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PAPER
Privacy Preserving Function Evaluation Using Lookup Tables with
Word-Wise FHE

Ruixiao LI†a), Nonmember and Hayato YAMANA††b), Fellow

SUMMARY Homomorphic encryption (HE) is a promising approach
for privacy-preserving applications, enabling a third party to assess func-
tions on encrypted data. However, problems persist in implementing
privacy-preserving applications through HE, including 1) long function
evaluation latency and 2) limited HE primitives only allowing us to perform
additions andmultiplications. A homomorphic lookup-table (LUT)method
has emerged to solve the above problems and enhance function evaluation
efficiency. By leveraging homomorphic LUTs, intricate operations can be
substituted. Previously proposed LUTs use bit-wise HE, such as TFHE,
to evaluate single-input functions. However, the latency increases with the
bit-length of the function’s input(s) and output. Additionally, an efficient
implementation of multi-input functions remains an open question. This
paper proposes a novel LUT-based privacy-preserving function evaluation
method to handle multi-input functions while reducing the latency by adopt-
ing word-wise HE. Our optimization strategy adjusts table sizes to minimize
the latency while preserving function output accuracy, especially for com-
mon machine-learning functions. Through our experimental evaluation
utilizing the BFV scheme of the Microsoft SEAL library, we confirmed the
runtime of arbitrary functions whose LUTs consist of all input-output com-
binations represented by given input bits: 1) single-input 12-bit functions in
0.14 s, 2) single-input 18-bit functions in 2.53 s, 3) two-input 6-bit functions
in 0.17 s, and 4) three-input 4-bit functions in 0.20 s, employing four threads.
Besides, we confirmed that our proposed table size optimization strategy
worked well, achieving 1.2 times speed up with the same absolute error of
order of magnitude of −4 (a × 10−4 where 1/

√
10 ≤ a <

√
10) for Swish

and 1.9 times speed up for ReLU while decreasing the absolute error from
order −2 to −4 compared to the baseline, i.e., polynomial approximation.
key words: function evaluation, privacy preserving, lookup table, fully
homomorphic encryption

1. Introduction

Cloud computing is widely used to provide numerous ser-
vices to users; however, massive amounts of sensitive data
stored in cloud servers cause data security issues [1]. We
usually use encryption schemes to protect data; however, tra-
ditional encryption schemes, such as AES and DES, cannot
enable computation over encrypted data. The encrypted data
needs to be decrypted before the computations, which results
in revealing the data to the cloud server or third parties.

The other solutions include secure multi-party compu-
tation (SMPC), differential privacy (DP), and homomorphic
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encryption (HE).
SMPC can be used in many cloud computing applica-

tions, such as machine learning [2], private set operations
[3], [4], and secure genomic sequence comparison [5] mod-
els. SMPC is based on the secret sharing scheme and focuses
on efficiency. The challenge for SMPC is the data transmis-
sion cost for large data applications. DP is another privacy-
preserving scheme used in various applications [6]–[10].
However, privacy budget optimization and compatibility of
DP among different applications remain to be solved [11].
Besides, DP cannot be used in applications that require exact
computation owing to the noise added by the DP technique.

Alternatively, homomorphic encryption (HE) allows a
third party to evaluate functions over ciphertext. Fully homo-
morphic encryption (FHE) proposed by Gentry [12], enables
an arbitrary number of additions and multiplications over ci-
phertext. Thus, FHE can protect data during the computation
to prevent data breaches to the server that computes the data,
such as the cloud servers. In FHE, two types of encoding
schemes exist, i.e., bit-wise and word-wise. Bit-wise en-
coding encrypts the data bit-by-bit to evaluate functions by
constructing arbitrary circuits like logic circuits. Word-wise
encoding encrypts a set of bits, i.e., a word, to improve the
calculation efficiency but is limited to the functions com-
bined by additions and multiplications.

The challenges of function evaluation with FHE are 1)
high computational cost, which leads to long latency, and
2) lack of supporting functions that cannot be decomposed
into additions and multiplications. For example, activation
functions like ReLU and Swish, used in machine learning,
cannot be implemented as they are because ReLU requires a
branch operation, and Swish needs division. Prior researches
have employed polynomial approximation or lookup tables
(LUTs) to implement such functions. However, the polyno-
mial approximation introduces significant calculation errors
while LUTs face long latency.

Xie et al. [13] first proposed a polynomial approxima-
tion technique for deterministic functions using additions
and multiplications only. Complex functions such as the
ReLU and Swish functions are evaluated through polyno-
mial approximation via FHE in [14]–[16]. However, precise
results are constrained to a predetermined range, as accuracy
significantly diminishes beyond the range. Although higher
polynomial degrees can enhance accuracy, they necessitate
a larger multiplication level denoted as L resulting in long
computation latency.

Additionally, theworks byCrawford et al. [17], Chillotti

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



1164
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

et al. [18], Carpov et al. [19], Micciancio et al. [20] and Liu
et al. [21] substitute complex functions with homomorphic
table lookup. Their approach employs bit-wise FHE for LUT
processing, incurring a computation cost of O(s · 2d), where
d represents the input bit-length and s represents the output
bit-length of the function.

The straightforward implementation of multi-input
functions with bit-wise LUT necessitates O(s · 2

∑m
i=1 di ),

where m is the number of inputs, each with a bit length
of d. This is because we treat the inputs as a concatenation
of multiple inputs. Thus, the latency of bit-wise LUTs grows
exponentially with the number of input bits. Thus, bit-wise
LUTs do not suit the functions with large input bits.

In 2021, Lu et al. [22] introduced PEGASUS, which
seamlessly transitions between bit-wise and word-wise ci-
phertext schemeswithout decryption. This approach enables
the evaluation of arithmetic functions with word-wise FHE
while implementing LUT with bit-wise FHE to assess com-
plex functions, which retains fast evaluations with word-wise
FHE.However, their work did not show anymulti-input func-
tions. Another study by Maeda et al. [23] presented a LUT
method for uni/bivariate functions utilizing word-wise FHE.
Nonetheless, their method cannot accommodate multi-input
functions with more than two inputs. Thus, how to construct
multi-input functions over two inputs has remained an open
question.

In summary, how to implement arbitrary functions with
FHE efficiently is an open question. Specifically, 1) polyno-
mial approximation introduces large error, 2) bit-wise LUT
suffers from long latency, which increases exponentially to
the input bits, and 3) word-wise LUT cannot handle multi-
input functions over two inputs. To respond to the above
problems, we propose a novel privacy preserving function
evaluation method using LUTs with word-wise FHE. Fig-
ure 1 illustrates our adopted three-party model, consisting
of a user, a computation server, and a trusted authority. The
user and the computation server are semi-honest, i.e., hon-
estly follow the protocol but are curious to obtain sensitive
data, while the trusted authority is honest. The following are
our contributions.

1)We propose a privacy-preserving function evaluation
method using word-wise FHE to enable the evaluation of
arbitrary multiple-input functions that can handle over two
inputs. Furthermore, we devise the structure of LUTs to
support multi-threaded processing, shortening the latency.

2) We employ slot-wise operations [24], i.e., SIMD,
to parallelize FHE. The computational complexity is then
reduced from O(s · 2

∑m
i=1 di ) with naive bit-wise FHE to

Fig. 1 Our model.

O(d2
∑m

i=1 di /le) with our proposed word-wise FHE adopt-
ing slots, where d and s represent the bit-length of input and
the number of output data points, respectively; l denotes the
number of slots in one ciphertext; m denotes the number of
inputs.

3) Our proposed nearby matching enables us to select
the closest entry in a LUT to the input value(s) for fur-
ther complexity reduction, which allows the number of data
points in LUTs to be freely determined.

The experimental evaluation compares our proposed
method with the widely employed polynomial approxima-
tion technique [14] and naive LUT implementation using
bit-wise FHE. The experimental result shows 1.2 times speed
up with the same absolute error of order 10−4 for Swish and
1.9 times speed up for ReLU while decreasing the abso-
lute error from order 10−2 to 10−4 compared to polynomial
approximation. Furthermore, our runtime was 12.8 times
faster than the approach utilizing bit-wise FHE for a 3-bit
single-input function.

This paper is the extended version of our previous pa-
pers [25], [26]. This paper provides detailed experimental
evaluations compared to previous polynomial approximation
methods to clarify the advantage of our method.

The rest of this paper is organized as follows. Section 2
gives necessary preliminaries, followed by related work in
Sect. 3. Section 4 proposes our privacy preserving function
evaluation method. Section 5 shows the complexity analysis
of our work. Then, experimental evaluation and discussions
are provided in Sects. 6 and 7. Finally, Sect. 8 concludes this
paper.

2. Preliminaries

2.1 Definitions of Symbols

The notations used in this paper are shown in Table 1. The
LUTs containing input and output entries of a given function
are denoted as Tin and Tout , respectively. For example,
assuming an single-input function f (x) = |x |, where x is
an Integer satisfying −2 ≤ x ≤ 2; then we have Tin =
[−2,−1,0,1,2] and Tout = [2,1,0,1,2], where f (Tin(i)) =
Tout (i) and i shows the index of LUTs. We denote vectors in

Table 1 Definitions of symbols.
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bold lowercase letters and matrices in uppercase letters, i.e.,
ct(a), and ct(A(i)) represent an encrypted vector a, and an
encrypted i-th row of matrix A, respectively.

2.2 SIMDOperation over Fully Homomorphic Encryption

Element-wise single instruction multiple data (SIMD) op-
erations with FHE were introduced by N. P. Smart and
F. Vercauterenin [27] in 2014. A vector that holds l ele-
ments is encrypted as a single ciphertext by the word-wise
FHE, where each element is called a slot [24]. An ele-
ment is an Integer that is handled on modulo computation
within a given modulus. For example, assuming two vec-
tors x := [x0, x1, . . . , xl−1] and y := [y0, y1, . . . , yl−1] are
encrypted by Enc(x) and Enc(y). The SIMD operation en-
ables element-wise addition and multiplication as follows:

Dec(Enc(x) � Enc(y)) := [x0 + y0, . . . , xl−1 + yl−1]

Dec(Enc(x) � Enc(y)) := [x0 × y0, . . . , xl−1 × yl−1]

(1)

2.3 Private Information Retrieval over FHE

Private information retrieval (PIR) was first introduced by
Chor et al. [28]. PIR hides users’ access information from a
database when they search for data from the database. The
main idea is as follows. Given a private database D, where
D := [d0, . . . , dl−1]. To hide the access information from
the database, the user makes a vector q := [0, . . . ,1, . . . ,0],
where only the index of the target data element is one and
the other elements are zero. Then, the user sends the ci-
phertext of PIR query ct(q) to the database. After receiving
ct(q), the database computes the encrypted inner product
D · ct(q), followed by sending back the inner product, i.e.,
the result, to the user. It is important to note that the result
of the calculation between a plaintext and a ciphertext is a
ciphertext. Since all of the operations in the database are
over ciphertexts, we can hide the user’s access information
from the database.

3. Related Work

Related efforts aimed at implementing functions with FHE
can be categorized into two main approaches: 1) polynomial
approximation-based methods and 2) lookup table-based
methods.

3.1 Polynomial Approximation-Based Methods

Polynomial approximationwith FHEwas initially introduced
by Xie et al. in 2014 [13]. However, the approximation
method encounters errors, particularly when operating with
inputs beyond the predefined range. Additionally, achieving
more accurate outputs demands higher polynomial degrees,
resulting in long latency due to the necessity of a larger
multiplication level.

Chabanne et al. [14] applied polynomial approximation
to the ReLU function, utilizing degrees ranging from 2 to
6. This approach yielded accuracy ranging from 97.55% (2
degrees) to 97.91% (6 degrees) when applied to their neural
network. E. Lee et al. [15] and J. Lee et al. [16] proposed
utilizing a composition of minimax approximated polynomi-
als with low degrees for functions such as Sign [15], ReLU
[16], and max-pooling [16]. E. Lee et al.’s algorithm deter-
mined the optimal set of degrees for the minimax composite
polynomial by considering the number of non-scalar multi-
plications and depth consumption. This approach effectively
reduced function runtime by an average of 45% [15]. While
E. Lee et al. achieved low degrees of polynomial approxima-
tion, the range of applicability for the approximation method
remains limited.

3.2 Lookup Table-Based Methods

Crawford et al. [17], Chillotti et al. [18], Carpov et al. [19],
Micciancio et al. [20], and Liu et al. [21] employed ho-
momorphic table lookup to implement complex operations,
utilizing bit-wise FHE. The naive bit-wise LUT incurs a
computation cost of O(s · 2d), where d represents the input
bit-length and s signifies the output bit-length of a given
function.

Boura et al. [29] and Lu et al. [22] introduced a tech-
nique that enables seamless transitions between polynomial
and non-polynomial functions on encrypted data. This ap-
proach allows the evaluation of arithmetic functions using
word-wise encoding FHE to enhance efficiency, as seen with
schemes like CKKS [30], while assessing LUTs through
bit-wise encoding FHE for functions that cannot be decom-
posed into additions and multiplications, as exemplified by
FHEW [31]. Maeda et al. [23] introduced a LUT method
for uni/bivariate functions using word-wise FHE. However,
Maeda et al. and Lu et al. [22], [23] did not address the so-
lution for multi-input functions with inputs exceeding two.

3.3 Summary

In summary, the problems to be solved are that 1) polynomial
approximation introduces inherent errors, making it unable
to adapt to exact calculations; 2) bit-wise LUT methods
suffer from long latencies that increase exponentially with
the bit-length of the function’s input(s) and output; and 3)
current word-wise LUT methods cannot handle multi-input
functions with more than two inputs.

4. Privacy Preserving Function Evaluation Using LUTs
with Word-Wise FHE

This section proposes a privacy-preserving function evalu-
ation method using LUTs with word-wise FHE to evaluate
arbitrary multiple-input functions with sufficient accuracy.
To tackle the remaining problems shown in Sect. 3.3, we
adopt the following strategies: 1) preparing enough LUT
entries to ensure the accuracy of the function (described in
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Table 2 Comparison between naive bit-wise LUT implementation and
ours.

Sect. 4.2), 2) adopting word-wise FHE (BFV scheme [34])
to shorten the latency of the LUT processing (described
in Sect. 4.3), and 3) proposing a new technique to handle
multi-input functions over two inputs (described in Sect. 4.3
to Sect. 4.5).

Table 2 compares previous LUT implementations with
ours, where the semi-honest server follows the protocol but
is curious about other parties’ data. We set the plaintext
space larger than the bit-length of inputs and outputs. Us-
ing packing technique [24], we consolidate and encrypt the
number of l integers within a single ciphertext, where l is
the number of slots, which enables a parallel computation
in a SIMD manner. The complexity of single-input func-
tions using the LUT is O(2

∑m
i=1 di /l) when utilizing all data

points of LUTs (|Tin | = |Tout | = 2
∑m

i=1 di ). A drawback of
our approach is the communication between the computation
server and the trusted authority to match the function’s input
data and the data points in LUTs. Although the input data
for the function and matched result remain concealed from
the trusted authority by adopting PIR [28], the data point
distribution in input LUTs and the index of matched data
point (neither the input nor output value) will be revealed to
the trusted authority. Further security analysis is provided in
Sect. 4.2.3.

4.1 System Overview

The proposed method involves three parties as shown in
Fig. 2: 1) a user responsible for sending input value(s) of a
given function, 2) a computational server (CS) which can
be a cloud server tasked with function evaluation, and 3) a
trusted authority (TA) responsible for managing the FHE key
pairs and operating as a decryption server without knowing
raw input and output data. The user and the CS are assumed
to be semi-honest, while the TA is assumed to be honest; the
three parties are deemed not to collude.

During the initialization phase, the TA generates a set of
FHE keys, including the public key (PK) used for encryption,
the secret key (SK) used for decryption, the relinearization
key (RK) used for reducing ciphertext size, and the Galois
key (GK) used for slot rotation within a ciphertext. The TA
retains the SK while sharing the RK and GK with the CS,
and distributing the PK to the other two parties.

The pre-computed LUTs for a given function are en-
crypted and stored within the CS, where an LUT provider
also retains the PK. Both the input and output LUTs contain

Fig. 2 The overview of our proposed system.

the input values and their corresponding outputs that satisfy
the relationship f (Tin(i)) = Tout (i), where i denotes the LUT
index. The encrypted LUTs can be provided by users, the
CS, or a third party, but not by the TA as the TA holds the
secret key. The processing steps are shown in Fig. 2.

In the following, we explain 1) the preparation scheme
of LUT data points, 2) the construction of LUTs, 3) the table
separation scheme, and 4) the detailed LUT processing steps.

4.2 Preparation of LUT Data Points

We prepare a given function’s data points, i.e., input val-
ues, before constructing the LUTs. First, we select the data
points for the LUTs. Then, we convert all decimal points
representing input values to integers because we adopt the
BFV scheme [34] handing integers only. Finally, we add
several redundant data points to the LUTs to prevent the TA
from obtaining matched-index-related knowledge, such as
statistics. The following subsections describe the three steps
in detail.

4.2.1 Data Point Selection for LUTs

The techniques for LUT allocation, specifically data point
selection techniques, have been researched extensively
[32], [33] on the context that improves energy efficiency
in computer systems by enabling approximate computa-
tion with LUTs. Tian et al. [32] and Raha et al. [33]
proposed input-aware approximation techniques that assign
more weight to frequently appearing inputs to reduce output
errors while decreasing the number of LUT data points. Tian
et al. [32] proposed a maximum error threshold to guarantee
the precision of the function outputs. They then selected
a predefined number of data points from the frequently ap-
peared input data points, which can be adopted to our LUTs.

However, the data point selection technique is not the
primary focus of this paper. Therefore, we employ the fol-
lowing two naive data point selection techniques in this work:
1) selecting data points of equal distance within the required
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range (referred to as equidistant selection); 2) selecting data
points from frequently appearing input data (referred to as
input data-aware selection). For example, when using the
equidistant selection method, we choose data points like
[0,3,6,9, . . . ,3n] with a gap of 3 between each consecutive
data point. On the other hand, when applying the data-aware
selection with five data points, we pick [0,6,9,12,18] based
on the top centroids 0, 6, 9, 12, and 18 that are frequently
observed in the input data.

Note that the minimum and maximum data points
within the plaintext space must be chosen as the boundaries.
Without these boundary data points, we cannot accurately
determine the nearest data point to the input, as described
later in Step 3 of Sect. 4.5.

4.2.2 Decimal Points to Integers

We adopt the BFV scheme [34] in Microsoft SEAL [35]
as word-wise FHE, which exclusively operates on integers.
Thus, decimal points must be transformed into integers
through scaling. We denote the scaling parameter as p.
A decimal point value a is scaled to an integer using the
formula Round(p × a). The highest achievable precision is
determined by ensuring that the resulting integer remains. It
is important to note that a larger plaintext space can handle
numbers with greater precision. Our process involves ini-
tially rounding decimal points to the desired precision for
scaling, followed by encryption.

For instance, given vector x = [2.345, 2.347, 2.521,
2.538,3.124], after retaining 4 decimal places of precision,
Tin becomes Tin = [2345,2347,2521,2538,3124]. When
maintaining 3 decimal places of precision, Tin becomes
Tin = [235,252,254,312], as both 2.345 and 2.347 are
represented by the same integer after removing the last
digit. With 2 decimal places of precision, Tin is reduced
to Tin = [23,25,31], resulting in lower precision but shorter
runtime due to the decreased size of Tin.

4.2.3 Concealment of Matched Index from TA

Although the TA decrypts the intermediate result res sent
from the CS, as shown in Fig. 2, the TA never knows the
function itself, its input(s), or the function’s outputs. This
is because the res consists of a set of random-noise-added
differences between the function’s input values and the data
points in Tin (as described in Step 5 of Sect. 4.5). However,
the TA may know: 1) the index distribution of data points
in LUTs and 2) the index of matched data point (neither the
input nor output value). Although the intermediate result R
is randomized with the noise, the TA will be able to infer
the data point distribution of input LUTs by comparing the
decrypted values in the R because the same noise value is
added; however, the TA cannot know the values in LUTs.
Another concern is that the TA will be able to know the
statistics on how often a particular index of LUTs is selected.

Therefore, we introduce “redundant data points” to
make it hard for the TA to infer the statistics of the selected

index of LUTs. The CS maintains multiple versions of the
LUT, each with distinct additional redundant data points. A
distinct LUT is randomly selected for every input to provide
LUT processing, making estimating the statistics hard. The
more different versions of LUTs are prepared, the harder it is
to infer the statistics of the selected index. In the following
sections, we explain the concept of incorporating redundant
data points into Tin with examples.

As described in Sect. 4.2.1, the data points in Tin are
freely chosen to minimize output errors while simultane-
ously reducing the number of data points to accelerate LUT
processing. For instance, techniques like equidistant or input
data-aware selection might be employed. In simpler terms,
these data selection methods can add redundant data points
alongside the predefined data points. The inclusion of redun-
dant data points alters the corresponding indices. Inspired
by this concept, we propose to add random redundant data
points into Tin.

We assume that the LUT provider adds redundant data
points after establishing the predefined data points. Let us
denote the number of data points as |Tin | before adding re-
dundant data points as num′, and after their addition as num.
We introduce (num − num′) redundant data points into Tin,
each representing a random data point within the plaintext
space but not previously included in Tin. Note that the cor-
responding Tout must also be updated under the new Tin.

For example, let the data points be [−64,0,10,20,64],
the number of the slot be 4, and the plaintext modulus be
129. Since the plaintext modulus is 129, we can encrypt the
integer ranging from −64 to 64. Then, we have Tin(0) =
[−64,0,10,20], Tin(1) = [64, empty, empty, empty]. In this
example, we can add three redundant random values to Tin
at most if we do not add other ciphertexts. The randomly
added redundant data points must satisfy the range of plain-
text modulus and all the data points in Tin must be in or-
der. Assuming to add three redundant data points [−20, 30,
52], the new Tin becomes Tin(0) = [−64,−20,0,10], and
Tin(1) = [20,30,52,64], where italic data points are added.
If we do not have any empty slots, we can add a new cipher-
text. For example, let the predefined data points be [−64,
0, 10, 20, 30, 42, 55, 64] that is Tin(0) = [−64,0,10,20]
and Tin(1) = [30,42,55,64]. When adding four redundant
data points [−30,−20,−10,33] to Tin, the new Tin becomes
Tin(0) = [−64,−30,−20,−10], Tin(1) = [0,10,20,30], and
Tin(2) = [33,42,55,64]. Note that increasing the number of
ciphertexts, i.e., the number of rows of Tin or Tout , results in
longer processing time; therefore, it is not recommended.

The drawback of this approach is that the party respon-
sible for introducing redundant data points gains insight into
both the function and the predefined data points. Therefore,
this role should be fulfilled by the LUT provider, who sup-
plies the LUTs to the CS. In this scenario, the LUT provider
prepares a collection of LUTs that differ by incorporating
redundant data points. Although this method increases se-
curity strength by generating many LUT variations, an ex-
haustive number of LUT preparations is unfeasible due to
extensive storage requirements. For example, in our experi-
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ment, each ciphertexts is approximately 262KB and the LUT
size in KB is (d2m·d/le + d2d/le) × 262 for d-bit m-input
functions. We packed 212 data points into one ciphertext.
Examples of storage requirement are shown below.

• 32MB corresponds with 218 data points for an 18-bit
single-input function, that 32 B ≈ (218/212+218/212)×
262KB.

• 1.1GB corresponds with 224 data points for a 12-bit
two-input function or 8-bit three-input function, that
1.1GB ≈ (212·2/212 + 212/212) × 262KB.

4.3 Construction of LUT

This subsection explains the construction method of LUTs.
We first explain the single-input function case followed by
the multi-input function case.

4.3.1 LUTs for Single-Input Functions

We construct input LUT Tin and output LUT Tout of a given
single-input function f (x). The Tin stores input data points
for f (x), while Tout stores corresponding outputs. All the
data points in Tin are sorted in order.

In the following, x represents a vector that contains the
prepared input data points for f (x). In the example illustrated
in Fig. 3, we define x := [−4,−3,−2,−1,0,1,2,4], where the
plaintext space ranges from −4 to 4. The vector f (x) repre-
sents the corresponding output data points for x, denoted as
f (x) = [ f (−4), f (−3), f (−2), f (−1), f (0), f (1), f (2), f (4)].
The straightforward construction of Tin and Tout is to meet
the conditions Tin(i) = x(i) and Tout (i) = f (x(i)) for all
indices i that satisfy 0 ≤ i ≤ 7.

As explained in Sect. 2.2, we accelerate LUT process-
ing, which involves 1) searching for the matched element
x(i) of the input in Tin and 2) extracting the corresponding
output from Tout , by SIMD operations. In order to im-
plement SIMD operations, we transform the LUTs into a
two-dimensional format, as detailed below:

Tin(indInrow, indIncol) = Tin(i)
Tout (indOutrow, indOutcol) = Tout (i),

(2)

where indInrow = indOutrow = bi/lc and indIncol =
indOutcol = i mod l.

Referring to the example in Fig. 3, every row in Tin

Fig. 3 An example of constructing LUTs for single-input function.

and Tout represents a ciphertext whose slot size is l. This
structure facilitates column-wise addition and multiplication
by slot-wise computation [24]. Additionally, we can leverage
the multi-threading technique for row-wise parallelization.

4.3.2 LUTs for Multi-Input Functions

In the case of a multi-input function, we consider m
input vectors denoted as x0, x1, . . . , xm−1, along with a
single output vector whose each element corresponds to
f (x0, x1, . . . , xm−1). Regarding the LUTs, we prepare m-
input LUTs denoted as T j

in, where 0 ≤ j < m. Additionally,
there is one output LUT referred to as Tout , with a size of
|Tout | =

∏m−1
j=0 |T

j
in |.

The index of corresponding output for the m-
dimensional inputs x0(i0), . . . , xm−1(im−1) is f (x0(i0), . . . ,
xm−1(im−1)) whose index in Tout is (indOutrow, indOutcol),
where indOutrow = bindout/lc and indOutcol = indout
mod l, and

indout =
m−2∑
j=0

©«
m−2∏
z=j+1

(
|T z
in |

)
× ij

ª®¬ + im−1 (3)

The LUTs construction example of a 6-bit 2-input func-
tion is shown in Fig. 4 and Fig. 5. In this example, the
number of data points |Tin | = 64, and the number of slots
l = 8, T0

in := x0 and T1
in := x1. T0

in(i0) and T1
in(i1) are

transferred into two dimensionalT0
in(indIn0

row, indIn0
col
) and

T1
in(indIn1

row, indIn1
col
), respectively. When i0 = 30 and

i1 = 41, we have T0
in(indIn0

row, indIn0
col
) = (b30/8c,30

mod 8) = (3,6) and, T1
in(indIn1

row, indIn1
col
) = (b41/8c,41

mod 8) = (5,1).
The output LUTholds |T0

in |×|T
1
in | = 64×64 = 4096 cor-

responding data points. When i0 = 30 and i1 = 41, the index

Fig. 4 An example of multi-input function’s Tin .

Fig. 5 An example of multi-input function’s Tout .



LI and YAMANA: PRIVACY PRESERVING FUNCTION EVALUATION USING LOOKUP TABLES WITH WORD-WISE FHE
1169

of corresponding output is computed by Eq. (3) as indout =
64 × 30 + 41 = 1961 and Tout (indOutrow, indOutcol) =
(b1961/8c,1961 mod 8) = (245,1).

4.4 Table Separation

In order to shorten the runtime of LUT processing, we
present our table separation technique [25]. In the BFV
scheme [34] in Microsoft/SEAL [35], three primary param-
eters impact the runtime of FHE computations: the degree of
polynomial modulus, the coefficient modulus, and the plain-
text modulus (plaintext space). When a large plaintext space
is needed to implement LUTs, meaning a large plaintextmod-
ulus, the consumption of the noise budget for each operation
increases significantly, necessitating a greater noise budget
for the initial ciphertext. Although it is possible to allocate
more noise budget to the initially encrypted ciphertext using
a larger coefficient modulus, this also considerably extends
the runtime. Note that the polynomial modulus sets a limit
on the maximum coefficient modulus, and a larger polyno-
mial modulus supports more slots but leads to an increase in
runtime.

Hence, reducing the plaintext space is essential to
shorten the runtime of LUT processing. The subsequent
table separation technique reduces the LUT’s table size, con-
tributing to the reduction of the plaintext space.

Let us assume we set the plaintext space as w-bit and
decompose a u-bit large integer a to w-bit small integers
a0,a1, . . . ,at−1, where t = du/we, shown in Eq. (4).

a = a0 + a1 × 2w + . . . + at−1 × 2(t−1)w (4)

Each small integer is stored in the same index of the
corresponding sub-table. For example, we can decom-
pose the 6-bit integer 45 to three 2-bit integers such that
a0 = 1,a1 = 3,a2 = 2, i.e., 45 = 1 + 3 × 22 + 2 × 24, and
store in three sub-tables, i.e., La0, La1 , and La2 separately.

We can apply the aforementioned technique to both the
input and output LUTs; nevertheless, a limitation exists for
the input LUT. The table separation technique can solely
be applied to the input LUT only when full data points,
specifically 2u data points, are supplied.

4.5 LUT Processing with FHE

This subsection details the primary steps of our proposed
LUT processing using FHE, facilitating the evaluation of
arbitrary multi-input functions with both exact and nearby
matching, where nearby matching returns the closest data
point to the input while exact matching returns the matched
data point.

The CS retains the encrypted LUTs and performs FHE-
based LUT processing by communicating with the TA. The
process consists of six key steps, enumerated as follows.
(Each step is indicated by the corresponding number in
parentheses in Fig. 2.)

Step 1: For a single-input function, the user sends both
a ciphertext of the input ct(c) and a ciphertext of the artificial

Fig. 6 Example of preparing intermediate result.

noise ct(rnoise) to the CS. Here, ct(c) = Enc([c, . . . , c]),
where every element is filled with the same input value c for
the function and |c | = l, i.e., slot size of the ciphertext. The
vector ct(rnoise) is utilized to conceal the function’s output
from the TA in Step 6, where |rnoise | = l and every element
is filled with different random value.

For an m-input function, the user sends m-fold inputs,
denoted as ct(c0), . . . , ct(cm−1), along with artificial noise
rnoise to the CS, where cj(0 ≤ j < m − 1) represents the
j-th encrypted input vector of the m-input function, and
ct(c j) ← Enc([cj, . . . , cj]), with |c j | = l.

Step 2: The CS generates the intermediate result ct(R j)

for input ct(c j), and subsequently sends it to the TA. The
intermediate result ct(R j) comprises the differences between
each data point in T j

in and the function’s input ct(c j). As
shown in Fig. 6, the intermediate result ct(R j) is composed
of the same number of ciphertexts as ct(T j

in). Here, ct(R j(g))
represents a single ciphertext consisting of l-fold data, where
0 ≤ g < d|T j

in |/le.

ct(R j(g)) = ct(c j) � −ct(T j
in(g)) (5)

The evaluation of Eq. (5) can be parallelized with g, i.e.,
ciphertext by ciphertext, by adopting multi-threading.

In the example shown in Fig. 6, we consider the inputs
c as 8, the slot size l as 4, and |Tin | = 12. The encrypted
input ct(c) is a ciphertext that encrypts a vector with all
elements set to the input value 8. Utilizing multi-threading,
we simultaneously calculate the intermediate result ct(R(g))
for 0 ≤ g < 3, running in parallel with g.

Step 3: The TA decrypts the received intermediate
result ct(R) and then identifies the index of the corresponding
data point within ct(Tin). Note that for multi-input functions,
this step is repeated for each input. Due to the TA’s lack
of knowledge about the input and the data points stored
in ct(Tin), even after decrypting ct(R), the matched data
point is not revealed to the TA. The TA is only informed
of the index of the matched data point. Furthermore, as
elucidated in Sect. 4.2.3, since Tin incorporates distinct data
points through the inclusion of redundant data points in every
LUT processing, the TA cannot deduce the data points even
upon observing a sequence of decrypted ct(R) results.

When the function’s input exactly matches one of the
data points in Tin, the corresponding data point in R has
a value of 0 by evaluating Eq. (5). If the TA is unable
to identify a 0 value in R, the TA outputs the index with
the smallest absolute value in R. This process is called a
nearby search, which involves identifying the nearest data
point. Notably, if there are two data points with the smallest



1170
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

absolute values in R, one of them can be selected, as these
two data points are equidistant from the function input value.
For instance, in Fig. 6, the shaded data points Tin(2,0) and
Tin(2,1) represent the smallest absolute values, both ofwhich
can be selected.

As elucidated in Sect. 4.2.1, Tin must contain the maxi-
mum and minimum data points of the plaintext space. Let us
explainwith an example. When assumingTin = [−2,−1,1,2]
and input is −2 with the plaintext space ranging from −2 to
2, the resultant R is [0,−1,2,1] after executing Eq. (5) with
modulus calculations. As a result, the matched index is 0,
because R(0) = 0. However, if the minimum data point is
absent, and the data points in Tin is [−1,1,2], we have R as
[−1,2,1]. In this case, the two smallest absolute values exist
at indices 0 and 2. However, the resultant index 2 is incor-
rect because Tin(2) = 2, which considerably deviates from
the input value of −2. The rationale behind R(2) = 1 lies
in the modulus calculation of polynomials. Consequently,
including the maximum and minimum data points in Tin is
essential to avert the side effect of modulus calculations that
might hinder the identification of the nearest data point(s).
The proof is provided below.
Theorem: Having both −p and p data points is a necessary
and sufficient condition for the smallest absolute value of the
R to be the closest data point(s) to any of the inputs, where
[−p, p] is the plaintext space.
proof : Let c be an input value for a given function, d be a data
point in LUT, where c, d ∈ [−p, p]. The distance between d
and c is |c − d | ≤ 2p because of −2p ≤ c − d ≤ 2p.
Sufficient condition: When −p ≤ c − d ≤ p, the |c − d | is
within the plaintext space, where | · | shows absolute value.
Thus, the closest data point(s) to c is the data point(s) with
the smallest |c − d |. On the other hand, when p < c − d
or c − d < −p, the |c − d | does not show the real distance
because of the modulus calculations, which are classified
into the following two patterns:

1): When c − d > p, |c − d | becomes |c − d − (2p+ 1)|
after modulus calculation. ∵ d ∈ [−p, p], c − d > p ∴ the
minimum |c−d−(2p+1)| appears iff d = −p. Also, ∵ c ≤ p,
∴ |c− p−1| = p−c+1. Meanwhile, |c−d | = |c− p| = p−c
iff d = p. Thus, the distance between the data point p and
c is smaller than that between −p and c, and as a result, the
closest data point never be the border that needs modulus
calculation.

2): When c− d < −p, |c− d | becomes |c− d+ (2p+1)|
after modulus calculation. ∵ d ∈ [−p, p], c − d < −p ∴ the
minimum |c−d+(2p+1)| appears iff d = p. Also, ∵ −p ≤ c,
∴ |c+ p+1| = c+ p+1. Meanwhile, |c−d | = |c+ p| = c+ p
iff d = −p. Thus, the distance between the data point −p
and c is smaller than that between p and c, and as a result,
the closest data point never be the border that needs modulus
calculation.

From 1) and 2), if we have both borders’ data points,
the closest data point(s) to any inputs is the data point which
has the smallest absolute value in R. �
Necessary condition: The absolute value in R reflects the

real distance between the data points in LUT with the input c
iff it is calculated w/o modulus calculation. Thus, the closest
data point must be the one that has a minimum distance w/o
modulus calculation. Both border data points are needed
because this can guarantee the existence of the distance w/o
modulus calculation having a smaller distance than that with
modulus calculation. Therefore, both borders’ data points
are needed to search for the closest data points to the input
from the R. �

The Algorithm 1 shows how to search for the matched
index in Tin and construct PIR queries. In Algorithm 1,
the matched index for the j-th input of the m-input function
is denoted as indIn j

row and indIn j
col

, where 0 ≤ j < m.
The index of the output LUT Tout that corresponds to the
function’s input, specified as indOutrow and indOutcol , is
determined through the following calculation.

indOutrow = bindout/lc
indOutcol = indout mod l,

(6)

where indout =
∑m−2

j=0 (
∏m−2

z=j+1(|T
z
in |) × (indIn j

row × l +

indIn j
col
)) + (indInm−1

row × l + indInm−1
col
). Once the matched

index in Tout is computed, the TA proceeds to generate PIR
queries and send them back to the CS, effectively conceal-
ing the matched index in Tout from the CS. The number
of PIR queries denoted as Nq is calculated by the formula
Nq = dlogl |Tout |e. Subsequently, the TA employs Algo-
rithm 1 to produce the encrypted PIR queries, expressed as
ct(Q) := [ct(Q(0)), . . . , ct(Q(Nq − 1))].

Figure 7 shows an example of generating PIR queries for
a single-input function. In this example, the absolute value
of 1 is the smallest, whose index (indOutrow, indOutcol)
is (2,0) or (2,1). As these two data points have the same
distance from the function input value, we select (2,0) this



LI and YAMANA: PRIVACY PRESERVING FUNCTION EVALUATION USING LOOKUP TABLES WITH WORD-WISE FHE
1171

Fig. 7 Example of generating PIR queries.

time. The number of PIR queries is calculated by Nq =

dlog4 12e = 2, i.e., Q(0) and Q(1). The Q(0) is a vector in
which the indOutcol-th element is 1 and others are 0. The
Q(1) is a rotated vector that left rotate indQ1 elements of
Q(0), where indQ1 = b(2 × 4 + 0)/4c mod 4 = 2.

Step 4: The CS receives the PIR queries from the TA
and creates a ct(Tout )-style ciphertexts vector qlast in whose
element indicated by ct(Q) is one and others are zero by
Algorithm 2. Then, the CS proceeds to extract the matched
data point in Tout as ct(r) by Algorithm 3.

Step 5: The CS adds the noise ct(rnoise) to the func-
tion’s output ct(r) to create ct(r + rnoise). Subsequently, the
CS sends ct(r + rnoise) to the TA.

Table 3 Computational complexity.

Step 6: The TA decrypts the received ct(r + rnoise)
and then forwards r + rnoise to the user. In the final step, the
user obtains the function’s result by subtracting r + rnoise
from the received data.

5. Complexity Analysis

This section shows the computational complexity of our pro-
posed LUT processing. We assume to use the LUTs with
fully occupied data points satisfying |Tout | = 2m·d for a d-
bit m-input function. We pack and encrypt l data points
into a single ciphertext, then the number of PIR queries is
Nq = dlogl 2m·de (see Step 3 of Sect. 4.5).

First, the computational complexity in the CS is calcu-
lated as follows:

1) Searching for the matched input in Tin needs O(m ·
2d/l) (see Step 2 of Sect. 4.5).

2) Extracting the matched data point from Tout needs
O(2m·d/l) (Algorithm 3).

3) Algorithm 2 needs O(2m·d/l) for reconstructing the
PIR queries by calling the function ReconstQ (Nq−1) times,
each of which needs d2m·d/le + log2 l +

∑Nq−2
i=1 li times ro-

tations and d2m·d/le · 2 +
∑Nq−2

i=1 li times multiplications.
4) Adding the noise to the output needs O(1) because

of one time addition (see Step 5 of Sect. 4.5).
Since O(2m·d/l) is the largest term and has the highest

magnitude among all operations, the computational com-
plexity over ciphertext is defined as O(2m·d/l).

Second, the computational complexity in the TA is cal-
culated as follows (see Step 3 of Sect. 4.5 and Algorithm 1):

1) Decrypting ct(R) needs O(m · 2d/l).
2) Encrypting the PIR queries ct(Q) needs O(Nq),
3) Searching for the matched index over the matrix R

with plaintext requires O(2d · m) because of liner search.
4) Generating PIR queries matrix Q needs O(Nq · l).
Since m · 2d/l > Nq and 2d · m > Nq · l, the compu-

tational complexity over ciphertext and plaintext are defined
as O(m · 2d/l) and O(2d · m), respectively.

The computational complexity is summarized in Ta-
ble 3.

6. Experimental Evaluation

This section evaluates our proposed method by conducting
the following four experiments. (The source code is available
at: https://github.com/ruixiaoLee/lutsealsimulation.)

https://github.com/ruixiaoLee/lut_seal_simulation
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Table 4 The parameters of FHE (BFV) setting for the proposed method.

1) The first experiment measures the error of Swish and
ReLU functions, which are common activation functions
used in machine learning, as the number of LUT data points
varies. We employ two simple data point selection tech-
niques, equidistant- and population-based, to demonstrate
the highly accurate outcomes of the LUT-based approach.

2) The second experimentmeasures themaximum over-
head of d-bit single-input functions with LUTs consisting of
2d data points. This experiment aims to confirm the upper
bounds of latency, memory usage, and communication costs
associated with our proposed method. Two specific fixed
values are denoted: d as the bit-length of input data points,
and s as the bit-length of output data points. Throughout all
the experiments, we maintain the condition d = s and use d
to represent the bit-length of both input and output.

3) The third experiment measures the maximum over-
head of d-bit input and output of two and three-input func-
tions with our proposed method by varying the number of
bits of data points 2m·d to handle, where m is the number of
inputs, confirming the adaptability of our proposed method
for multi-input functions.

4) The fourth experiment compares our proposed
method and the polynomial approximation method [14] us-
ing the CKKS scheme in the Microsoft SEAL library. This
comparison evaluates the accuracy and runtime when im-
plementing Swish and ReLU functions. Furthermore, we
compare our proposed method and the naive bit-wise LUT
method, implemented using the OpenFHE library due to the
unavailability of bit-wise encoding FHE in the Microsoft
SEAL library.

Our proposed methods and the baselines were imple-
mented and evaluated on the computer explained below. We
used one machine to emulate all the parties, i.e., a user, the
CS, and the TA. Our machine was equipped with four In-
tel(R) Xeon(R) E7-8880 v3 @ 2.30GHz CPUs with 3 TB
main memory, with CentOS Linux 7 (Core) x86-64 OS run-
ning. We used gcc 9.3.1, CMake 3.14.3, and OpenMP 3.1,
the OpenMP was used for multi-thread operations. The
proposed method was implemented using Microsoft/SEAL†
library v4.0.0. The parameters used in experiments 2) and
3) are shown in Table 4. It is important to note that we only
use half of the slots in our experiments.

6.1 Error Evaluation with Different Numbers of LUT Data
Points

We evaluate the error of Swish and ReLU functions by vary-
ing the numbers of LUT data points to verify the extent to
which function outputs exhibit minimal deviations from the

† https://github.com/microsoft/SEAL

Table 5 The average error with different numbers of LUT data points.

actual calculation results. The data points are selected using
two techniques: 1) selecting data points of equal distance
within the required range (referred to as equidistant selec-
tion) and 2) selecting data points from frequently encoun-
tered input data (referred to as input data-aware selection).

We prepared a historical input dataset that follows a
standard normal distribution, with a mean of zero, com-
prising 100,000 data. Out of these, 80% of the items were
allocated as a training dataset (80,000 data) for fine-tuning
the data points of input data-aware selection. The remain-
ing 20% were designated as a test dataset (20,000 data) for
calculating the error. For our evaluation, we established the
data point range from −6.5536 to 6.5535, assuming that the
LUT without selection consists of 217 = 131,072 data points
spanning from −65,536 to 65,535, with a scale parameter
p = 10,000.

The average absolute error and error percentage are
calculated by Eq. (7).

Avg.Abs.Err . = avg(
N∑
i=1

abs(r ilut − r ireal))

Avg.Per .Err . = avg(
N∑
i=1

abs(
r i
lut
− r i

real

r i
real

) × 100),

(7)

where N is the number of test data, rlut is the output value
using LUT, and rreal is the actual calculation result.

Table 5 shows the result. We confirm that the calcula-
tion error decreases as the number of data points increases.
Besides, the LUT with input data-aware selection has better
accuracy than the LUT with equidistant selection.

6.2 Runtime and Communication Cost Evaluation for
Single-Input Function

We evaluate the overhead of d-bit single-input functions,
where the LUTs contain a total of 2d data points. In this
experiment, we investigate the time consumption, memory
usage, and communication cost of our proposed FHE-based
method. With the FHE parameters shown in Table 4, the size
of a single ciphertext is approximately 262KB. We measure
the overhead by varying the bit-length of both the input and

https://github.com/microsoft/SEAL
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Table 6 The runtime of single-input function in each step.

output data points to 18-bit, 16-bit, 14-bit, and 12-bit, using
one, two, and four threads for evaluation. Since we maintain
the same parameters in this experiment, the number of slots
remains a constant value. The number of ciphertexts in Tin
and Tout is shown in Table 6 and Table 7.

Table 6 shows the runtime for each step described in
Sect. 4.5, varying the length of input bits. The runtime from
steps 2 to 5 in Table 6 shows the latency of the function eval-
uation after receiving the input value ct(c) to outputting the
result ct(r + rnoise). Table 7 shows the memory consump-
tion in each step, and Table 8 shows the transferred data size
between the CS and the TA from Step 2 to 4 for handling
the intermediate result and PIR query. Table 8 shows the
simulated data transferring time between the CS and the TA
under an ideal 100 Mbps net-connection environment.

As shown in Tables 6 and 8, we can evaluate the 18-
bit function within 4.52 s (3.12+1.40) by one thread and
2.53 s (1.13+1.40) by four threads. The runtime increases
with LUT size (the number of ciphertexts in LUT). The
multi-thread implementation reduced the runtime by one-
third by four threads but increased memory consumption by
2.4 times. The largest memory consumption in this exper-
iment was 309.87MB when evaluating an 18-bit function
using four threads.

6.3 Runtime and Communication Cost Evaluation for
Multi-Input Function

We evaluate two and three-input functions using our pro-
posed method, varying the number of bits for both input and
output data points. This process helps to confirm the adapt-
ability of our proposed method across various functions.

Table 7 The main memory consumption in each step.

Table 8 The communication cost between the CS and the TA.

We employed the same FHE parameters as presented in
Table 4. Table 9 shows the overall runtime from Step 2 to 5
under different thread counts with the time for communica-
tion. In this experiment, we evaluated two-input functions
ranging from 4 to 12 bits and three-input functions ranging
from 4 to 8 bits.

The runtime increases rapidly as the number of inputs
for the function increases, primarily because the size of the
output LUT expands exponentially with the number of in-
puts. In this experiment, the number of data points of output
LUT is 2m·d , where the number of data points of input LUT
is 2d in case preparing all data points that can be expressed
in d-bit; m shows the number of inputs for the function.
The result shows the worst runtime when evaluating d-bit
functions because we prepare all data points in the LUT. For
instance, for 12-bit two-input functions and 8-bit three-input
functions, the maximum number of output data points is
224 = 16,777,216.

As demonstrated in Table 9, we can evaluate an arbi-
trary 12-bit two-input function or 8-bit three-input function
within 208.5 s using one thread, and within 17 s using 16
threads, which is approximately 12 times faster. Evaluating
6- and 4-bit two-input functions, or 4-bit three-input func-
tions, required 0.2 s. Note that the runtimes of 6- or 4-bit
two-input functions and 4-bit three-input functions were not
impacted by an increase in the number of threads, as each in-
put LUT and output LUT both consist of a single ciphertext,
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Table 9 The runtime of m-input functions.

which prevents parallelization.

6.4 Comparison with Related Work

The fourth experiment compares the accuracy and runtime
of our proposed LUT-based method with the polynomial ap-
proximation methods [14] when implementing Swish and
ReLU functions. Additionally, we provide a brief compari-
son of the runtime between our proposed LUT-based method
and the naive bit-wise LUT method.

1) Error and Runtime Comparison with the Polynomial
Approximation Method

We implemented the polynomial approximation and our
proposed methods using the CKKS and the BFV schemes in
theMicrosoft SEAL library, respectively. For the polynomial
approximation, we use the polyfit† function from NumPy in
Python and show the results in Table 10. The approximation
range used was chosen as [−3,3]. We omitted terms with
coefficients less than 10−5. We used the same test dataset
and LUTs in Sect. 6.1. The average absolute error is defined
by Eq. (7). The results and the parameters are shown in
Table 11.

As shown in Table 11, the runtime of our proposed
method is the samewhen the number of data points is smaller
than 212 because one row, i.e., one ciphertext, can store up to
212 data points so that one row is enough to implement. The
absolute error on average of the output value for the Swish
(ReLU) function is 4.81 × 10−4(2.77 × 10−2) when using
the degree-8 polynomial approximation, which requires 115
(185)ms. Meanwhile, our proposed LUT method with input
data-aware selection can achieve 3.28 × 10−4(2.92 × 10−4)
computation error on average with approximately 95 (95)ms
including communication time. Thus, we confirmed that our
proposed method achieves higher accuracy with a shorter
runtime compared to the polynomial approximation method.

Note that the polynomial approximation method suits
batch-style function evaluations because the polynomial ap-
proximation method can evaluate the number of l inputs
simultaneously using the SIMD technique. On the con-
trary, our proposed method already adopted the SIMD tech-
nique for handling LUT-based function evaluation; thus, our
method cannot fit batch-style function evaluations.
† https://numpy.org/doc/stable/reference/generated/numpy.

polyfit.html

Table 10 Polynomial approximation result.

2) Runtime Comparison with the Bit-Wise LUT Method
In this section, we compare the runtime of the bit-wise

LUT method with that of our proposed word-wise LUT
method. First, the runtimes of the bit-wise LUT method
proposed in previous papers are reviewed, and then the re-
sults of the actual implementation are presented.

Carpov et al. [19] showed that the latency of 6-to-6-bit
functions was under 1.6 s. Chillotti et al. [18] evaluated 8-
to-8-bit and 16-to-8-bit functions spent approximately 1.1 s
and 2.2 s, respectively. Lu et al. [22] reported 0.97 s for
7-bit functions. Since these results are evaluated in different
environments, they are not directly comparable; however,
compared to our results in Tables 6 and 8, our method can
evaluate a 12-bit function in 0.14 s by one thread, which
shows the superiority of our method.

To confirm our superiority in detail, we implement the
naive bit-wise LUT method as a reference. Since the Mi-
crosoft SEAL library does not support bit-wise encoding
FHE, we adopt OpenFHE†† library v1.0.3. The security
level is set as STD128 and other parameters are left as the
default. We also set the bit-length of input and output to be
the same, represented as d(= s).

To evaluate m-input d-to-s-bit function, we combine
the inputs as a single input whose bit-length is m · d. The
encrypted vector of input bits is q = [ct(q0), . . . , ct(qm·d−1)].
The Tin and Tout are matrices, each of whose elements are
encrypted bits, where the number of data points is 2m·d ,
bit-length of input and output are m · d and s, respectively.
The encrypted vector of result r = [ct(r0), . . . , ct(rs−1)] is
computed as follows.

ct(ri) =
2m·d∑
j=1

(
m·d∏
k=1

(
ct(qk) � Tin( j, k) � ct(1)

)
� Tout ( j, i)

)
,

(8)

where 0 ≤ i ≤ s.
The results with 4-thread are shown in Table 12. Our

†† https://github.com/openfheorg/openfhe-development

https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html
https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html
https://github.com/openfheorg/openfhe-development
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Table 11 Runtime comparison between polynomial approximation and our proposed method.

Table 12 Runtime comparison in seconds [s] of m-input functions be-
tween naive bit-wise LUT and our proposed method (using 4-thread).

proposed method showed the same runtime regardless of the
input bit-length because the proposed method uses the same
number of ciphertexts even if the bit-length changes. As
shown in Table 2, if 2d does not exceed slot size, the proposed
method’s runtime stays the same. On the contrary, the naive
bit-wise LUT increases its runtime with the increase of the
bit-length because the runtime is proportional to O(s · 2m·d)
as shown in Table 2.

When the number of inputs increases, our proposed
method’s runtime increases as the output LUT size increases
(when the Nq remains unchanged). As for the naive bit-wise
implementation, the runtime increases with the same reason
when the bit-length increases.

For the 1-bit one-, two-, and three-input functions, our
method decreases the runtime to approximately 30.9, 47.5,
and 107.9 times compared to the naive bit-wise LUT im-
plementation. Note that we used different FHE libraries to
implement the two methods; thus, we cannot compare the
runtime directly. However, we could confirm how the run-
time increases in each method.

7. Discussion

Our proposedmethod needs the TA to search for the matched
data point while hiding input and output information from
the TA. However, this introduces additional communication
overhead between the CS and the TA. The overhead, as
shown in Table 8, is not significant; however, it is important
to note that the TA must remain online. Besides, as we
discussed in Sect. 4.2.3, the preparation of multiple versions
of LUTs makes it hard for the TA to infer the statistics of the
selected index of LUTs. However, even if we prepare many

versions, 1) the index distribution of data points in LUTs
and 2) the index of matched data point (neither the input
nor output value) is leaked to the TA, limiting our proposed
method.

To circumvent the need for a TA, an alternative approach
is to employ a trusted execution environment (TEE) like Intel
SGX [37] and AMD SEV [38]. For instance, Xiao et al. [39]
and Takeshita et al. [40] employed the TEE of Intel SGX
to manage FHE key pairs, combining plaintext execution in
the TEE with ciphertext execution using FHE in the rich
execution environment (REE). Yakupoglu et al. [41] devel-
oped three secure multi-party computation (SMPC) proto-
cols leveraging the TEE of Intel SGX and advanced encryp-
tion standards (AES). Although TEEs have limited memory
sizes, implementing the TA’s execution within a TEE could
be feasible since the decryption of intermediate data and the
subsequent search for the minimal absolute value to generate
PIR queries do not necessitate large memory resources.

8. Conclusion

This paper introduces a privacy-preserving function evalua-
tion method using Look-Up Tables (LUTs) with word-wise-
based Fully Homomorphic Encryption (FHE). Our proposed
function evaluation approach offers flexibility in balancing
accuracy and runtime by adjusting the LUT size to suit spe-
cific application requirements. Experimental results demon-
strated that we were able to evaluate an 18-bit (12-bit) single-
input functionwithin 2.53 (0.14) s and a 6-bit two-input func-
tion within 0.17 s using the proposed method, inclusive of
communication time. These evaluations were conducted us-
ing four threads. Additionally, our method produced more
accurate outputs with shorter runtimes than the polynomial
approximation method. By incorporating existing LUT data
point selection techniques, it is possible to enhance accuracy
further using smaller LUT sizes, contributing to reduced
runtimes. Our future work involves exploring the combina-
tion of FHE and Trusted Execution Environments (TEEs) to
further shorten the runtime.
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