S. Li, C. Xu, Z. Wu, N. Ao, and Y.F. Chen, “Automatic
and optimal rebar layout in reinforced concrete structure by de-
composed optimization algorithms,” Automation in Construction,
vol.126, p.103655, 2021.

[46] S. Gao, K. Wang, S. Tao, T. Jin, H. Dai, and J. Cheng, “A state-of-
the-art differential evolution algorithm for parameter estimation of
solar photovoltaic models,” Energy Conversion and Management,
vol.230, p.113784, 2021.

[47] H. Yang, S. Gao, Z. Lei, J. Li, Y. Yu, and Y. Wang, “An improved
spherical evolution with enhanced exploration capabilities to address
wind farm layout optimization problem,” Engineering Applications
of Artificial Intelligence, vol.123, p.106198, 2023.

Sicheng LIU received the M.S. degree
from University of Toyama, Toyama, Japan, in
2022. He is currently pursuing the Ph.D. degree
of artificial intelligence with the University of
Toyama, Toyama, Japan. His current research
interests include computational intelligence and
real-world applications.

Kaiyu WANG received the M.E. degree
from the University of Toyama, Toyama, Japan,
in 2022, where he is currently pursuing the
Ph.D. degree. His current interests include com-
putational intelligence and neural networks for
real-world applications.

Haichuan YANG received Ph.D. degree
from the University of Toyama, Toyama, Japan
in 2022 and 2023 respectively. He is cur-
rently an assistant professor at Graduate School
of Technology, Industrial and Social Sciences
of Tokushima University. His current research
interests lie in computational intelligence and
complex systems.

Tao ZHENG received the M.S. degree
from University of Toyama, Toyama, Japan, in
2023. He is currently pursuing the Ph.D. degree
at University of Toyama, Toyama, Japan. His
current research interest is computational intel-
ligence.

Zhenyu LEI received the Ph.D. degree in
Science and Engineering from the University of
Toyama, Toyama, Japan, in 2023. He is cur-
rently an Assistant Professor with the Faculty of
Engineering, University of Toyama, Japan. His
current research interests include evolutionary
computation, machine learning, and neural net-
work for real-world applications and optimiza-
tion problems.

Meng JIA received Ph.D. degrees from Xi-
dian University, Xi’an, China, in 2016. She is
currently a Lecturer with the School of Com-
puter Science and Engineering, Xi’an Univer-
sity of Technology, Xi’an, and also a member
with the Shaanxi Key Laboratory of Network
Computing and Security Technology, Xi’an.
Her research interests include deep neural net-
work and pattern recognition.

Shangce GAO received his Ph.D. degree
in Innovative Life Science from University of
Toyama, Toyama, Japan in 2011. He is cur-
rently a Professor with the Faculty of Engineer-
ing, University of Toyama, Japan. His current
research interests include nature-inspired tech-
nologies, machine learning, and neural networks
for real-world applications. He serves as an As-
sociate Editor for IEEE Transactions on Neural
Networks and Learning Systems.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

