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PAPER
Efficient Wafer-Level Spatial Variation Modeling
for Multi-Site RF IC Testing

Riaz-ul-haque MIAN†, Tomoki NAKAMURA††, Masuo KAJIYAMA††, Makoto EIKI††, Nonmembers,
and Michihiro SHINTANI†††a), Member

SUMMARY Wafer-level performance prediction techniques have been
increasingly gaining attention in production LSI testing due to their ability
to reduce measurement costs without compromising test quality. Despite
the availability of several efficient methods, the site-to-site variation com-
monly observed in multi-site testing for radio frequency circuits remains
inadequately addressed. In thismanuscript, we propose awafer-level perfor-
mance prediction approach for multi-site testing that takes into account the
site-to-site variation. Our proposedmethod is built on the Gaussian process,
a widely utilized wafer-level spatial correlation modeling technique, and en-
hances prediction accuracy by extending hierarchical modeling to leverage
the test site information test engineers provide. Additionally, we propose
a test-site sampling method that maximizes cost reduction while maintain-
ing sufficient estimation accuracy. Our experimental results, which employ
industrial production test data, demonstrate that our proposed method can
decrease the estimation error to 1/19 of that a conventionalmethod achieves.
Furthermore, our sampling method can reduce the required measurements
by 97% while ensuring satisfactory estimation accuracy.
key words: wafer-level spatial characteristic modeling, Gaussian process
regression, LSI test

1. Introduction

Currently, large-scale integrated circuits (LSIs) are being
embedded in all modern products, thereby ensuring smooth
functioning of daily life. In addition to automobiles, health-
care, and aerospace, which are industries essential for daily
life, LSIs are utilized in critical infrastructure that support
our daily lives, such as computer networks, power transmis-
sion systems, and transportation control systems. However,
with the spread of LSIs, their reliability has emerged as a
crucial issue, and faulty LSIs not only interrupt the services
of systems reliant on these circuits but also severely impact
our society.

To ensure the reliability of LSI products, multiple test
items are tested and/or measured under various conditions
during several stages of LSI manufacturing. With increasing
scale and multi-functionality of LSIs, an increasing num-
ber of items must be tested, resulting in test-cost inflation.
However, as the test cost accounts for a majority of the cost
incurred in LSI manufacturing, this inflation has emerged as
a major challenge.
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Various test-cost reductionmethods have been proposed
that apply data analytics, machine-learning algorithms, and
statistical methods [1]–[3]. In particular, the wafer-level
characteristic modeling method based on a statistical algo-
rithm is one of the most promising candidates that reduces
the test cost, that is, themeasurement cost, without impairing
the test quality [4]–[11]. In these studies, a statistical mod-
eling technique was used to predict the entire measurement
on a wafer from a small number of sample measurements.
As the estimation eliminates the need for measurement, it
not only reduces the cost of measurement but can be used
to reduce the number of test items and/or change the test
limits, which is expected to improve the efficiency of adap-
tive testing [12]–[14]. In [4], the expectation-maximization
(EM) algorithm [15] was leveraged to predict the measure-
ment. Moreover, in [5]–[8], a statistical prediction method,
named virtual probe, based on compressed sensing [16]
was proposed. Notably, the Gaussian process (GP)-based
method [17] yieldsmore accurate prediction results [9]–[11].
Furthermore, the use of GP modeling entails another bene-
fit. This method calculates the confidence of a prediction;
accordingly, the user can confirm whether the number and
location of the measurement samples are sufficient, which is
a significant advantage from a practical viewpoint.

Most of thesemethods assume that the device character-
istics on the wafer gradually change with wafer coordinates;
however, this assumption does not hold for the measurement
of radio frequency (RF) circuits undermulti-site testing [18]–
[20], in which a probe card is adapted to simultaneously
probe multiple devices under test (DUTs). The contact of
the probe card with the DUTs to be tested is named the
touchdown and, the position of the needles in a touchdown
is called a site. During the measurement of the RF circuit,
a calibration circuit for impedance matching is added to the
probe card, causing a significantly greater variation than the
spatial variation owing to its parasitic components, as illus-
trated in Fig. 1.

Figure 1(a) presents the histograms of the characteris-
tics of an industrial RF circuit, which is fabricated using a
28-nm process technology, measured through a multi-site
test with 16 sites per measurement in the first fabrication
lot. The histograms are presented in different colors cor-
responding to each site. Although each histogram exhibits
a low variance, significant differences, that is, differences
in sites among the histograms are evident. Most existing
methods fail to model this measurement result because of
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Fig. 1 Histograms of measured characteristics of an industrial RF circuit
on a wafer, measured by multi-site testing with 16 sites. The histograms of
each site are shownwith different colors, that is, 16 histograms are presented
herein. The significant variations in the histogram between sites are clearly
visible. Furthermore, the locations of the black histograms in the early and
latest lots are considerably different. The horizontal axis is expressed in an
arbitrary unit.

discontinuous changes between sites.
Only the work in [11] attempted to solve this issue of

the discontinuous change in wafer-level variation modeling.
In [11], a two-step modeling method using k-means cluster-
ing [21] and GP was proposed. In the first step, all dies on a
wafer are explicitlymeasured, and subsequently, the k-means
clustering algorithm is applied to divide the measurements
into k measurement groups. In addition, the wafer coor-
dinates are also clustered according to the k measurement
groups. In the second step, for the subsequently fabricated
wafers, GP is applied to each cluster individually. Because
the spatial variation is modeled according to the partitioned
magnitude of themeasured value, discontinuous changes can
be accurately reproduced. In addition, a method has been
reported [22] that addresses variations between sites. Re-
portedly [22], to set outlier limits in a test, there is a method
of eliminating the variation between sites by normalizing
each site [22]. However, setting the normalization constant
appropriately in small samples is challenging; thus, applying
site normalization to wafer-level modeling is a difficult task.

However, this method of [11] relies heavily on the as-
sumption that the k-means clustering results obtained from
the first wafer are applicable to all the subsequent lots. No-
tably, certain site histograms drastically changed in the lat-
est fabrication lot, as displayed in Fig. 1(b), which presents
the histogram in the sixth lot. For example, to achieve an

accurate prediction, the highlighted black histogram should
correspond to a cluster different from that shown in Fig. 1(a).
Although the possibility of recalibrating k-means clustering
has been briefly described, no specific solution has been
reported as yet [11].

Herein, we propose a novel wafer-level spatial-variation
modeling method for RF circuits under multisite testing.
Generally, test engineers possess site information for prob-
ing; thus, we exploited this aspect as a cluster in the proposed
method to predict spatial variation through hierarchical GP
modeling of each site. Therefore, the proposed method does
not require a clustering algorithm and measurement corre-
sponding to the first step. In particular, the use of site infor-
mation is straightforward yet efficient undermultisite testing.
Because the characteristics measured within one cluster pos-
sess additional parasitic components identical to those of the
calibration circuit, only the spatial changes on the wafer are
modeled. Consequently, the proposed method allows for ac-
curate modeling across wafers. Moreover, we propose an
active sampling method based on active learning [23], while
considering the measurement of multisite testing. Through
the active sampling method utilizing the predictive variance
of each site, the proposed method achieved optimal estima-
tion with a small number of measured samples.

This manuscript is based on our previous work [24].
While our previous evaluation insufficiently uses only 6
wafers, a more practical evaluation is provided to show the
effectiveness of the proposed method in a real production
test environment by increasing the number of wafers to all
wafers of six lots, i.e., totally 143 wafers. Furthermore, we
evaluate the effectiveness of the proposed sampling method
by comparing the sampling method proposed in [10].

The main contributions of this work are summarized as
follows:

• Hierarchical GP modeling using site information:
Our proposed method enables precise modeling of the
wafer’s spatial correlation, even when measuring RF
circuits with discontinuous changes for any lot. This
is accomplished by applying the GP separately to the
appropriate clusters obtained through the use of site
information.

• Active sampling algorithm under multi-site testing
environment: We propose an efficient sampling algo-
rithm based on the predictive variance of the estimation
to determine the sample location.

• Comparison with the conventional method using in-
dustrial production data: Our experimental results
confirm that the assumption made in the two-step mod-
eling method [11], which applies that the k-means clus-
tering result can be used for subsequent wafers, is not
valid for a more miniaturized fabrication process. Fur-
thermore, we demonstrate that our proposed method is
capable of reducing the prediction error to an average
of 1/19.4 compared to the prediction error obtained
through the two-step modeling method.

• Thorough evaluation of the proposed active loca-
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tion selection algorithm: The experimental results
reveal that the proposed sampling method success-
fully reduces the number of touchdowns compared to
the random sampling method and aggressive sampling
method [10]without sacrificing the prediction accuracy.
To the best of our knowledge, our study is a pioneering
effort that successfully demonstrates spatial variation
modeling in a multi-site testing environment.

The remainder of this paper is organized as follows.
Section 2 briefly illustrates the GP, which plays a central
role in the proposed method. In addition, we reviewed the
existing wafer-level spatial variation modeling based on the
two-step approach [11], as a previous work. Section 3 pro-
poses a hierarchical GP based on site information and an
active sampling method for multisite testing. The experi-
mental results using industrial production test-data of an RF
IC fabricated via a 28 nm process technology are presented
in Sect. 4, and the effectiveness of the proposed method is
quantitatively evaluated against that of conventional meth-
ods, as presented in this section. Finally, the conclusions
drawn based on the findings are presented in Sect. 5.

2. Preliminaries

2.1 Gaussian Process

First, we quickly review a GP [17], which is an integral part
of the conventional method [11] and our method. The GP
model is employed to estimate the function y = f (x) based
on the input variable, x, to the output variable y, which is
generally used for regression. In the GP model, the function
f is assumed to follow a multidimensional normal distribu-
tion and is expressed as f ∼ N(0,Z) using a kernel matrix Z .
The primary benefit of thismodel is its ability to address non-
linear estimation problems. Another important advantage is
the utilization of Bayesian inference [25]. Because the esti-
mated function is obtained as a distribution of functions, not
as a single function, the uncertainty of the estimation can be
expressed as predictive variance.

The outline of GP-based multiple regression is summa-
rized in Algorithm 1. We consider (Xtrain, ytrain) = {(x1, y1),

(x2, y2), · · · , (xN , yN )} and Xtest = (x
∗
1, x
∗
2, · · · , x

∗
M ) as

the training and test datasets, respectively, where M � N . In
addition, a kernel function, fkern, is given as an input. Using
the predictedmodel, f , calculated based on (Xtrain, ytrain), the
algorithm returns the mean values and variances of the pre-
dicted y∗ = (y∗1, y

∗
2, · · · , y

∗
M ) for Xtest, µ = (µ1, µ2, · · · , µM )

and v = (v1, v2, · · · , vM ).
In lines 1 to 5, the kernel matrix Z of the training dataset

is calculated for each element of Xtrain using the kernel func-
tion. Subsequently, in lines 7 to 14, the probability density
function of the predicted y∗m corresponding to x∗m is de-
rived by modeling a multidimensional normal distribution,
as follows:

p(y∗m |x
∗
m,Xtrain, ytrain) (1)

= N(zT
∗ Z
−1 ytrain, z∗∗ − zT

∗ Z
−1 z∗),

where z∗ and z∗∗ denote the covariances between the training
and test datasets and between the test datasets, respectively.
As demonstrated in Eq. (1), the mean value and variance
of y∗m can be derived analytically. The expected values are
utilized in the prediction; nevertheless, the variances can
also be used to confirm the uncertainty of the prediction.

Several kernel functions are available, such as linear,
squared exponential, and Matérn kernels. For example,
the radial basis function (RBF) kernel is expressed as fol-
lows [26]:

fkern(x, x
′) = θ1 exp

(
−
(x − x ′)2

θ2

)
, (2)

where θ1 and θ2 represent the fitting parameters calculated
using an iterative optimization routine, as expressed in line
6. As Z is a variance-covariance matrix, when x and x ′

are close, fkern(x, x
′) becomes large, and consequently, f (x)

and f (x ′) are also close.
The predictivemean, µ, is leveraged inwafer-level char-

acteristics modeling. Expectedly, GP regression can be in-
corporated into the wafer-level spatial variation modeling
in IC characteristics with high affinity, as the characteris-
tics of adjacent dies on the wafer are similar because of the
systematic components of process variation [27], [28].

2.2 Related Work

Owing to intensive research on wafer-level spatial variation
correlation modeling, the prediction accuracy of the spatial
measurement variation has been improved, thereby, enabling
the successful reduction of measurement costs in production
tests [4]–[11]. Among others, in [11], a two-step modeling
approach has been proposed to handle the discontinuous
effect induced viamulti-site testing and reticle shots inwafer-
level modeling.

The objective of the first step is to partition the wafer
into k groups, which reflect the k levels of wafer measure-
ments induced by discontinuous effects. For this purpose, a
k-means algorithm is exploited as follows:

y = { y (1), y (2), · · · , y (k)}, (3)
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where y represents the vector of themeasured characteristics
of all the dies on the wafer. Consequently, X corresponding
to y is partitioned as follows:

X = {X (1),X (2), · · · ,X (k)}. (4)

Note that Eq. (4) indicates that the coordinates on the wafer
are divided according to the measured characteristics. Once
the k clusters are identified, in the second step for subse-
quent wafers, the GP is applied to each cluster individually
based on Algorithm 1. As the changes in each y (k) can
be expected to be smooth, the GP regression will function
successfully; thus, the two-step approach can handle discon-
tinuous changes.

The determination of optimal k is not trivial. Although
several conventional methods, such as silhouette value [29]
and the elbow method [30], determine the optimal k value,
in this modeling approach [11], k is determined based on the
following equation:

k = arg max
g

CH(g), (5)

where CH(g) indicates the Calinski and Harabasz index
when g clusters are considered [31].

However, the two-step modeling is not always applica-
ble because this approach keeps using k clusters for subse-
quent wafers, assuming that the content of the clusters will
not change for other wafers/lots. Because the experiment
in [11] used the industrial data fabricated using a relatively
mature process technology, the assumption might hold true;
in contrast, for our production data on immature process
technology, the process is inapplicable, as shown in Fig. 1.

Another observation of Fig. 1 is also represented in
Fig. 2. In this figure, the measured characteristics for each
site are depicted as functions of the lot ID from the first
to sixth lot. The first wafer is used for each lot, and the
lines and shaded regions represent the mean and three stan-
dard deviations, respectively, for each site. Observably, the
distributions within the site are comparatively maintained
up to the first two lots; however, they fluctuate significantly

Fig. 2 Measured characteristics of 16 sites from the first lot to the sixth
lot. The solid lines and shaded regions represent the means and the three
standard deviations of the variations, respectively. The vertical axis denotes
arbitrary units.

from the third lot onwards. This result suggests that the
two-step modeling may function optimally up to the first two
lots; however, the clusters must be recalibrated for the third
through sixth lots, thereby adding to the measurement costs.
Additionally, early stage lots generally exhibit low produc-
tion yields; consequently, applying the two-step modeling
method is a difficult task.

3. Wafer-Level Variation Modeling for RF IC under
Multi-Site Testing

We propose a novel spatial variation model based on the site
information provided by test engineers; this model yields the
correct cluster without applying clustering algorithms. In
particular, GP-based prediction is hierarchically performed
for each site cluster. Site-to-site variations during multi-site
testing are attributed to the parasitic components of the cali-
bration circuit. Ideally, these variations should be eliminated
during the measurement, which is an impractical approach
because of the design and manufacturing costs of the probe
card. Although this issue can be solved by testing them one at
a time, the benefits of multi-site testing will not be realized.
Semiconductor manufacturing engineers have knowledge of
the systematic discontinuous fluctuations in a manufactur-
ing environment owing to the manufacturing recipes and
measurement items [32]. In the proposed method, we fully
employ it to improve the modeling accuracy. The proposed
method applies hierarchical GP modeling through cluster-
ing using site information, thereby yielding a highly ac-
curate modeling performance while considering the actual
measurement environment. As observed in Fig. 2, the mea-
surements at the same site exhibit a minor deviation. Thus,
site-based hierarchical clustering is expected to be an optimal
model without recalibration.

In addition, to achieve a small sampling ratio, we pro-
pose an active sampling algorithm based on the variance
computed via GP-based regression in a multi-site testing en-
vironment. In contrast to all the existing studies that assume
sequential sampling, the proposed algorithm can effectively
reduce the measurement cost.

3.1 Modeling Based on Site-Based Hierarchical GP

Algorithm 2 presents the proposed spatial correlation mod-
eling through a site-based hierarchical GP in detail. We as-
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sume that the measurements are conducted using multi-site
testing. Compared to the conventional method, clustering
is performed according to the site information in a single
touchdown, as listed in line 1. Essentially, in the conven-
tional method, the characteristics of the initial wafer for the
first production lot need to be measured entirely, whereas the
proposedmethod eliminates the need for suchmeasurements
during clustering. In Algorithm 2, S represents the number
of the sites in a single touchdown, and the training and test
datasets are grouped into S groups, as follows:

(Xtrain, ytrain) = {(X
(1)
train, y

(1)
train), (X

(2)
train, y

(2)
train),

· · · , (X (S)train, y
(S)
train)} (6)

and

Xtest = {X
(1)
test,X

(2)
test, · · · ,X

(S)
test}, (7)

respectively. The GP-based regression is performed indi-
vidually by hierarchically modeling each site, as listed in
lines 2 to 4, based on the gpr function listed in Algorithm 1,
through which the mean and variance of the prediction for
the test dataset are returned. Finally, the prediction result for
the entire wafer is obtained by concatenating each prediction
result.

An example of the proposed modeling method with
S = 4 (sites 1 to 4) is depicted in Fig. 3. Initially, eight
positions are chosen and measured as the training data, as
shown in Fig. 3(a), resulting in the measurement of 32 dies
(= 8 × 4) using eight touchdowns. Next, GP-based model-
ing and prediction are individually applied according to the
site, as shown in Fig. 3(b). For instance, for site 1, the mea-
sured value belonging to site 1 is used as the training data to
construct a GP model, and the measured value of the unmea-
sured die belonging to site 1 is predicted. The measurements
and predictions for the other sites follow a similar procedure.
The complete prediction result is obtained through concate-
nation, as shown in Fig. 3(c).

3.2 Active Sampling under the Multi-Site Testing

In wafer-level spatial modeling, inputting a small training
dataset is advantageous for minimizing the measurement
cost. In [10], an aggressive sampling method was proposed:
this method preferentially measures the location with the
largest predictive variance calculated via GP regression. In
addition, in [7], a Latin hypercube sampling approach [33]
was employed to select random sample points evenly over
the entire wafer. However, these methods are simplistic in
their approach, and most importantly, they do not account
for a multi-site testing environment.

An optimalmodel should exhibitminimal error between
the model and the actual measurement. The mean squared
error (MSE) against the test dataset can be expressed as:

EMSE = | |v | | + | |µ − ytrue | |
2, (8)

where | | · | | denotes the Euclidean norm, and ytrue indicates

Fig. 3 Example of the site-based hierarchical GP regression wherein a
single touchdown features four sites.

the correct value at the location of Xtest and unknown, that is,
the unmeasured value. Assuming that the model is correct,
the contribution of the second term in Eq. (8) to EMSE is
small compared with the variance contribution, that is, the
first term. Thus, to minimize EMSE, X must be selected such
that the overall variance of the estimator is minimized [23].

Based on the aforementioned premise, we propose an
active samplingmethod, as outlined in Algorithm 3, which is
incorporated into the site-based hierarchical spatialmodeling
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(hgpr) presented in Algorithm 2. The proposed sampling
method focuses on the Euclidean distance between the prior
and post measurements. The proposed method proceeds as
follows: The numbers on the left indicate the line numbers
corresponding to Algorithm 3.

1) Calculate µ and v through the hierarchical GP regres-
sion using (Xtrain, ytrain) and Xtest as shown in Algo-
rithm 2. Xtrain can be obtained via multi-site testing.

2) Repeat steps 3) and 4) for all touchdown location can-
didates. At this step, the p-th touchdown candidate has
X
(p)
test = {x

∗(p)
1 , x

∗(p)
2 , · · · , x

∗(p)
S
} with the S sites.

3) Add the touchdown candidate X (p)add by assuming it to be
measured and performing a hierarchical GP regression.
Note that as this parameter is not actually measured, we
assume that the mean values are measured as X

(p)
add =

{(x
∗(p)
1 , µ

(p)
1 ), (x

∗(p)
2 , µ

(p)
2 ), · · · , (x

∗(p)
S

, µ
(p)
S
)}, where µ(p)

S

denotes the predicted mean corresponding to x
∗(p)
S

, and
is one of the elements of µ yielded by hgpr in step 1).
In this step, µp and vp are obtained as in step 1).

4,5) Calculate the Euclidean distance of v and vp as ∆(p)var .
Note that steps 2) to 5) are iterated for all the touchdown
candidates.

6) Select Xp with the largest ∆(p)var as the next measurement
location.

The mentioned procedure is iterated until an exit condition
is satisfied; for example, a sufficient number of iterations are
obtained. As the reduction of the whole deviation for the
test dataset is compared in step 6), a more accurate modeling
can be expected with a smaller number of measurements
compared to simply checking the location of the highest
variance, as reported in [23].

4. Numerical Experiments

4.1 Setup

To demonstrate the effectiveness of the proposed method,
we conducted experiments using an industrial production
test dataset of a 28 nm analog/RF device. Our dataset con-
tains 143 wafers from six lots. A single wafer features ap-
proximately 6,000 DUTs. In this experiment, we utilized
a measured character for an item of the dynamic current
test, in which site-to-site variability was noticeable owing to
the multi-site test is noticeably observed, as demonstrated in
Figs. 1 and 2. A heat map of the full measurement results for
the first wafer of the sixth lot is displayed in Fig. 4. For the

Fig. 4 Heatmap of fullymeasured characterization. Themeasured values
are normalized.

Fig. 5 Single touchdown with 16 sites in our multi-site testing.

ease of experimentation, the faulty dies were removed from
the dataset, and the number of sites in a single touchdown
was 16, that is, S = 16. The form of a single touchdown
is presented in Fig. 5. This is different from the rectangular
touchdown illustrated in Fig. 3, which prevents interference
on the probe of the impedance-matching circuits. Conse-
quently, a special pattern emerges during the multi-site test,
as depicted in Fig. 4. To fully measure all DUTs on a single
wafer, approximately 600 touchdowns were needed.

All experiments were implemented in the Python lan-
guage using the packages, GP [34] and scikit-learn [35], for
the GP and k-means clustering, respectively. The RBF ker-
nel was used as the kernel function, fkern, for the GP-based
regression. The experiments were conducted on a Linux PC
with an Intel Xeon Platinum 8160 2.10GHz central process-
ing unit using a single thread.

To quantitatively evaluate the modeling accuracy, we
defined the error (δ) between the correct (ytrue) and the pre-
dicted mean (µ) normalized using the maximum and mini-
mum values of ytrue as follows:

δ =
µ − ytrue

dspec
, (9)

where dspec indicates the range between the minimum and
maximum values of the fully measured characteristics illus-
trated in Fig. 4.

4.2 Experimental Results on Site-Based Hierarchical Spa-
tial Modeling

First, we evaluated the site-based hierarchical spatial model-
ing presented in Algorithm 2. For comparison, a naive GP
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Fig. 6 Heat maps of the predicted characteristics obtained using the naive GP, 2-step GP, and the
proposed method at a spatial sampling rate of 10%. Observably, the prediction results are closer to
the actual measurements in the order of naive GP, 2-step GP, and the proposed method. The measured
values are normalized.

regression-based approach (hereafter called naive GP) [9]
and a two-step approach (hereafter called 2-step GP) [11]
were also applied. Notably, we did not consider touch-
down, that is, a one-by-one measurement was conducted.
The experimental results based on touchdown are presented
in Sect. 4.3.

For the 2-step GP method, the first wafer of the first
lot was used to obtain k clusters through k-means cluster-
ing. For the subsequent wafers, k clusters were used to
predict the device characteristics. In the experiment, the op-
timal k was determined using the silhouette value and elbow
method [29], [30], instead of Eq. (5), resulting in the seven
clusters.

In Fig. 6, the prediction results for the first wafer of the
sixth lot using each method are presented. These results
were predicted using randomly sampled values at a spatial
sampling rate of 10%. Clearly, the naive GP method failed
to capture the site-to-site variation, as presented in Fig. 6(a).
In contrast, the specific pattern depicted in Fig. 4 caused by
the site-to-site variation can be visually confirmed in the 2-
step GP method and our method, as illustrated in Figs. 6(b)
and 6(c). Figure 7 displays the violin-plots of δ using Eq. (9)
for each method, as follows: In the figure, the top and bottom
of the lines represent the maximum and minimum values,
respectively. The average is indicated by the dot. The dis-
tribution of δ generated via a kernel density estimation is
also presented herein. The average errors of δ correspond-
ing to the naive GP, 2-step GP method, and our method are
18.59%, 13.43%, and 0.69%, respectively. Moreover, the
proposed method can also drastically minimize the variance
in the predictions. These results conclusively demonstrate
the proposed method reduced the average error by approxi-
mately 5.13% compared with the 2-step GP method, that is,
19.46 times (= 13.43/0.69) more accurately.

Figure 8 plots the averages of δ as a function of the spa-
tial sampling rate using the three methods for the first wafer
of the sixth lot. Notably, the prediction methods are not
applied when the spatial sampling rate is 100% and the sam-
pling rate is incrementally increased; that is, the measured
locations at the 10% sampling rate are invariably contained at

Fig. 7 Violin-plots of δ for each method, where the distributions of δ are
shown.

Fig. 8 Averages of δ obtained using the naive GP, 2-step GP, and the
proposed method at various sampling rates. An enlarged view of the gray
part is presented under the main figure.

subsequent rates. As the spatial sampling rate increases, the
averages of all the methods decrease monotonically. More-
over, we find that the average errors of the proposed method
always achieve better prediction results for all the sampling
rates.

The averages of δ for the wafers at the 10% sampling
rate as a function of the wafer ID from the first lot to the
sixth lot, comprising a total of 143 wafers, are illustrated in
Fig. 9. Observably, the proposed method achieves the best
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Fig. 9 Changes of the averages of δ for the 143 wafers of the six lots. An enlarged view of the area
below 5% is presented under the main figure.

Fig. 10 Calculation time. The gray part is enlarged at the bottom of this
figure.

estimation results for all the lots among the three methods.
The prediction performance of the 2-step GP degrades as
the production lot progresses, whereas the proposed method
maintains a low prediction error below 3% regardless of the
lot and wafer. This implies that the k-means clustering result
obtained in the first lot is inappropriate for subsequent lots.

The calculation time of the prediction for each method
was evaluated. Figure 10 summarizes the calculation time
for each method for the first wafer of the sixth lot at various
sampling rates. We can see that the proposed method and
2-step method can significantly reduce the calculation time
compared to the naive GP method. This improvement is
attributed to the additional benefits of hierarchical GP mod-
eling approaches. In general, the inference time of GP is
O(N3) scaled because of the computation of the matrix in-
verse [36], [37]. In the proposed method, GP modeling is
conducted for each site individually; thus, the calculation
time can be drastically reduced because the training samples
are reduced to N/S in each GP modeling, where S is 16
for the proposed method in this experiment. The reduction

becomes N/k for the 2-step method, where k = 7. Note that
this calculation was conducted using a single thread. There-
fore, the calculation time can be reduced further through
implementing parallel processing.

4.3 Experimental Result under Multi-Site Testing

In the evaluation presented in the previous section, the sam-
ple dies were randomly selected one by one, and thus, the
multi-site test environment in which measurements were
conducted per site unit was not considered. We evaluated
the sampling method listed in Algorithm 3 in a multi-site
test environment. Herein, it is assumed that the touchdown
shown in Fig. 5 is performed in a single measurement with
60 touchdowns, which corresponds to approximately 10% of
the touchdowns of the full measurement. In all the existing
researches on the wafer-level variation modeling, sampling
is assumed to be one DUT at a time; and thus, this work
is the first to consider a multi-site testing environment for
wafer-level variation modeling. In this experiment, the ran-
dom sampling and the aggressive sampling proposed in [10]
were used for comparison. First, we measured one ran-
domly sampled touchdown and subsequently selected the
next touchdown using each method.

Figure 11 plots the average δ as a function of the number
of touchdowns that incrementally increased. The first wafers
in the first and sixth lots are used as examples. Although not
displayed herein, similar results were obtained for almost all
other wafers. Although errors of over several thousand per-
cent are observed for all the methods at the first touchdown,
the error decreases for all the methods. However, the random
and aggressive sampling methods converge slowly, whereas
the proposed method converges rapidly.

The average δ of the 143 wafers for each touchdown
is shown in Fig. 12 to evaluate the prediction errors of each
method for all the 143 wafers. As shown in Fig. 11, the ran-
dom sampling converges slowly, whereas the aggressive and
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Fig. 11 Averages of δ as a function of the number of the touchdowns.
The vertical axis is depicted in log scale. The proposed method converges
more quickly.

active sampling methods converge quickly. However, while
the random and aggressive sampling methods converge to
4.46% and 4.38%, respectively, the proposed method con-
verges to 0.96%. In addition, the error at which the random
and aggressive sampling methods converge is achieved in 18
touchdowns for the proposed method. We emphasize that
the 18 touchdowns correspond to approximately 3% of the
number of the touchdowns for the full measurement. More-
over, the proposedmethod reduces the average of δ by 3.42%
when the 60 touchdowns were conducted. The results plot-
ted in the figure clearly indicate that the proposed sampling
method can successfully reduce the number of necessary
touchdowns while achieving a better prediction accuracy for

Fig. 12 Comparison of the average δ of all the wafers per touchdown.

Fig. 13 Changes of the number of iterations and the averages of δ for the 143 wafers of the six lots.
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Fig. 14 Heat maps of the predicted characteristics for the 18 touchdowns.

all wafers.
To demonstrate the convergence ability of each sam-

pling method, the averages of δ and the number of touch-
downs until convergence as a function of the wafer ID of the
143 wafers are illustrated in Fig. 13, for which we consider
a convergence as an error when the change in error is 1.0%
or less for ten consecutive counts. As shown in Fig. 13(a),
the proposed method exhibits the fewest touchdowns for the
convergence condition. The average touchdowns of the ran-
dom, aggressive, and proposed sampling methods are 42,
35, and 29 times, respectively. Notably, wafers showing 60
touchdowns represent a case when the convergence condi-
tion is not achieved within 60 touchdowns. The proposed
method converges optimally, whereas aggressive and ran-
dom sampling do not converge in some wafers, as depicted
in Fig. 13(b).

The prediction results are displayed for each method at
the 18-th touchdown of the first wafer of lot 6. Observably,
the prediction results of random sampling are not sufficient
compared to those of the other two methods, greatly ex-
ceeding the range of the normalized range (that is, 0 to 1).
In contrast, excellent agreement is observed between the
aggressive sampling and proposed sampling methods com-
pared with Fig. 4, because they are visually very similar. To
quantitatively evaluate the prediction results in Fig. 14, the
violin plots for the three methods for the 18 touchdowns in
Fig. 11(b) are presented in Fig. 15. The results plotted in
Fig. 15(a) clear indicates that not only the average δ but also
the variance of the estimation errors can be reduced using the
proposedmethod. Themaximum and average δ values of the
aggressive method are 12% and 1.46%, respectively, while
those of the proposed method are 3.92% and 0.79%, respec-
tively, as depicted in Fig. 15(b). Compared with aggressive
sampling, the proposed method halves the average of δ and
improves the maximum of δ by 3.27 times. These results
conclusively demonstrate that the proposed method success-
fully yields highly accurate wafer-level variation modeling
even in a multisite test environment.

5. Conclusion

We proposed a new technique for wafer-level spatial correla-

Fig. 15 Violin-plots of δ for each method, where the distributions of δ
are shown. δ of the random sampling is widely distributed compared to
those of other methods.

tion modeling in multi-site RF IC testing. Our method em-
ploys GP regression, which is a statistical modeling method
that predicts the value of an unmeasured point using a small
amount of sampling data. We apply GP individually by
partitioning the die location on a wafer according to the site
information provided by test engineers. We also proposed an
active sampling method that uses the predictive variance cal-
culated via GP to achieve better prediction results while min-
imizing measurement costs. Our experimental results using
an industrial production test-dataset demonstrated that the
proposed method has a prediction error 19.46 times smaller
than that of the conventional method. Furthermore, the pro-
posed sampling method provides an equivalent prediction
accuracy to the conventional method with only 18 touch-
down measurements, which is only 3% of the number of
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touchdowns required for full measurement. By contrast,
random sampling requires over 60 measurements for equiv-
alent prediction accuracy. Moreover, we confirmed that the
proposedmethod reduces the average error by 3.42%with 60
touchdowns. Our method achieves better prediction results
under multi-site testing by considering an actual touchdown,
unlike all existing methods that evaluate using only one DUT
measurement.
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