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Convolutional Neural Network Based on Regional Features and
Dimension Matching for Skin Cancer Classification∗

Zhichao SHA†, Nonmember, Ziji MA††, Member, Kunlai XIONG†a), Liangcheng QIN†,
and Xueying WANG†, Nonmembers

SUMMARY Diagnosis at an early stage is clinically important for the
cure of skin cancer. However, since some skin cancers have similar intuitive
characteristics, and dermatologists rely on subjective experience to distin-
guish skin cancer types, the accuracy is often suboptimal. Recently, the
introduction of computer methods in the medical field has better assisted
physicians to improve the recognition rate but some challenges still exist.
In the face of massive dermoscopic image data, residual network (ResNet)
is more suitable for learning feature relationships inside big data because
of its deeper network depth. Aiming at the deficiency of ResNet, this paper
proposes a multi-region feature extraction and raising dimension matching
method, which further improves the utilization rate of medical image fea-
tures. This method firstly extracted rich and diverse features from multiple
regions of the feature map, avoiding the deficiency of traditional residual
modules repeatedly extracting features in a few fixed regions. Then, the
fused features are strengthened by up-dimensioning the branch path infor-
mation and stacking it with the main path, which solves the problem that
the information of two paths is not ideal after fusion due to different dimen-
sionality. The proposed method is experimented on the International Skin
Imaging Collaboration (ISIC) Archive dataset, which contains more than
40,000 images. The results of this work on this dataset and other datasets
are evaluated to be improved over networks containing traditional residual
modules and some popular networks.
key words: skin cancer, medical image classification, convolutional neural
network, ResNet, ISIC Archive, dimension and region feature matching

1. Introduction

The causes of skin cancer are diverse, and the main factors
include exposure to ultraviolet radiation, exposure to ioniz-
ing radiation, genetic factors [1], and environmental triggers,
etc. Early detection of skin cancer has better treatment ef-
fect for the later stage of skin cancer [2]. Recently, the
diagnosis of skin tumors through dermatoscope imaging is
a common and basic method in medicine. Since the diverse
and ununiform appearance of skin tumors, it is often dif-
ficult to accurately determine the exact result based on the
knowledge and experience of the medical professional alone
[3]. In recent years, models obtained by training CNNs have
surpassed dermatologists in distinguishing melanomas and
nevi. Their advantages, such as short decision time, high ac-
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curacy, low cost, and ease of system updates and upgrades,
are propelling the development of medical detection systems
to a new stage [4], [5].

At the beginning of the 21st century, Hinton proposed
the deep neural network algorithm, which greatly improved
the capability of artificial neural networks and became the
core cornerstone of artificial intelligence. In 2015, the resid-
ual network (ResNet) proposed by He et al. [6] from Mi-
crosoft Research has achieved extraordinary results in many
fields of ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC), and further promoted the neural network
to a deeper network.

With the rapid development of deep learning and other
technologies, the ability of Artificial Intelligence (AI) is in-
creasing, and the applicable fields are becoming more and
more extensive [7]–[9]. The application of AI algorithms
in the diagnosis of medical images has gradually become
widespread.

2. Related Works

Nowadays, humans have been battling with cancer for many
years and invoking AI techniques can help not only to im-
prove detection but also help explore the task of finding rel-
evant drugs and predictions [10], [11]. Wei et al. proposed
a CNN for automatic segmentation of retinal blood vessels
[12]. TheCNNused genetic algorithm to search for fewer pa-
rameters corresponding to better architecture, and obtained
a very compact model, which was conducive to clinical ap-
plication. However, the widespread and comprehensive use
of AI in healthcare still needs to be promoted through fur-
ther development because there are some problems behind
it that need to be addressed. These include the existence of
irregularities in data creation and diagnostic procedures, the
inadequate use of medical data, and suboptimal results in AI
diagnostics, among others [13], [14].

The main work of this paper is to classify the images of
skin lesions. We focus on two ways to address the problems
of poor fusion feature reinforcement and loss of data infor-
mation extraction in ResNet. 1). For the difference in the
dimensionality of the information content of the two prop-
agation paths of the building block, adding convolutional
layers on the branch to make it equal to the dimensionality
of the main path. 2). For the problem of ignoring relevant
features for convolution with stride 2, the convolution ker-
nels are divided into multiple groups. Different groups of
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convolution kernels are applied to different regions of the
feature map to extract features.

This paper presents dimension feature matching and
multi-dimension feature matching structures. The ResNet
using these algorithmic structures are named dimensional
matching ResNet (DM ResNet), regional feature match-
ing ResNet (RFM ResNet), dimensional feature matching
ResNet (DFM ResNet) and multiple dimensional feature
matching ResNet (MDFM ResNet). The optimized residual
models achieved better effects for classification of both skin
cancer dataset and other datasets. The overall structure of
this paper is presented as follows: in the next second section
we present the specific structure of the algorithm proposed
in this paper. In the fourth section we give experimental
results. In the fifth section we compare the analysis of the
results between different databases and networks and draw
conclusions.

3. Proposed Algorithms

By introducing branch structure in the forward propagation
process of the model, ResNet makes the weight parameters
return directly through the direct link in the process of back
propagation, thus reducing the occurrence of gradient dis-
appearance and explosion, and the network model can enter
a deeper layers. The ResNet network model, regardless of
its depth, is composed of stacked and connected residual
blocks. These blocks typically consist of two or three layers
(more in deeper networks) connected through convolutional
layers and shortcut connections. The problem that the size
of the output feature map is incompatible with the output
feature map of the short-circuit link due to the convolutional
layer with a step size of 2 in the forward propagation path,
it can be solved by adjusting the output of the short-circuit
link using a 1*1 convolutional kernel.

In the residual structure block, there are two paths after
the input, indicating that there are two kinds of mapping
relationships. The one after multi-layer convolution is the
residual mapping, which is the residual to be learned, and
the other is the identity mapping, which determines whether
adjustment is needed according to the dimensionality of the
output. Xi as input is mapped by two weight layers and then
merged with identity mapping. The output after activation
is y.

y = f (H(Xi)) ∗ h(Xi)) (1)

where y is the input of the next residual block and the over-
all summation mapping of the previous residual block, and
H(Xi) is the residual mapping of the input before the sum-
mation, and L(Xi) represents the mapping before activation,
which is what the network needs to learn, thus,

H(Xi) = L(Xi) − h(Xi) (2)

When H(Xi) is set to 0, identity mapping is generated.

L(Xi) = h(Xi), (H(Xi) = 0) (3)

y = H(Xi) + Xi (4)

For back propagation, let the loss function be l. Then
the back propagation chain is that,

∂l
∂X0
=

∂l
∂Xk
(1+

∂

∂X0

i=k−1∑
i=0

H(Xi,Wi)) (5)

3.1 Dimensional andRegion FeatureMatchingAlgorithms

Considering that the feature maps with different convolution
layers in the residual block of the original residual network
carry different dimensions of information, the features after
direct fusion are not prominent enough. Moreover, the num-
ber of 1*1 convolutional layers used in the direct connection
layer is one while the step length is two, resulting in multiple
rows and multiple columns of pixels being directly ignored,
never participating in the convolution calculation, and the
pixel points are not fully utilized [15]–[17]. Therefore, this
paper proposes that the 1*1 convolution kernel in the short-
circuit link is also divided into multiple groups to extract
features in different regions to further utilize the ignored in-
formation. At the same time, it is also considered to add a
convolution layer to improve the information dimension of
the final output feature graph, so that the features after the
fusion of the two paths become more prominent. Therefore,
we propose two basic algorithms, region feature matching
and dimensional matching.

3.1.1 Dimension Matching

To highlight the characteristics of the fused information, a
corresponding convolution layer is added to the short-circuit
links to improve the dimensionality of the output informa-
tion. The residual module in Fig. 1, the branch adds a convo-
lutional layer compared to the original residual fast, which
raises the feature dimension level andmatches the features of
the main path more closely. Dimension matching considers
lifting the number of convolutional layers of a branch to the
same or similar number as the main path. Based on the con-
cept of dimensional matching, we further give the concept
of multiple dimensional matching.

For the network model with multi-branch structure, we
want the dimensionality of the feature information output
from each branch to be as close as possible to reduce the
fusion of mismatched information tracts to appear new error
information. To enhance the information features in deeper
networks, we fuse the outputs of each convolutional layer
of each path, so the information features of different dimen-
sions are enhanced. In the residual module in Fig. 2, after a
convolutional layer is added to the branch, the results of the
first convolutional layer of both paths are done a fusion to
strengthen the features. Figure 1 and Fig. 2 both take the two-
layer convolution structure as an example. The rectangular
block in Fig. 1 represents the feature map after convolution
or fusion, M ∗ N is its size, D is its depth, and ∗4 is used to
denote 4 groups of convolution kernels or feature maps, and
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Fig. 1 The input feature map (red) is convolved by two layers to form
higher-level features, and the branches are similarly convolved by the same
number of convolution layers to form the same or similar level features. The
results of the two paths are then fused into the output.

Fig. 2 Multi-dimensional matching structure diagram. The input feature
map (red) is convolved in two layers and the branches are also convolved
in two layers. The first layer convolution results of the two paths are
fused once, and then the respective second layer convolution results are
fused again and output. Different coloured blocks represent the results of
different operations, followed by the same.

the same meaning in the subsequent figures.

3.1.2 Regional Feature Matching

This paper presents novel optimization strategies to tackle
certain challenges encountered in the aforementioned resid-
ual networks. As for the advantages brought by the convolu-
tion layer with convolution step size of 2, we need to further
solve the problems caused by convolution step size of two
while maintaining the advantages. The convolution kernel
with a step size greater than 1 skips some regions due to
the step length jump during the convolution process. To en-
sure maximum participation of each pixel in the feature map
within the convolutional feature extraction, without dimin-
ishing the stride size, this paper proposes partitioning a group

Fig. 3 The upper part shows the 3*3 convolution kernel, and the lower
part shows the participation of each pixel of the feature map in the convo-
lution operation when the step size is 1 or 2, with the step size of 1 on the
left and 2 on the right. The black arrow indicates the starting convolution
position, and the orange arrow indicates the position through which the
convolution process passes.

of convolutional kernels, dedicated to convolving the same
region, into multiple subsets responsible for extracting fea-
tures from regions traversed by larger strides. Each group of
convolution kernels extracts features in regions complemen-
tary to each other with a step length of 2. The total number
of convolution does not change, so it no longer consumes
additional computing resources. Region feature matching
considers that the features of branch and main path extracted
by convolution of grouping have regional differences, and
the fusion of corresponding regions reduces the loss of valid
information. In the following, we take the 3*3 convolution
kernels in the residual block as an example to qualitatively
show the number of times each pixel in the same feature map
is involved in the convolution operation with the convolu-
tion kernel step size of 1 or 2, using a 5*5 feature map of
size depth of 1. For the 3*3 convolution kernel in the up-
per part of Fig. 3, different colors represent different weight
coefficients. The number of colours in the dotted line seg-
mentation indicates the number of times the pixel point has
been involved in the computation throughout the convolution
process, which also corresponds to the 9 positional colours
in the convolution kernel, i.e., different coloured regions in
a pixel represent the weights of the corresponding colours of
the convolution kernel that have been involved in the compu-
tation. The left panel below Fig. 3 shows the number of times
each pixel participates in the calculation when the step size
of the convolution kernel is 1. The lower right side of Fig. 3
shows the calculation of each pixel when the step size of the
convolution kernel is 2, and the number of participations in
the white area is counted as 0. In this paper, we apply multi-
ple sets of convolution kernels to the white area shown in the
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bottom of Fig. 3 to extract feature information from the addi-
tional area while maintaining the advantage of interval step
size. For larger step size convolution, the number of pixels
involved in the convolution process shows a rapid downward
trend. Insufficient inclusion of pixels in the computation can
result in inadequate feature extraction, thereby impeding the
network’s ability to fully unleash its performance potential.
Based on the M ∗ N size feature map, the stride of con-
volution kernels is S (2 < S < min(M,N)), the number of
convolution kernels in the current residual block convolution
layer is ks , and the number of convolution kernels used in
each newly assigned region is KN = f /(S2−1) as well as the
number of groups is S2. Let the shape of the input feature
map be (Mi,Ni,Ci), C is the number of channels, and the
calculation method of the size of the output feature graph
(Mo,No,Co) is as follows.

Mo = b
(Mi + 2 ∗ padding − D ∗ (ks − 1) − 1)

stride
+ 1c (6)

No = b
(Ni + 2 ∗ padding − D ∗ (ks − 1) − 1)

stride
+ 1c (7)

where D is the distance parameter of dilation convolution
and b∗c denotes rounding down.

From Fig. 4 and Fig. 5, it can be seen that the convolu-
tion step size is 1, the convolution step size is 2, and the group
convolution step size is 2. The left figure shows the convolu-
tion process of a regular set of 3*3 convolution kernels with
step 1, from left to right and then from top to bottom. The
right side of Fig. 4 shows a regular set of 3*3 convolution
kernels spaced convolution process, which is more sparse.
The right side of Fig. 5 shows the convolution process of
dividing this set of convolution kernels into 4 sets of con-
volutions with interval step length, which further increases
the density of the convolution process. Staggered grouped
convolution improves the feature extraction density without
increasing the computational effort.

Let’s take an example of a residual block with two con-
volutional layers. After receiving the input feature map, it
is still divided into two paths. The main path continues into
the second convolution layer via the first convolution layer
(which also includes BN layer, activation layer, and pooling
layer), and the convolution step at this time is equal to 2, and
the size is 3*3. The convolution kernels are divided into 4
groups on the feature map, and each group of convolution
kernels starts from the first column of the first row, the second
column of the first row, the first column of the second row,
and the second column of the second row, respectively. The
convolution operation is performed in steps of two, so that
four feature maps can be obtained. The four feature maps are
stacked in the lower right direction and fused with the output
of the short-circuit connection. The short-circuit link also
uses a 1*1 size convolution kernel for the input feature map,
and extracts the features in groups with a step size of 2. The
output feature maps of the two paths are the corresponding
features extracted from the same region, so we named them
regional feature matching, as shown in Fig. 6.

Fig. 4 Convolution step of 1 and 2. Conventional convolution process
with step size 1 (3*3, left side) with dense convolution region. Conven-
tional convolution process with step size 2 (3*3, right side) with sparser
convolution region.

Fig. 5 Convolution kernel grouping and step of 2. Conventional convo-
lution process with step size 1 (3*3, left side), grouped convolution process
with step size 2 (3*3, right side), different colours are the starting areas
of different groups of convolutions, and the domain convolution region
remains dense.

Fig. 6 Regional feature matching struture. For the input feature map
(red), feature maps of different regions with the same branches are obtained
by grouping convolutions with alternating non-repeating start positions in
each group. Finally, the feature maps of two paths corresponding to the
same region are fused and output.

3.2 Methodologies

3.2.1 Dimension Feature Matching Structure

We integrate the two fundamental improved algorithms dis-
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cussed in Sect. 2.1 to create an enhanced structure applied to
the network, encompassing dimension feature matching and
its corresponding variant, multi-dimension featurematching.
In terms of the information dimensions contained in the fea-
ture maps, we aim to keep the dimensions of the two paths as
similar as possible. After the feature map is outputted from
the preceding residual structure, we append a 1x1 convolu-
tional layer to the subsequent residual block in the branched
path. This convolutional layer adopts the same convolution
pattern employed in the corresponding convolutional layer
of the main path, with a stride of 1. Of course, the second
convolution layer does not change the pattern in the next step,
stride is 2, and is divided into multiple groups. The results
of the two paths are combined and activated together as the
output, because at this moment it is the information fusion
of similar dimensions, which we name as dimension feature
matching, as shown in Fig. 7. The forward propagation cal-
culation of the dimensional feature matching structure block
is described as follows,

Oi =

n∑
1
(Wn

2 σ(W1Xi) +Wn
s2σ(XiWs1)) (8)

Where,Ws1 is the first layer of convolution of the branch
in the structure block, and Wn

s2 is the nth convolution group
of the second layer of convolution on the branch.

In the reverse update, we also calculate the loss function
as C, then,

∂C
∂Xi
=

n∑
1
(

∂C
∂hn

2 (Xi)

∂hn
2 (Xi)

∂h1(Xi)

∂h1(Xi)

∂Xi
+

∂C
∂Hn

2 (Xi)

∂Hn
2 (Xi)

∂H1(Xi)

∂H1(Xi)

∂Xi
)

(9)

Among them, h1(Xi) represents the first-level convolu-
tion result of the branch in the dimensional feature match-
ing structure block, and hn

2 (Xi) denotes the nth convolution
group result of the second-level convolution on the branch.

Fig. 7 Dimensional feature matching structure diagram. For the input
feature map (red), both paths contain two convolutional layers, the second
convolutional layer of each path uses grouped alternating convolution to
obtain feature maps of different regions, and the feature maps corresponding
to the same region are fused as output.

Combine the calculation of ∂h1(Xi )

∂Xi
= Ws1 on the branch of

forward propagation, therefore,

∂C
∂Xi
=

n∑
1
(

∂C
∂hn

2 (Xi)
Ws1+

∂C
∂Hn

2 (Xi)

∂Hn
2 (Xi)

∂H1(Xi)

∂H1(Xi)

∂Xi
)

(10)

3.2.2 Multiple Dimensional Feature Matching Structure

The final fused data is the output of the second convolution
layer of the two paths after batch normalization (BN), while
the output results of the first convolution layer of the two
paths are not utilized. To further improve the efficiency of
data utilization, we propose to merge the first convolution
result of the branch with the first convolution result of the
main path and continue forward propagation. Although this
makes the bifurcated path more complicated, it can also
provide more path choices for the network model during
back propagation, so that the optimal path can be found to
get better results. We named it multidimensional Feature
matching, as shown in Fig. 8. In Fig. 8, the main path of
input features is convolved by a layer of convolution and then
li 4 groups of convolution are crossed to extract features in
different regions respectively. The featuremaps in the branch
paths are also cross-extracted by the second layer of 4 groups
of convolution to extract the features of the cross region, and
the output is a two-way fusion.

We also give the following description of the output cal-
culation for the multi-dimensional feature matching block.

Oi =

n∑
1
((Wn

2 σ(W1Xi)+ XiWs1)+Wn
s2σ(XiWs1)) (11)

where, W1Xi + XiWs1is the dimensional matching of the first
layer of convolution in the two paths in the structure block.

The backward propagation is described as follows,
counting the loss function as C,

Fig. 8 Multi-dimensional feature matching structure diagram. For the
input feature map (red), both paths contain two convolutional layers, the
result of the first convolution for each path is fused first, and then the
second convolutional layer is fused as the output using grouped alternate
convolutions, corresponding to the same region of the feature map.
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∂C
∂Xi
=

n∑
1
(

∂C
∂hn

2 (Xi)

∂hn
2 (Xi)

∂h1(Xi)

∂h1(Xi)

∂Xi
+

∂C
∂Hn

2 (Xi)
∗

∂Hn
2 (Xi)

∂h1(Xi)

∂h1(Xi)

∂Xi
+

∂C
∂Hn

2 (Xi)

∂Hn
2 (Xi)

∂H1(Xi)

∂H1(Xi)

∂xi
)

(12)

Among these, one more path is added, combined with
the calculation of ∂h1(Xi )

∂Xi
= Ws1 on the forward propagation

branch, we can get,

∂C
∂Xi
=

n∑
1
(

∂C
∂hn

2 (Xi)

∂hn
2 (Xi)

∂h1(Xi)
Ws1 +

∂C
∂Hn

2 (Xi)

∂Hn
2 (Xi)

∂h1(Xi)
∗

Ws1 +
∂C

∂Hn
2 (Xi)

∂Hn
2 (Xi)

∂H1(Xi)

∂H1(Xi)

∂xi
)

(13)

4. Related Experiments and Analysis

4.1 Datasets

The experimental part uses image data from the ISCIArchive
[18], a dataset consisting of more than 30,000 images, in-
cluding benign and malignant skin diseases. The images
with classification labels of ‘uncertain’ and ‘unknown’ were
removed from the image data during the experiment. ISCI
Archive is open source and can download all digital der-
moscope images in bulk. There are many types of dis-
eases that occur on the skin, and some tumor-like lesions

Fig. 9 Benign and malignant skin samples.

have similar visual characteristics to the human eye, which
makes it difficult for medical personnel to identify them.
Benign and malignant skin tumors can be further diagnosed
as actinic keratosis, basal cell carcinoma, dermatofibroma,
melanoma, nevus, pigmented benign keratosis, seborrheic
keratosis, squamous cell carcinoma, Vascular lesions, some
typical samples of which are shown in Fig. 9.

We also conducted experiments on CIRFAR 10 [19].
CIRFAR 10 contains 10 different substance classifications.
The hardware used to train the model in this paper in-
cludes Intel Core i9-9900K (3.6GHz, 8 cores), 16GB dual-
channel DDR4 @ 2666Mhz and 11GB NVIDIA GeForce
RTX 2080Ti graphics card. The software is based on the
TensorFlow framework with NVIDIA’s CUDA accelerated
computing architecture.

4.2 Experimental Results

We present the results of the improved algorithms MDFM
ResNet, DFMResNet, FMResNet andDMResNet proposed
in this article compared with the results of the unimproved
classical convolutional neural networks such as RsNet, VGG
16 and inceptionNet for the analysis. In addition, we fur-
ther compared the network ResNet D [20], which has been
changed on the ResNet branch. To conduct experiments
and compare results in the same environment, we trained all
network models from scratch.

It can be seen from Fig. 10 that the improved MDFM
algorithm in this paper has the best effect compared to the
unimproved ResNet on ISIC Archive by 1.92%, and there is
a similar conclusion on CIFAR10, which is an increase of
1.85%. The effects of the remaining twomethods mentioned
in this article are also better than Resnet 18 on the two data
sets. When the number of network layers is low, there are
more times of multi-dimensional matching and fusion, and
feature enhancement is better. In order to further analyze the
stability of the training process of each network, we take out
the accuracy and loss of the last 1/10 epochs of training and
draw their box plots as follows.

It can be seen from Fig. 11 that the accuracy of ResNet
and the improved schemes FM ResNet and DFMResNet are
almost symmetrically distributed, and the overall optimiza-
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Fig. 10 Accuracy of 18-layer and similar-ayer networks on datasets.

Fig. 11 Boxplot of network accuracy around layers of 18.

Fig. 12 Loss box plot of the network around the 18 layers.

tion schemes are higher than ResNet. The median line of
MDF ResNet is to the right, which means that more epochs
have better accuracy. The improvement schemes are all bet-
ter than the ResNet for improvement. The improved scheme
has overall lower losses, with the MDFM ResNet having
the lowest median loss line to the left, where lower losses
are concentrated, while the DFM ResNet has more scattered
losses.

The experimental results on the network with more
layers are shown in Fig. 14. Under this condition, dimen-
sion matching becomes more important, while excessive fu-
sion will produce wrong information. DFM ResNet has
the largest improvement on the dataset, achieving a 1.59%

Fig. 13 The accuracy of 34 layers of network modification and other
networks on the data set.

Fig. 14 Accuracy box plot of the 34-layer improved network and other
networks.

Fig. 15 Loss boxplot of layer 34 improved network and other networks.

improvement on CIFAR10, and is also better than other net-
works on ISIC Archive.

The conclusion of Fig. 14 can be reflected in Fig. 15.
The median line of DFM ResNet is the highest, and its ac-
curacy is 1.32%, 0.42% and 0.32% higher than the other
three optimization schemes ResNet D, MDFM ResNet and
FM ResNet, respectively, and 1.59% higher than that of
unimproved ResNet. The overall range of fluctuations after
convergence is higher for FM ReNet is larger, and only a few
cycles fluctuate more after convergence of DFM ResNet. A
similar conclusion can be seen in Fig. 15. The median loss
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line of DFM ResNet is the lowest, and the overall distri-
bution is symmetrical. From the comparison of the result
graphs, the improved method based on ResNet proposed in
this manuscript has improved accuracy compared to the orig-
inal Resnet network, VGG network [21] and inceptionNet
network [22] and other classic networks. Different improved
algorithms have different effects on the overall improvement
of the network. When the number of network layers is small,
the effect of multi-dimensional feature matching algorithm
is better than other networks. When the number of net-
work layers increases, the dimensional feature matching al-
gorithm will have more advantages in improving network
performance, because the feature dimensionality of the deep
network is deeper, and the features are strengthened after
matching.

5. Conclusion and Prospect

Based on the residual network, this paper illustrates that
the features of the fused feature graph are further enhanced
by applying multiple sets of convolution kernels to extract
features in different regions of the feature graph and using
multiple convolution to generate features of the same dimen-
sion on branches. Multiple sets of convolutional kernels
are decomposed from the original set of convolutional ker-
nels, and the cross start position of each set of convolutional
kernels enhances the extraction of information. Because of
this, the amount of computation does not increase. For a
multidimensional feature matching structure, the increase in
propagation paths implies an increase in the number of cou-
pling methods between information machines, which leads
to an increase in effective features. The increase in the
number of branching convolutional layers drives the fusion
effect, and then the fusion of grouped cross-convolution and
regional feature matching further improves the accuracy of
the network in skin cancer type recognition to 95.45%.

Of course, there are some other aspects that are ex-
pected to have room for further research. First, for the pixels
in the feature map, the beginning rows and columns of pixels
are not involved in the convolution operation as many times
as the later rows and columns of pixels (without considering
the step size). Although this can be solved by filling 0 pixels
around the feature map, it is not necessarily the optimal so-
lution considering that 0 does not bring a practical effect and
takes up memory space and computational resources while
not providing a contribution. And whether the sub-pixel
filled periphery computed using interpolation method will
bring better results is to be further investigated. In addi-
tion, although the residual network is composed of multiple
residual blocks in series, most of the residual blocks use a
convolutional layer with a step size of 1, adding multiple
1*1 convolutions on the short-circuit link Whether the new
link with multiple 1*1 convolutional layers will bring better
results needs to continue to be studied.
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