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SUMMARY In recent years, high-resolution 77 GHz band automotive
radar, which is indispensable for autonomous driving, has been extensively
investigated. In the future, as vehicle-mounted CS (chirp sequence) radars
become more and more popular, intensive inter-radar wideband interference
will become a serious problem, which results in undesired miss detection
of targets. To address this problem, learning-based wideband interfer-
ence mitigation method has been proposed, and its feasibility has been
validated by simulations. In this paper, firstly we evaluated the trade-off
between interference mitigation performance and model training time of the
learning-based interference mitigation method in a simulation environment.
Secondly, we conducted extensive inter-radar interference experiments by
using multiple 77 GHz MIMO (Multiple-Input and Multiple-output) CS
radars and collected real-world interference data. Finally, we compared the
performance of learning-based interference mitigation method with existing
algorithm-based methods by real experimental data in terms of SINR (sig-
nal to interference plus noise ratio) and MAPE (mean absolute percentage
error).

key words: CS radar, inter-radar interference, wide band interference,
learning-based method, experimental evaluations

1. Introduction

At present, there is a surging interest in autonomous driv-
ing technology and Advanced Driver Assistance Systems
(ADAS), driven by the goal of mitigating traffic congestion
and offering exceptionally convenient modes of transporta-
tion [1], [2]. Achieving autonomous driving hinges signifi-
cantly on the effectiveness of onboard sensing techniques in
perceiving the surrounding environment. In contrast to cam-
era and LiDAR (Light Detection and Ranging), radar system
offers cost-effectiveness and excels in resilience against ad-
verse weather conditions, backlighting, and various other
environmental factors [3]. Chirp Sequence (CS) radar, in
particular, is considered a promising mainstay in onboard
radar systems due to its ability to simultaneously detect dis-
tances and relative velocities of multiple targets [4]. To accu-
rately separate and identify pedestrians, a distance resolution
of approximately 0.2 meters is necessary, which translates to
arequired bandwidth of around 3 GHz that inversely propor-
tional to the distance resolution [5]. Therefore, in the future
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it is expected that high-resolution radars in the mmWave
frequency band will become widely adopted, leading to the
dense utilization of numerous radars. As a result, the inter-
ference between radars due to their proliferation will become
a significant issue in the future [6].

Inter-radar interference [7] can be divided into two
types: wideband interference [3], which results in an in-
creased noise level in the frequency spectrum and causes the
miss detection on targets; and narrowband interference [8],
which generates fake peak in the frequency spectrum and
leads to false detections of non-existent targets (i.e., ghost
targets). Compared to narrowband interference, wideband
interference is much easier to occur. Therefore, in this study,
we focus on the mitigation of wideband interference.

Wideband interference mitigation techniques have been
widely investigated in recent years. Most of them detect
and suppress the interference in time domain by setting a
threshold to detect the interference samples, such as the con-
ventional zero suppression method [9]. Another approach
involves the application of an inverse raised cosine window
to the affected portion, aiming to mitigate interference and
enhance the continuity of the resulting time-domain signal
[10]. In [11], the interference is mitigated by reconstructing
the disrupted samples in the time-domain baseband signal
by Kalman filtering. To appropriately control the interfer-
ence detection threshold from the received beat signals, an
advanced wideband interference mitigation technique using
envelope detection and sorting has been proposed for auto-
motive FMCW radar [12]. In [13], the authors proposed an
interference mitigation method using an adaptive canceller
to minimize the correlation between the waveforms of the
victim and interfering radars. Besides the methos performed
in time-domain, a spatial-domain detector design for mutual
interference mitigation among automotive MIMO-FMCW
radars was proposed in [14], and a Least Mean Squares
(LMS) algorithm-based adaptive beamformer was investi-
gated in [15].

In recent years, deep learning based methods have
also been proposed and demonstrated excellent performance
based on simulation results [ 16]-[22]. A Convolutional Neu-
ral Network (CNN)-based approach for interference mitiga-
tion on inter-radar interference was investigated in [16]. The
interference mitigation in CS automotive radars via signal
reconstruction based on autoregressive (AR) models in fast-
and slow-time was proposed in [17]. In [18], a Fully Convo-
lutional Network (FCN) was proposed to mitigate the inter-

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



1256

ference and noise in the time-frequency spectrum obtained
by the Short-Time Fourier Transform (STFT) algorithm. In-
stead of coping with interference directly, deep learning was
also employed for the classification and detection purpose in
[19]. In [20], a two-dimensional CNN working on covari-
ance matrices of signals extracted from the region of interest
as well as the information of chirp positions was proposed.
In [21], [22], RNN-based automotive radar signal interfer-
ence mitigation methods were proposed. Furthermore, the
authors in [23] demonstrated that the wideband interference
cancellation can also be carried out in frequency domain.
However, all of these methods were assessed solely through
simulations, leaving their real-world effectiveness uncertain.

In this paper, we evaluate the performance of the
learning-based inter-radar interference mitigation method
through both simulations and experiments. Specifically,
we firstly assess the interference mitigation performance
in terms of SINR (Signal to Interference plus Noise Ra-
tio) and model training time through simulations in an ex-
tremely challenging environments with up to 7 interfering
radars. Then, we conduct extensive experiments using multi-
ple 77GHz MIMO (Multiple-Input and Multiple-Output) CS
radars to collect real-world data from various inter-radar in-
terference scenarios. Finally, we use this real data to validate
the performance of the learning-based method and compare
its performance with existing algorithm-based methods.

2. Principle of Wideband Interference in CS Radar
2.1 Principle of CS Radar

The block diagram of the CS radar and the waveform of the
chirp-modulated CS radar are shown in Figs. 1 and 2, re-
spectively. The Voltage-Controlled Oscillator (VCO) emits
a sequence of chirp signals modulated by a sawtooth wave-
form and captures the returning signals from the target. The
transmitted signal and the reflected signal are multiplied by
a mixer, and then passed through a Low Pass Filter (LPF) to
obtain the beat signal. The frequency of this signal, which is
also called beat frequency, consists of the absolute frequency
difference between the transmitted and received signal. This
signal undergoes conversion through an Analog-Digital Con-
verter (ADC), and by applying Fast Fourier Transform (FFT),
we can acquire the frequency spectrum. Finally, target de-
tection is conducted in the frequency domain by using peak
detection algorithm.

The frequency of the beat signal, fp, can be given by
the following equation.

_ 2RAf N 20 fo
T CAT c

where R represents the target’s distance, v represents the tar-
get’s relative velocity, ¢ is the speed of light, Af denotes
the radar’s sweep frequency, and f; represents the carrier
frequency. The first term of Eq. (1) corresponds to the beat
frequency proportional to the distance R, while the second
term represents the Doppler frequency proportional to the
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Fig.3 Inter-radar wideband interference.

velocity v. In CS radar, the sweep period AT is set to be
extremely short so that the Doppler frequency becomes ex-
tremely small. Therefore, by neglecting the second term in
Eq. (1), the target’s distance R can be calculated by using the
beat frequency fp. Furthermore, by performing a Doppler
FFT spanning multiple chirps within a frame, the phase dif-
ference between consecutive chirps can be detected, and the
relative velocity v can be derived.

2.2 Principle of Wideband Interference

Figure 3 illustrates the principle of wideband interference
for CS radars. Wideband interference is a type of inter-radar
interference that arises when the chirp rate of the transmitted
signal differs from that of the interfering signal. As shown in
Fig. 3, besides the beat frequency of the reflected signal from
the target, an additional beat frequency from the interfering
radar appears, which is the absolute frequency difference
between transmitted and interfering signal. Generally, the
received power of the interfering signal is much greater than
that of the reflected signal from the target. Therefore, when
the beat frequency of the interfering radar becomes smaller
than the passband of the LPF, an impulse-like interfering
signal in the time domain can be observed. In the frequency
spectrum of this signal, the noise level rises across the en-



KOIZUMI et al.: EXPERIMENTAL EVALUATIONS ON LEARNING-BASED INTER-RADAR WIDEBAND INTERFERENCE MITIGATION METHOD

tire frequency range, leading to an increase in the target’s
undetection rate.

3. Inter-Radar Interference Mitigation Methods
3.1 Conventional Zero Suppression Method

Zero suppression method is one of the simple yet popular
approaches for mitigating inter-radar interference. Zero sup-
pression method uses a threshold to detect the interference
samples. Specifically, the threshold Ry is set using the av-
erage of the absolute values of the beat signal samples r (i)
by the following equation.

1 N
Ren = ko Zl 1r(i)| @)

where N is the number of samples of the beat signal, k is
a parameter to adjust the threshold. In the original beat
signal, samples satisfying R,;, < |r(i)| are considered as
interference, and their values will be set to O [12]. However,
this method has a problem that it becomes difficult to detect
the interference when the level of the interference signal is
small.

3.2 Envelope Detection and Sorting Based Interference
Mitigation Method

In order to solve the problem in the conventional zero sup-
pression method, interference mitigation method based on
envelope detection and sorting [12] has been proposed. We
briefly explain the process of this method as follows. First,
among the absolute values of a beat signal having N time
samples, the envelope data E(i) are obtained. Specifically,
envelope detection uses a sliding window with window width
2W + 1 for the absolute value |r(i)| (i = 1,2,...,N) of the
beat signal, and calculates the maximum value from consec-
utive 2W + 1 points. In the case of i < Wori > N -W -1,
the maximum value is found from the ranges of 1 toi + W
and i — W to N, respectively. Next, envelope E(i) is sorted
in ascending order, and effective range parameters a and b
(0 < a < b < 1) are set for calculating the average value
of the desired signal. Thereafter, k times the average value
of the envelope is set as the threshold R;j. Finally, samples
satisfying Ry, < |r(i)| are regarded as interference and are
set to zero. Furthermore, by using an interference mitiga-
tion sliding window, residual interference noise after zero
suppression is removed.

3.3 RNN Based Interference Mitigation Method

However, the existing threshold-based methods perform
poorly in complex interference scenarios, such as the in-
terference span over the time domain or the number of inter-
ference sources is large. To this end, a threshold-free method
based on RNN (Recurrent Neural Network) model has been
investigated [21], [22]. RNN is a class of neural networks
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Fig.4 RNN based wideband interference mitigation method.

where connections between neurons form cycles, which is
well-suited for learning from time-series data.

The architecture of the RNN-based interference mitiga-
tion method is shown in Fig. 4. During the learning process,
the input data and corresponding labels are prepared as pairs.
The objective of the learning is to minimize the difference
between the label and the output of the model. Specifically,
the input X = [x1,xp,...,xy] represents the time sampled
beat signal with interference for one chirp, and the label
Y = [§1, ..., Jn] represents the beat signal without in-
terference, both under the same target conditions. The loss
function L is defined as the Mean Squared Error (MSE) be-
tween the output ¥ and the label ¥ by using the following
equation.

N
L= (Gi-y) 3)
1

The loss is minimized using the Adam optimizer. Finally,
as the learning converges, it is expected that the interference
can be mitigated in the output samples.

4. Simulation Evaluation

In this section, we address the tradeoff between interference
mitigation performance and training time of the RNN model
by simulations in a very challenging scenario with up to 7
interfering radars. We consider scenarios with multiple tar-
gets and interference resources. Both the transmitting radar
and the interfering radar use CS waveforms, but they have
different chirp rates. We train and test the RNN model using
time samples from various scenarios. In one scenario, the
beat signals containing 75 chirps are used for both clean and
interfering signals. Each chirp consists of 416 samples. Re-
garding the simulation environment, a workstation equipped
with Intel® Core™ i9-10980XE and NVIDIA RTX A6000 is
used. We use MATLAB with Phased Array System Toolbox
to generate radar reflected signal, and preprocess the data.
Python TensorFlow is used to learn and evaluate the RNN
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Table1 RNN hyperparameter.
Hyperparameter Value
Learning rate 0.001
Epoch 1000
Hidden state size 100
Number of layers 3
Batch size 128
Table 2  Radar waveform and scenario related parameters.
Parameter Range
Center frequency 76~78GHz
Distance 1~130m
Velocity 1~50km/h
Chirp period 20~40ps
Sweep bandwidth 100~200MHz
Number of targets 1~2
Number of interferences 1~4

model. The main hyperparameters of the RNN are summa-
rized in Table 1. Specifically, a RNN model with 3 layers
with 100 hidden state size in each layer is adopted. Since
after the hyper-parameter tuning, we find this setting could
achieve the best tradeoff between performance and running
time. The radar and scenario-related parameters are sum-
marized in Table 2, which is a standard setting for mmWave
radars.

Figure 5 illustrates the time waveform and frequency
spectrum in a scenario with 7 interference radars. From
the time waveform that shown in Fig. 5(a), we can confirm
that the interference covers the entire time domain and the
amplitude of it is significantly larger than the signal level of
ego radar. By performing FFT, we can obtain the frequency
spectrum that shown in Fig. 5(b). It is obvious that the target
around 40m is completely buried by noise. However, by
applying the RNN model based interference mitigation, the
noise level could be significantly reduced which is even lower
than the noise level of the spectrum without interference.
However, on the other hand, the downside of the RNN model
based method is that the peak level of the target is also
reduced to some extent.

Next, we evaluate the achieved SINR of the RNN model
based interference mitigation method with up to 7 interfering
radars varying with the number of model training scenarios.
As shown in Fig. 6. we varied the number of training sce-
narios as 5, 10, 25, 50, and 100, and use a fixed 20 scenario
to evaluate the performance. From the results, it can be
observed that the models trained with 25 or more scenarios
consistently show an improvement of approximately 15 dB in
SINR over the result without interference mitigation. We no-
tice that the gap between with and without interference mit-
igation becomes larger as the number of interference radars
increases.

As a wrap up, we can conclude that the RNN model
based method is capable of delivering high performance even
in very challenging scenarios with up to 7 interfering radars.

Finally, we evaluate the training time of the model vary-
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Table 3  Training time varying with number of scenarios.
Training scenario Time
5 1.48h
10 2.95h
25 7.31h
50 14.51h
100 29.01h

ing with the number of training scenarios and summarize the
results in Table 3. It can be observed that although SINR
improves significantly when a larger number of training sce-
narios is used, there is also a substantial increase in the
training time of the utilized RNN model. This performance
tradeoff becomes significant especially when the RNN model
is trained locally in each vehicle.



KOIZUMI et al.: EXPERIMENTAL EVALUATIONS ON LEARNING-BASED INTER-RADAR WIDEBAND INTERFERENCE MITIGATION METHOD

5. Experimental Evaluation
5.1 Experimental Scenario and Settings

In order to validate the real-world effectiveness of inter-
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Fig.7 Inter-radar wideband interference experiment.
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radar interference mitigation methods, we conducted exten-
sive multi-interference experiments using 77GHz MIMO CS
radars. As shown in Fig. 7(a), the inter-radar interference ex-
periments were conducted at the stadium of Nanzan Univer-
sity, Nagoya, Japan. The experimental scenarios are shown
in Fig.7(b). Targets are located at distances ranging from
5m to 20m, and 1 to 4 interfering radars are placed at dis-
tances from 4 m to Sm. A trigger pulse generator is used to
adjust the timing of the interfering radars to ensure the occur-
rence of the interference. As shown in Fig. 7(c), 2x4 MIMO
CS radars with 2 transmitting antennas and 4 receiving an-
tennas manufactured by Sakura Tech are used. Two series
of chirp signals are transmitted in a time-division manner to
obtain 8-channel received signals. Each radar is connected
to a computer via a PoE interface, and the analysis software
shown in Fig. 7(d) is used to observe, record and process the
measurement data. Table 4 shows the major radar parameters
in the experiment.

We evaluate the performance of the RNN-based in-
terference mitigation method and compare it with exist-
ing algorithm-based methods. Regarding the RNN-based
method, we prepare 3 different models as follows: a model
trained by simulation data with 50 scenarios; a model trained
by experimental data with 50 scenarios; and a model pre-
trained by simulation data with 50 scenarios and then fine-
tuned by experimental data with 10 scenarios. For compar-
ison, the envelope detection and sorting based method and
the conventional zero suppression method are compared. To
perform the evaluations for all the methods, we use 10 ex-
perimental data sets that are different from the data used in
the training.

5.2 Evaluation Metrics

In this paper, we consider two evaluation metrics which are
SINR and MAPE (Mean Absolute Percentage Error). SINR
indicates the difference between the power of the peak and
noise level, and thus large SINR leads to easy target detec-
tion. MAPE indicates the difference of peak positions be-
fore and after interference mitigation, and thus small MAPE
means less negative affect due to interference mitigation. The
calculations of SINR and MAPE are described as follows.
To calculate SINR, first, a reference peak p is detected

Table4  Radar parameters in the experiment.
Parameter Value
Start frequency 77.5GHz
Chirp period 25,50us
Sweep bandwidth 1,2GHz
Sampling frequency 26.7,53.3GHz
Number of samples 1024
Number of interferences 1~4
Distance of targets 5~20m
Distance of interferences 4~5m
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in the spectrum without interference. Then, in the spectrum
with interference under the same target condition, the sample
with largest value around reference peak is obtained and set
as the peak p. Thereafter, 80 samples around the peak are
used as the noise level to calculate the SINR. Finally, the
same calculation is performed on all chirps and the finally
achieved average SINR can be obtained.

MAPE is calculated using the reference peak p in the
spectrum that does not include interference and the corre-
sponding peak p in the spectrum that includes interference.
Specifically, the MAPE is derived by the following equation.

MAPE =

X 100% “)

The average MAPE over all chirps are evaluated.
5.3 Data Preprocessing

In CS radar, low-frequency amplitude fluctuations, denoted
as DC (Direct Current) fluctuations, occur in the beat signal
due to phase noise in the PPL circuit that generates the chirp
signal. Therefore, instead of directly feeding the measured
time samples for learning or evaluation, we remove the DC
fluctuations in the waveform first. Specifically, for the beat
signal r(i)(i = 1toN) including DC fluctuation, a moving
average D(i) for each sample i is obtained using the window
width W, which is set to 32 in this paper. D(i) is calculated
by the following equation.

i+W;

> 5)

nt—l

D(i) =

2W1+1

By this method, DC fluctuations are removed by subtracting
the moving average D(i) from the beat signal r(i). Figure 8
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shows an example of the time waveforms before and after
removing DC fluctuations. Finally, the time samples after
the DC removal are normalized such that the root sum square
of all samples in one chirp is 1.

5.4 Evaluation Results

Figure 9 illustrates the time waveforms of a scenario with
one interfering radar, where the target is at 5m. Specifi-
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cally, Figs. 9(a) to (f) show the time waveforms before miti-
gation, suppressed by a simulation model, suppressed by an
experimental model, suppressed by a fine-tuning model, sup-
pressed by the envelope detection and sorting method, and
suppressed by conventional zero suppression method, re-
spectively. We can notice that all three RNN-based methods
could mitigate the interference signal to some extent, how-
ever, two algorithm based methods do not work well. The
generated threshold to detect the interference is too large
since the interfering signal is too wide.

Figure 10 illustrates the corresponding frequency spec-
trum. As shown in Figs. 10(a) to (f), it can be confirmed
that the interference is well mitigated and the SINR could be
improved when the learning models are used. Specifically,
when the model is trained by experimental data, the peak
power maintains at —50 dBm and the noise level around the
peak is reduced to approximately —70 dBm. On the other
hand, when the algorithm based methods are used, no sig-
nificant SINR improvement can be observed.

Figures 11 and 12 show the results for a scenario with
4 interfering radars, where the target is at 10 m. Similar to
the results in scenario with one interference, the RNN model
trained by experimental data outperforms others. Notice the
fine-tuning model works poor in this scenario, the peak at
10 m cannot be detected at all since the signal from ego radar
is also mitigated. Improving the performance of fine-tuning
model in these kind of challenging scenarios will be our
future work.

Next, we evaluate the CDF (Cumulative Distribution
Function) of SINR for all methods. Figures 13(a) to (c)
show the result for scenarios with target distances at 5, 10,
and 15 m, respectively, and Fig. 13(d) displays the average for
all scenarios. On average, the RNN based models show high
interference mitigation performance, and the model trained
by experimental data even outperforms the clean data that
does not contain interference. By comparing the results for
scenario with different target distances, we notice that the
performance improvement by learning based methods over
algorithm based methods decrease as the target distance in-
creases. Also, among the three RNN models, the model
trained by simulation data had relatively low performance.
A possible reason for this is that there was a quite large differ-
ence between the parameters settings between experimental
and simulation data.

Finally, the MAPE of the peak position before and after
interference mitigation is evaluated. Figures 14(a) to (c)
display the MAPE of detected peak position for each method
in scenarios with targets at 5 m, 10 m, and 15 m. In the target
5Sm and 10m scenarios, the MAPE is lower than 1% for
all methods. However, the MAPE increases significantly in
the target 15 m scenario. From these results, the learning
based methods and algorithm based methods show similar
performance in terms of MAPE. In addition, no correlation
was found between the SINR performance and MAPE of the
peak position.
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6. Conclusion

In this paper, we evaluate the performance of learning-based
inter-radar interference mitigation method in both simulation
and experimental environments. By extensive simulation re-
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sults, we demonstrated that the learning based method can
exhibit excellent performance even in very challenging sit-
uations where 7 interfering radars are present. Meanwhile,
we addressed the tradeoff between SINR improvement and
training time, which is extremely important especially in dis-
tributed learning environment. Furthermore, we conducted
extensive multi-interference experiments by using 77GHz
MIMO CS radars to collect real-world data. Performance
comparisons in terms of SINR and MAPE were conducted
between learning based and algorithm based models by uti-
lizing real-world data. In the future, we will focus on col-
lecting more real data in various environment and improving
the accuracy of the model by optimizing the architecture and
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hyperparameters of the model.
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