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Controlling Chaotic Resonance with Extremely Local-Specific
Feedback Signals
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SUMMARY Stochastic resonance is a representative phenomenon in
which the degree of synchronization with a weak input signal is enhanced
using additive stochastic noise. In systems with multiple chaotic attractors,
the chaos–chaos intermittent behavior in attractor-merging bifurcation in-
duces chaotic resonance, which is similar to the stochastic resonance and has
high sensitivity. However, controlling chaotic resonance is difficult because
it requires adjusting the internal parameters from the outside. The reduced-
region-of-orbit (RRO) method, which controls the attractor-merging bifur-
cation using an external feedback signal, is employed to overcome this is-
sue. However, the lower perturbation of the feedback signal requires further
improvement for engineering applications. This study proposed an RRO
method with more sophisticated and less perturbed feedback signals, called
the double-Gaussian-filtered RRO (DG-RRO) method. The inverse sign of
the map function and double Gaussian filters were used to improve the local
specification, i.e., the concentration around the local maximum/minimum
in the feedback signals, called the DG-RRO feedback signals. Owing to
their fine local specification, these signals achieved the attractor-merging
bifurcation with significantly smaller feedback perturbation than that in the
conventional RRO method. Consequently, chaotic resonance was induced
through weak feedback perturbation. It exhibited greater synchronization
against weak input signals than that induced by the conventional RRO feed-
back signal and sustained the same level of response frequency range as that
of the conventional RRO method. These advantages may pave the way for
utilizing chaotic resonance in engineering scenarios where the stochastic
resonance has been applied.
key words: chaotic resonance, feedback control, nonlinear dynamics, and
synchronization
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1. Introduction

Chaotic systems with multiple attractors in the phase space
have been observed in various systems, such as nonlinear
electrical circuits (e.g., Chua’s circuit) and neural systems
(e.g., hierarchical neural systems from the local excitatory-
inhibitory neural circuit level to the macroscopic brain level
[1]–[3]) (reviewed in [4], [5]). In these systems, the or-
bit is trapped at the nearest attractor depending on the initial
conditions, whereas the attractor-merging bifurcation, which
is a type of global bifurcation, causes intermittent hopping
among multiple attractors, known as the chaos–chaos inter-
mittency [4]. This system exhibits synchronization, which
is a notable dynamic characteristic (reviewed in [6]).

Based on the synchronization in nonlinear systems with
fluctuating barriers or thresholds, stochastic resonance is
the most representative phenomenon in which the degree
of synchronization with a weak input signal is maximized
under the appropriate additive stochastic noise [7]–[9] (re-
viewed in [10]–[14]). The effect of sensitivity enhance-
ment to weaken the external input signals has been applied
in several engineering scenarios [15]–[18], particularly in
neural systems [19]–[23]. However, in systems with multi-
ple chaotic attractors, the chaos–chaos intermittent behavior
in attractor-merging bifurcation causes “chaotic resonance,”
which is similar to stochastic resonance instead of the addi-
tive stochastic noise [6]. Chaotic resonance exhibits higher
sensitivity than stochastic resonance [24]; however, it is dif-
ficult to control in several cases (reviewed in [25]). This
is because adjusting the internal parameters for controlling
the chaos–chaos intermittency is difficult in the outside en-
vironment, particularly in biological systems, thereby lim-
iting the engineering applications of chaotic resonance. To
overcome this difficulty, the reduced-region-of-orbit (RRO)
method, which controls attractor-merging bifurcation using
an external feedback signal instead of adjusting the inter-
nal parameters, was proposed [26]. The proposed method,
which adjusts the profile associated with the local maximum
and minimum of the nonlinear map functions of chaotic
dynamics, achieves the optimal chaos–chaos intermittency
for inducing chaotic resonance, thus maintaining a higher
sensitivity to it [26], [27]. The RRO method has been ap-
plied to several systems, such as the discrete cubic map [26]
and its assembly [28], discrete neural systems composed of
excitatory–inhibitory neurons [27], [29]–[31], and Chua’s
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circuit [32] (reviewed in [25]).
Even in scenarios where the RRO method can be im-

plemented using a perturbation signal lower than that of
stochastic resonance, achieving a lower perturbation is still
desirable. This is crucial for minimizing power consump-
tion in the applications of chaotic resonance to electrical
devices [32], [33] and ensuring minimally invasive appli-
cations to biological systems [30], [31]. In our previous
preliminary study, we proposed an RRO method, called
the double-Gaussian-filtered RRO (DG-RRO) method, with
higher sophistication and fewer perturbed feedback signals
for controlling the chaos–chaos intermittency [34]. Based on
the outcome of the DG-RRO method, this study reveals the
practical applicability of this model by determining whether
the induced chaotic resonance maintains a higher sensitivity
and wider response frequency range against the input signal
than those for the conventional RROmethod. The remainder
of this paper is organized as follows. Section 2 reviews the
chaotic resonance in systemswith chaos–chaos intermittency
and the RROmethod for controlling chaotic resonance based
on previous studies [25]. Section 3 introduces the DG-RRO
method and derives the evaluation indices for the chaotic
resonance induced by the DG-RRO method. Sections 4 and
5 present the results and discussions of the sensitivity and
response frequency range against the input signal.

2. Related Works

2.1 Synchronization of Chaos–Chaos Intermittency in
Chaotic Resonance

In a previous study [4], synchronization was induced in
chaos–chaos intermittency using a weak input signal S(t)
in chaotic resonance within a cubic map F(x), which was
considered as the simplest chaotic system, as follows:

x(t + 1) = F(x(t)) + S(t), (1)
F(x) = (ax − x3) exp(−x2/b), (2)

where the exponential term F(x) prevents the divergent be-
havior of x(t), and a and b are internal parameters of the map
functions. Previous studies used a as the controlling param-
eter for chaos–chaos intermittency [4]. Figures 1(a) and (b)
show instances of cubic map dynamics. Equations (1) and
(2) represent the return map function of a discrete cubic
map, its orbit, and the time series of x(t) for the case without
external signals. As shown in Fig. 1(a), under the attractor-
separated conditions F( fmin) < 0 and F( fmax) > 0 ( fmin
and fmax correspond to the neighborhood local minima and
maxima at approximately x = 0, respectively) [26], the orbit
was trapped in the positive or negative x(t) region depend-
ing on the initial condition. Contrastingly, Fig. 1(b) shows
that under the attractor-merging conditions F( fmin) > 0 and
F( fmax) < 0, the orbit hopped between the positive and
negative x(t) regions, i.e., the chaos–chaos intermittency oc-
curred owing to the increasing absolute value of fmax,min.

Autonomous attractor switching rarely occur at the

edge of the state between the chaos–chaos and non-chaos–
chaos intermittencies (F( fmax,min) = 0), called the “attractor-
merging bifurcation” [26]. Under this condition, applying
an external input signal S(t) induces attractor switching de-
spite its weakness. Consequently, the degree of response for
S(t) is maximized; i.e., the chaos–chaos intermittency syn-
chronizes with a weak S(t) [4]. This sensitivity of chaotic
resonance is higher than that of stochastic noise using ad-
ditive stochastic noise [4], [24]. However, the application
of chaotic resonance is limited in that the attractor-merging
bifurcation must be adjusted using the internal parameters.

2.2 RRO Method

To overcome the difficulty of controlling the chaotic reso-
nance, the proposed RROmethod induced chaotic resonance
using an external feedback signal [26]. The cubic map with
a weak S(t) and RRO feedback signal Ku(t) is expressed as

x(t + 1) = F(x(t)) + S(t) + Ku(x(t)), (3)
u(x) = −(x − xd) exp(−(x − xd)2/(2σ2

rro)), (4)

where K , xd , and σrro represent the RRO feedback strength,
junction of coexisting attractors (positive/negative regions),
and parameter related to the influence range of feedback sig-
nals, respectively. The negative strength of K merges the
attractor with the bifurcation [27]. In a previous study,
the parameters for xd and σrro were set as xd = 0 and
σrro = 0.6, respectively [26]. Figure 1(c) shows the re-
turn map function of the discrete cubic map using the RRO
feedback signal given in Eqs. (3) and (4). Instead of increas-
ing the a value, the RRO feedback signal K = −0.3 induced
the attractor-merging conditions F( fmin)+Ku( fmin) > 0 and
F( fmax)+Ku( fmax) < 0, i.e., the chaos–chaos intermittency.
Therefore, high-sensitive chaotic resonance can be gener-
ated using attractor-merging bifurcation induced by the RRO
feedback signal [27].

3. Material and Methods

3.1 Discrete Cubic Map and the DG-RRO Method

Based on the parameter set used in our previous study (σrro =
0.6, xd = 0), the RRO feedback signal expressed in Eq. (4)
comprises a linear function −(x − xd) that adjusts the local
maxima and minima of the map function F and a single
Gaussian function around the attractor dividing point xd ,
as shown in the upper part of Fig. 2 [26]. However, the
local specification around x = xmin,max (xmin,max: fmin,max =
f (xmin,max)) in the feedback signal, i.e., degree to which the
feedback signal rapidly approaches to zero with increasing
the distance from x = xmin,max, can be improved.

To address this issue, we used the sign reversal function
−F(x) and double Gaussian functions at x = xmin,max, i.e.,
the “DG-RRO feedback signals g(x).” This signal expressed
the discrete cubic map as follows:

x(t + 1) = F(x(t)) + S(t) + Kg(x(t)), (5)
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Fig. 1 (a) Return map function of a discrete cubic map expressed in Eqs. (1) and (2) and its orbit
(left parts) and the corresponding time series of x(t) (right parts) for the case without external signals
S(t) = 0, K = 0 under the attractor-separated conditionF( fmin) < 0 (green open circle) andF( fmax) > 0
(red open circle) at a = 2.83. The initial condition x(0) is set to a positive value, and fmin and fmax
correspond to the local minima and maxima near x = 0, respectively. (b) Return map function and its
orbit (left part) and the corresponding time series x(t) (right part) under the attractor-merging conditions
F( fmin) > 0 (green open circle) and F( fmax) < 0 (red open circle) at a = 2.85. (Center part) Magnified
region around the local maximum of the map function F . (c) Return map function of a discrete cubic
map expressed in Eqs. (3) and (4), and its orbit (left parts) and the corresponding time series of x(t)
(right parts) for the RRO feedback signal (K = −0.3), which is increased instead of a (a = 2.83) in
the absence of the input signal S(t) = 0. The initial condition x(0) is set to a positive value. The
center part represents the attractor-merging condition F( fmin) + K( fmin) > 0 (green open circle) and
F( fmax) + K( fmax) < 0 (red open circle). (Center part) Magnified region around the local maximum of
the map function F .

g(x) = −F(x)(exp(−(x − xmin)
2/(2σ2

dg)

+ exp(−(x − xmax)
2/(2σ2

dg)), (6)

where σdg is a parameter related to the influence range of
the feedback signal. We set σdg = σrro/2 corresponding
to σrro. The lower part of Fig. 2 shows the g(x) profile.

Compared with the RRO feedback signal, g(x) converged
more rapidly to zero, except at x = xmin,max, i.e., the DG-
RRO method achieved a higher local specification near the
local minima/maxima.

To evaluate the signal response in these dynamics, a
weak signal S(t) was applied. In this study, the weak sinu-
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Fig. 2 (Upper part) The RRO feedback signal u(x) expressed in Eq. (4)
and local minima (xmin)/maxima (xmax) for the map function F(x) ex-
pressed in Eq. (2). (Lower part) The DG-RRO feedback signal g(x) ex-
pressed in Eq. (6). Comparedwith the RRO feedback signal, g(x) converges
to zero more rapidly while leaving x = xmin,max (called the local specifica-
tion), i.e., the DG-RROmethod achieves a higher local specification around
the local minima/maxima.

soidal signal applied was S(t) = As sinΩt with strength As

and frequency Ω.

3.2 Evaluation Indices

3.2.1 Attractor-Merging Bifurcation

To capture attractor-merging bifurcation, we used a bifurca-
tion diagram of x(t), and F( fmax,min)+Ku( fmax,min) = 0 and
F( fmax,min) + Kg( fmax,min) = 0 for the RRO and DG-RRO
feedback signals, respectively [26].

3.2.2 Perturbation in the Feedback Signals

The amount of perturbation in the applied feedback signal
is evaluated as follows: Θ =< (Ku(x(t)))2 > for the RRO
feedback signal and Θ =< (Kg(x(t)))2 > for the DG-RRO
feedback signal, where < · > is the average in t. To evaluate
the instantaneous maximum perturbation in feedback sig-
nals, we investigated the maximum perturbation of (Ku(x))2

and (Kg(x))2) during the evaluation duration, denoted as
Θmax. These values were assessed in 10 trials using different
initial conditions of x(0).

3.2.3 Mutual Correlation between the Chaos–Chaos Inter-
mittency and Input Signal

To quantify the synchronization between the chaos–chaos
intermittency of x(t) and S(t), their mutual correlation was
evaluated by considering the time delay τ as follows:

C(τ) =
Csx(τ)
√

CssCxx

, (7)

Csx(τ) = 〈(S(t + τ) − 〈S〉)(X(t) − 〈X〉)〉, (8)
Css = 〈(S(t) − 〈S〉)2〉, (9)
Cxx = 〈(X(t) − 〈X〉)2〉, (10)

where 〈·〉 denotes the average t; and X represents the bina-
rized x(t) value, i.e., X(t) = 1 when x(t) ≥ 0 and X(t) = −1
in x(t) < 0. These values focus on the chaos–chaos intermit-
tency instead of the intra-each-region (x(t) ≥ 0 or x(t) < 0).
We set τ to maxτC(τ) for each time series of x(t) and evalu-
ated maxτC(τ) in 10 trials using different initial conditions
of x(0). To compare the degree of synchronization between
the RRO andDG-RROmethods, t-test was performed for the
trials at specific internal parameters and feedback strength
of K . The statistical significance was set to p < 0.05.

4. Results

4.1 Controlling Attractor-Merging Bifurcation Using
Feedback Signals

The effect of DG-RRO feedback signals on inducing
attractor-merging was compared with that of the conven-
tional RRO feedback signals. Figure 3 shows that x(t) is a
function of the strength of the feedback signal K . It displays
the bifurcation diagram, amount of perturbationΘ, andmax-
imum perturbation Θmax, and the following conditions for
attractor-merging bifurcation: F( fmax,min)+Kg( fmax,min) for
the DG-RRO feedback signal and F( fmax,min)+Ku( fmax,min)
for the RRO feedback signal. In both cases, the sepa-
rated attractors were merged using the negative feedback
signals at K ≈ −0.0065 and K ≈ −0.039 for the DG-
RRO and RRO feedback signals, respectively, satisfying
F( fmax,min)+Kg( fmax,min) = F( fmax,min)+Ku( fmax,min) = 0.
Kam denotes these K strengths. The amount of perturba-
tion Θ and maximum perturbation Θmax of the DG-RRO
feedback signal were significantly smaller than those of the
RRO feedback signal (one- and two-third for Θ and Θmax,
respectively). To verify whether this tendency is sustained
under different internal parameter a settings, Fig. 4 shows the
Kam dependence on a using the RRO and DG-RRO meth-
ods and the amount of perturbation Θ at the corresponding
feedback strength K = Kam. Consequently, the DG-RRO
method achieved attractor-merging bifurcation with signifi-
cantly fewer perturbations in the evaluated range of a.

4.2 Inducing Chaotic Resonance

Based on the effect of induced attractor-merging, we eval-
uated whether the chaotic resonance can be controlled.
Figure 5 shows the mutual correlation maxτ C(τ) between
the chaos–chaos intermittency of x(t) and the input signal
S(t) = As sinΩt, considering the time delay τ as a function
of K and a when the RRO and DG-RRO feedback signals are
applied. In both cases, maxτ C(τ) exhibits a unimodal max-
imum peak as K varies, i.e., chaotic resonance is induced
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Fig. 3 x(t) is a function of the strength of the feedback signals K . (a) Case for controlling by RRO
feedback signal. (b) Case for controlling by the DG-RRO feedback signal. (1st line) Bifurcation diagram
of x(t) (blue and red dots denote the negative and positive initial values, respectively). (2nd line) Amount
of perturbationΘ (red arrow corresponds toK for attractor-merging bifurcation, which is denoted asKam.
Solid and dotted lines represent the mean and standard deviation of the results of 10 trials with different
initial values of x(0), respectively). (3rd line)MaximumperturbationΘmax in the evaluation duration (red
arrow corresponds toKam. Solid and dotted lines represent themean and standard deviation of the results,
respectively). (4th line) Condition for attractor-merging bifurcation F( fmax,min) + Ku( fmax,min) for the
RRO feedback signal and F( fmax,min)+Kg( fmax,min) for the DG-RRO feedback signal. In both cases, the
separated attractors aremerged using negative feedback signals. TheDG-RRO feedback signal can induce
attractor-merging bifurcation via a smaller perturbation (a = 2.82, b = 10, σrro = 0.6, σdg = 0.3).

under the attractor-merging condition, as shown in Fig. 3.
The sensitivities of the RRO and DG-RRO methods

were evaluated. Figure 6(a) shows the signal strength As

and K dependency of mutual correlation maxτ C(τ) at a =
2.82 (corresponding to the same internal a value shown in
Fig. 3). Consequently, in the attractor-merging bifurcation
(K = −0.038 for the RRO method and K = −0.0064 for the
DG-RRO method), a high value of maxτ C(τ) was sustained
even for the weak input As ≈ 10−4. To compare the degrees
of synchronization, Fig. 6(b) shows the maxτ C(τ) values
for each trial in both cases using the RRO and DG-RRO
feedback signals in As = 10−3,10−4. Consequently, the
values of maxτ C(τ) were the same in the two methods (t =
0.956, p = 0.351) at As = 10−3. However, for a smaller
signal strength As = 10−4, a significantly larger maxτ C(τ)
was achieved using the DG-RRO method than that achieved
using the RRO method (t = 2.12, p = 0.047).

The input frequency range, in which a high degree of

synchronization was sustained between the RRO and DG-
RRO methods, was compared. Figure 7 shows the signal
frequency Ω and K dependency of the mutual correlation
maxτ C(τ) at a = 2.82 (corresponding to the same a value
shown in Fig. 3). In both cases, a high value of maxτ C(τ)
distributes in the same frequency range 0.001 . Ω . 0.03
under the attractor-merging condition (K = −0.038 for the
RRO method and K = −0.0064 for the DG-RRO method).
Therefore, the input frequency range of the chaotic resonance
induced by the DG-RROmethod was maintained at the same
level as that of the conventional RRO method.

5. Discussion and Conclusions

This study developed an extremely weak DG-RRO feedback
signal to control the attractor-merging bifurcation. This sig-
nal was compared to the feedback signal induced using the
conventional RRO methods. The DG-RRO feedback signal
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Fig. 4 (Top) Feedback strengths to induce attractor-merging bifurcation,
satisfying F( fmax,min)+Ku( fmax,min) = 0 (RROmethod) and F( fmax,min)+
Kg( fmax,min) = 0 (DG-RRO method): Kam as function of a for the RRO
and DG-RRO methods. (Bottom) Amount of perturbation Θ at K = Kam.
Solid and dotted lines represent the mean and standard deviation of the
results of 10 trials with different initial values of x(0), respectively. The
DG-RROmethod achieves attractor-merging bifurcation using significantly
fewer perturbations (b = 10, σrro = 0.6, σdg = 0.3).

Fig. 5 K and a dependency of themutual correlationmaxτ C(τ) between
the chaos–chaos intermittency of x(t) and the input signal S(t) = As sinΩt,
considering the time delay τ. White region corresponds to no-chaos–chaos
intermittency. Themaxτ C(τ) values are averaged from the results of the 10
trials with different initial values of x(0). (Upper part) Applying the RRO
feedback signal. (Lower part) Applying the DG-RRO feedback signal. In
both cases, maxτ C(τ) exhibits a unimodal maximum peak as K varies,
i.e., chaotic resonance is induced under the attractor-merging condition, as
shown in Fig. 3 (b = 10, σrro = 0.6, σdg = 0.3, As = 0.001,Ω = 0.005).

Fig. 6 (a) As andK dependency ofmaxτ C(τ) between the chaos–chaos
intermittency of x(t) and the input signal S(t) = As sinΩt, considering the
time delay τ. White region represents the no-chaos–chaos intermittency.
The maxτ C(τ) values are averaged from the results of the 10 trials with
different initial values of x(0). (Upper part) Applying the RRO feedback
signal. (Lower part) Applying the DG-RRO feedback signal. In both cases,
a high value of maxτ C(τ) is sustained using a weak input As ≈ 10−4

under the attractor-merging condition (K = −0.038 for the RRO method
and K = −0.0064 for the DG-RRO method, as represented by the red
arrows). (b) (Left part) maxτ C(τ) values for each trial in both cases
using the RRO and DG-RRO feedback signals at As = 10−3. (Right part)
maxτ C(τ) values for each trial in both cases using the RRO and DG-
RRO feedback signals at As = 10−4. The dot and error bars represent
the mean and standard deviation of the results of the 10 trials, respectively
(a = 2.82, b = 10, σrro = 0.6, σdg = 0.3,Ω = 0.005).

was determined using the inverse sign of the map func-
tion and double Gaussian filters around the local maxima
and minima. Owing to its fine local specification, the DG-
RRO feedback signal achieved the attractor-merging bifurca-
tion using a significantly smaller feedback perturbation than
that of the conventional RRO method, thereby inducing the
chaotic resonance. This resonance exhibited a higher degree
of synchronization against weak input signals than that of the
conventional RRO feedback signal, sustaining the same level
of the response frequency range as that of the conventional
RRO method.

TheDG-RRO feedback signals achieved local specifica-
tions around the local maxima and minima of the map func-
tion (Fig. 2). Therefore, these signals in other regions with
local maxima/minima xmax,min were significantly smaller
than the RRO feedback signals. This decreased the total
and instantaneous values of the perturbation of the feedback
signal, corresponding to Θ and Θmax, respectively. Conse-
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Fig. 7 Ω and K dependency of maxτ C(τ) between the chaos–chaos
intermittency of x(t) and the input signal S(t) = As sinΩt, considering the
time delay τ. White region represents the no-chaos–chaos intermittency.
Themaxτ C(τ) values are averaged from the results of 10 trial with different
initial values of x(0). (Upper part) Applying the RRO feedback signal.
(Lower part) Applying DG-RRO feedback signal. In both cases, high value
of maxτ C(τ) & 0.4 distributes same frequency range 0.001 . Ω . 0.03
under the attractor merging condition (K = −0.038 for RRO method, K =
−0.0064 for DG-RRO method) (a = 2.82, b = 10, σrro = 0.6, σdg =
0.3, As = 0.001).

quently, higher sensitivity was observed under a weak input
signal, i.e., a higher degree of synchronization was observed
using a weak input signal (Fig. 6).

The conventional RRO feedback signal has been con-
sidered for application in biological systems [27], [29]–[31].
We demonstrated that the RROmethodmay contribute to the
minimally invasive light therapy, in which a light stimulus
is applied to patients for stabilizing their disturbed circa-
dian rhythms owing to pathological conditions [30]. In the
widely used light therapy, the stimulus strength is not opti-
mized for each state of the patient; therefore, a stimulus that
is too strong often induces side effects [35]–[37]. Our previ-
ous study showed that the stimulus strength may be reduced
when the stimulus is planned using the RRO method [30].
Furthermore, the RRO feedback signals can be applied to
the biofeedback signals [31] (reviewed in [25]). Therefore,
the DG-RRO method, which induces the chaotic resonance
using a weaker feedback, might facilitate the application of
chaotic resonance in biological systems.

The limitations of this study are discussed as follows.
First, we focused on a discrete cubic map; however, the DG-
RRO method should be applied to neural systems, where
the high-accurate estimation of map function is desired. Al-
though the DG-RRO method does not change the internal
parameters of systems and the conventional RRO method, a
more detailed map function profile is required to define the
feedback signal. One such method involves the stroboscopic
phase space portrait and Poincaré sections [38], [39]. Our
previous study estimated the map functions using Chua’s cir-
cuit. Based on the map function profile, the RRO feedback
signal was applied to induce the chaotic resonance [32]. This

estimation method might be effective for applying the RRO
and DG-RRO methods to actual neural systems. Second,
the amount of feedback strength perturbation to induce the
attractor-merging bifurcation varies depending on the map
function of chaotic systems. Therefore, the advantages of
the DG-RRO method must be validated for various types of
chaotic maps. Third, several types of noises, such as additive
and contaminant noises, must be considered in actual neural
systems [40]. Hence, these issues should be evaluated in
future studies.

As conclusions, the proposed method may pave the
way for utilizing chaotic resonance in engineering scenarios
where only stochastic resonance has been applied.
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