
DOI:10.1587/transfun.2023EAP1132

Publicized:2024/07/22

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
A Framework for Modeling Airspace Traffic Flow without Using
Any Specific Waypoints

Kenji UEHARA†a) and Kunihiko HIRAISHI†b),

SUMMARY In this paper, we present a framework for composing
discrete-event simulation models from a large amount of airspace traffic
data without using any specific waypoints. The framework consists of two
parts. In the first part, abstracted route graphs that indicate representa-
tive routes in the airspace are composed. We propose two methods for
extracting important routes in the form of graphs based on combination
of various technologies such as space partition, trajectory clustering, and
skeleton extraction. In the second part, discrete-event simulation models
are composed based on statistical information on flight time along each edge
of the abstracted route graph. The composed simulation models have inter-
mediate granularity between micro models, such as multi-agent simulation,
and macro models, such as queuing models, and therefore they should be
classified as mesoscopic models. Finally, we show numerical results to
evaluate the accuracy of the simulation model.
key words: traffic flow modeling, airspace traffic, space partition, trajec-
tory clustering, skeleton extraction, discrete-event simulation, mesoscopic
modeling.

1. Introduction

Recently, large amounts of flight trajectory data are available
and various researches using them are conducted. Modeling
traffic flow in the airspace is one of such researches [1].
By extracting flight routes from flight trajectory data, we
can compose simulation models and predict future traffic
flow. Simulation of the models contributes to improvement
of flight operation, congestion control, and reduction of CO2
emission. For example, we can predict traffic flow in near
future by simulation models and appropriate traffic control
can be applied based on the prediction. Moreover, we can
estimate traffic flow after changing flight routes. Models
used for such purposes should be those that have a sufficient
level of granularity for simulation and prediction but are not
too detailed, because behavior of individual aircraft is not
very important. Such models have intermediate granularity
between microscopic models and macroscopic models, and
therefore they should be classified as mesoscopic models.
Our view of the three models is summarized as follows:

• Macroscopic model

– Individual objects (aircraft, vehicles, etc.) are not
identified.

– The state of the system is usually represented by

†The author is with school of information science, Japan Ad-
vanced Institute of Science and Technology

a) E-mail: jaistueh@gmail.com
b) E-mail: hira@jaist.ac.jp

continuous variables.
– Solutions are obtained by analytic approach.
– Queueing network models are typical macroscopic

models.

• Microscopic model

– Individual objects possess their own information.
– The state changes depending on interaction be-

tween object population and external environment.
– Multi-agent simulation models are typical micro-

scopic models.

• Mesoscopic model

– A hybrid model of microscopic models and macro-
scopic models.

– Some information about individual objects is ab-
stracted and implemented on the simulation model
as common dynamics.

– It is possible to build a model in which individual
objects are identifiable.

To build mesoscopic models for traffic flow, we first
identify important points in the target space, e.g., crossings
in a road network, and then composing graphs having such
points as nodes and routes between nodes as edges. The
abstraction level of traffic flow determines the accuracy of
simulation results. Compared to road/train traffic, modeling
airspace traffic flow is difficult because trajectory of each
aircraft fluctuates in the 3-dimensional space due to various
factors such as weather and congestion level.

In a previous work by the authors, the mesoscopic mod-
eling approach was applied to traffic flow on an airport sur-
face [2]. An airport surface consists of several fixed points
and lines such as aprons, taxiways and runways. This sit-
uation is similar to that in road networks. We extracted a
graph having nodes representing crossings of taxiways and
gave the probability distribution of velocity on each edge.
The inputs of the model are departure flights from one of
aprons and arrival flights to one of runways. The advantages
of using such mesoscopic models are in (i) less computa-
tion time keeping a certain level of accuracy, compared to
microscopic models such as multi-agent simulation, and (ii)
rich information such as the amount of traffic at each point,
compared to macroscopic models such as queuing models.

To apply the mesoscopic modeling to traffic flow in the
airspace, we propose a framework that consists of two parts.
The first part is a framework for finding important routes in

Copyright © 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

the form of graphs, called abstracted route graphs, based on
two approaches: (i) density-based clustering of trajectories
and skeleton extraction (DC/SE), and (ii) space partition and
trajectory clustering (SP/TC). In the proposed approach, in-
formation on waypoints is not used and representative flight
routes are extracted from trajectory data. This is the main
difference from the modeling approach in [2]. One of the
objectives of the paper is to present a method for building
simulation models from traffic data in situations where way-
points or similar information is not available (e.g., human
flow in a large space). Under the assumption that all the
aircraft always pass through waypoints, it is expected that
simulation accuracy will improve if waypoints are used ex-
plicitly, but this is not always the case in reality.

The second part consists of three steps. The first step
is extraction of the passage information at each node by fit-
ting the raw data to the abstracted route graph. The outputs
of this step are event logs having list of passing nodes as
events. The second step is extraction of probability distri-
bution of flight time between two adjacent nodes. The last
step is construction of simulation models on a discrete-event
simulation environment. The original contributions in the
second part are in (i) aggregation of raw trajectory data by
extracting event sequences and associated probability distri-
bution of flight time, and (ii) modeling architecture suitable
for mesoscopic discrete-event simulation models.

The paper is organized as follows. In Section 2, prepro-
cessing of air traffic trajectory data is described. In Section
3, details of the two methods, DC/SE and SP/TC, of the first
part are explained. In Section 4, the three steps of the second
part are explained. In Section 5, accuracy of the obtained
simulation model is evaluated. In Section 6, some remarks
on the application to other traffic flows without information
on waypoints are described. In Section 7, we conclude the
paper with remarks on remaining problems†.

2. Preprocessing of Flight Trajectory Data

As the flight trajectory data, we use CARATS Open data [1].
CARATS Open data consists of flight trajectory data of all
regular flights in Fukuoka FIR (Flight Information Region),
Japan. The sources of the data are radar data and flight plans.
For each flight, the following information is recorded at every
10 seconds: (1) time, (2) flight number (unique ID of the
flight), (3) latitude, (4) longitude, (5) altitude, (6) aircraft
model (e.g., B772, B738, A320). The data contains flight
trajectory data in one week of every odd month (2012-2016);
every month (2017, 2018). In this research, we focus on the
areas around an airport since trajectory endpoints are easy to
identify in airport departure/arrival data and contribute to the
acquisition of clean data sets. We here apply the proposed
framework to the area around Haneda international airport
(HND). The preprocessing procedure is described as follows:

†This paper is based on two conference papers presented in
IEEE SMC 2022 [3] and IFAC World Congress 2023 [4], and also
a Ph.D. thesis [5] by the first author.

1. Flight trajectory data in the approach control area
of Haneda international airport is extracted from the
CARATS data.

2. Arrival flights and departure flights are separated, and
other flights that pass through this area are eliminated
from the data.

3. The coordinate system is changed from WGS-84 to the
plane rectangular [6].

Fig. 1 shows trajectories after the preprocessing. Ar-
rival and departure flights are indicated by different colors.
The approach control area is also indicated. We use trajecto-
ries inside of this area. Judgment of arrival/departure flights
is made as follows: if the initial point of a flight is close to
the airport and with low altitude, then the flight is judged
as a departure one; if the final point of a flight is close to
the airport and with low altitude, then the flight is judged
as an arrival one; other flights are eliminated from the data.
Since data near the boundaries of the approach control area
is necessary for accurate spatial partition and clustering, data
outside the boundaries are also partly used for processing.

In this paper, differences in vertical (altitude) factors
are absorbed through preliminary data processing and ab-
stracted graph creation during the mesoscopic modeling pro-
cess. Aircraft do not ascend and descend randomly; there
are strict flight rules and flyable altitude are kept within a
certain range. In addition, we divided the traffic data into
departures and arrivals at the pre-processing stage. This sep-
aration of ascending and descending aircraft in the terminal
area further minimizes altitude variation.

Arrival traffic
Departure traffic
Out of bounds

Fig. 1 Trajectories after preprocessing.



UEHARA and HIRAISHI: A FRAMEWORK FOR MODELING AIRSPACE TRAFFIC FLOW WITHOUT USING ANY SPECIFIC WAYPOINTS
3

3. PART I: Composition of Abstracted Route Graph

3.1 Existing Technologies

The proposed framework is a combination of various tech-
nologies. We give brief introduction of them. The core
technology is clustering of trajectories. It aggregates tra-
jectories with high similarity into clusters and eliminates
unimportant trajectories. As the similarity, various distance
measures between two trajectories are proposed, e.g., Eu-
clidean distance, distance between trajectories used in TR-
ACLUS [7] and SSPD [8], distance defined on time series
data used in DTW [9], and edit distance used in LCSS [10]
and EDR [11]. There are variety of clustering algorithms.
Due to the characteristics of flight trajectory data, we need
to select an appropriate algorithm and a similarity measure.
In [12], multiple distance measures are applied to various
datasets but there are no significant differences in the ob-
tained results.

Toward extraction of abstracted routes, there are several
methods for simplifying traffic trajectory data and extracting
abstracted routes from the data. In [13], [14], space partition
and the genetic algorithm are applied to AIS (Automatic
Identification System) data and patterns of ship trails are
found. In [15], [16], main routes of aircrafts in the airspace
are extracted using clustering of aircraft trajectories, where
DBSCAN [17] based algorithm HDBSCAN is used as the
clustering algorithm. In [15], superiority of trajectory clus-
tering algorithm TRACLUS is suggested but this algorithm
has not been applied to flight trajectory data.

3.2 Overview of Proposed Approach

In this paper, we proposed two methods for composing ab-
stracted route graph. In Method 1, firstly frequently used
areas in the airspace is extracted by density-based cluster-
ing, and next the skeleton of routes is found. In Method
2, firstly the target airspace area is divided by the density of
traffic in each region, and then trajectory clustering is applied
to find representative routes. Fig. 2 shows the processing
flows of the two methods.

3.3 Method 1: Density-Based Clustering and Skeleton Ex-
traction (DC/SE)

(1) Density-Based Clustering

Density-based clustering is an algorithm that begins with ar-
eas having points densely, and then expands them by merging
neighbor points. DBSCAN is one of representative density-
based clustering algorithms and we here use this algorithm.
Since DBSCAN generates clusters according to the density
of points, clusters are generated in frequently used areas and
traffic in other areas is eliminated as noise. This works as
filtering of data, i.e., only important areas that contain many
flight trajectories remain. There are two parameters 𝜀 and

Method 1

Density-based Clustering 
(DBSCAN)

Skeleton Extraction

Alpha Shape

Delaunay Triangle 
and Voronoi Diagram

Skeleton Extraction

Method 2

Trajectory-based 
Clustering (TRACLUS)

Extracting Representative 
Trajectory

Spatial Partitioning
(k-d-b tree)

Experimental data
(Raw data)

Data Extraction
(Route Categorization)

Down Sampling
(Ramer-Douglas-Peucker)

Abstracted Route Graph

Fig. 2 Overview of the two methods.

minPts in DBSCAN. A cluster is created if there are as many
or more points as minPts in a circle with radius 𝜀. This
procedure is applied to all points in the data and the obtained
clusters are concatenated to make clusters larger. Points that
do not belong to any clusters are eliminated as outliers.

Large radius 𝜀may result in clusters having unnecessary
points. The makes performance of the filtering worse. Large
minPts works negatively for the generation of clusters. Small
minPts enlarges the area of each cluster and this makes the
post processing for finding main routes difficult. Since the
value of minPts is sensitive to the amount of data, it is
necessary to adjust it even for the same kind of data sources.
Fig. 3 (a) shows the result of DBSCAN. We can observe
that only frequently used routes remain and other routes are
eliminated.

(2) Alpha Shape

Alpha shapes are extension of convex hulls. We use them for
computing contours of the clusters obtained by DBSCAN.
The alpha shape method has one parameter𝛼 that controls the
accuracy of approximation for a given set of points. By the
value of 𝛼, the alpha shape becomes a convex hull (𝛼 = 0),
and can have holes inside of it. Fig. 3 (b) shows a result
by the alpha shape method. The the obtained alpha shape
indicates not only external borders of the cluster but also
an inner hole. Such a hole is important to acquire accurate
skeletons. A single value of 𝛼 to all points may not bring a
desirable result. Therefore, we use a different value of 𝛼 for
the hole areas. In the current implementation, we manually
choose an appropriate value of 𝛼 according to the density of
points in each region.



4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

-25

0

25

50

75

100

125

-130 -105 -80 -55 -30

x(103m)

y(
1

0
3 m

)

(a) DBSCAN (b) Alpha shape

-25

0

25

50

75

100

125

-130 -105 -80 -55 -30

x(103m)

y(
1

0
3 m

)

-25

0

25

50

75

100

125

-130 -105 -80 -55 -30

x(103m)

y(
1

0
3 m

)

(c) Delaunay/Voronoi diagrams. (d) Skeleton.

Fig. 3 Extraction of main routes by DC/SE.

(3) Delaunay Diagrams and Voronoi Diagrams

Next we extract the skeleton of clusters using Delaunay dia-
grams and Voronoi diagrams. Given a set of seed points on
a plane, a Voronoi diagram is a partition of the plane into
regions called Voronoi regions such that all points of each
region have the same closest seed point. In the case of the
Euclidian plane, each border of regions consists of bisec-
tions of the line segment between two seed points. Delaunay
diagrams are the dual of Voronoi diagrams and indicate the
adjacent relation between two Voronoi regions. A Delau-
nay diagram is obtained as follows: we first put a point in
each Voronoi region and draw a line between two points if
the corresponding Voronoi regions are adjacent. Usually,
a Delaunay diagram consists of triangles called Delaunay
triangles.

Fig. 3 (c) shows the Delaunay diagram and the Voronoi
diagram obtained from the alpha shape. Since borders of
each Voronoi region is a part of bisections of two points, we
can find the center line of the alpha shape by extracting edges
of Voronoi regions such that both end points are included in
a Delaunay triangle. The edges are shown in Fig. 3 (d).
These edges indicate the skeleton of the alpha shape.

3.4 Method 2: Space Partition and Trajectory Clustering
(SP/TC)

(1) Space Partition

In the space partition method, a given 2-dimensional space
is firstly divided into regions by grid lines having variable
intervals, and then a tree structure that represents the relation
between grid regions is computed. By eliminating unimpor-
tant regions from the space, we can reduce computational
cost for manipulating the partition. This technique is often
used for acceleration of drawing in computer graphics.

We use the space partition technique to divide the space
into regions having variable granularity that reflects the
amount of traffic there. As indicated in Fig. 1, trajec-
tories of aircrafts do no necessarily exist uniformly in the
airspace. In the propose space partition, high traffic areas
are divided by high-resolution grids and other areas by low-
resolution grids. As the tree structure, Dobrkovic proposes
quad trees [13]. However, Filipiak shows that k-d-b trees
(k-dimentional binary trees) have less branches at leaf nodes
than quad trees [14]. So we adopt k-d-b trees here.

Fig. 4 (a) shows the result of the space partition together
with the density of traffic. It is observed that the size of each
region becomes smaller adaptively to the density of traffic.
We give the size of leaf nodes as a parameter of the k-d-b
tree partition, and determine the grid interval according to
the number of points contained in the region. As a result,
congested areas have deeper subtrees than other areas.

(2) Trajectory-Based Clustering

In the trajectory clustering, clusters are created from frag-
ments of flight routes. This is different from DBSCAN that
considers only individual points. One of disadvantages in the
point-based clustering is that we cannot distinguish routes on
the same trajectory but in opposite direction since the direc-
tion vector of each track is not considered. This is possible
in trajectory-based clustering.

We use here TRACLUS as the clustering algorithm. In
this algorithm, firstly trajectories are divided into multiple
segments, and then clusters are created within each segment.
Typical trajectories around an airport begin with a common
area (airport terminal area) and then branch. For such trajec-
tories, we can obtain a cluster corresponding to the common
area. Clustering in TRACLUS is similar to that in DBSCAN.
If there are as many or more segments as minLns within ra-
dius 𝜀 of segment 𝐿, then a new cluster having segment 𝐿
as its core is created. As long as the density of segments
around the cluster exceeds the threshold minLns, the cluster
is enlarged. We determine the length of each segment ac-
cording to the size of leaf regions, i.e., segments becomes
smaller in important regions.

The result by TRACLUS is shown in Fig. 4 (b). Since
the clustering result drastically changes for the values of
parameters, we need to adjust them carefully. Similarly
to DBSCAN, minLns should be determined based on the



UEHARA and HIRAISHI: A FRAMEWORK FOR MODELING AIRSPACE TRAFFIC FLOW WITHOUT USING ANY SPECIFIC WAYPOINTS
5

amount of trajectory data, We here use 𝜀 = 463𝑚 (0.25 NM†)
derived from precision of the aircraft navigation system ††,
and minLns = 30. End points of each segment are colored by
the cluster number that contains it. It is observed that routes
from the airport are clearly separated. Fig. 4 (c) shows the
result of this step.

(3) Extraction of Representative Tracks

Main routes are obtained by connecting representative route
fragments extracted from the result of trajectory clustering.
We here use TRACLUS for computing main routes. In
this algorithm, end points of each segments are found by
scanning the plane. Next the average coordinates of the
segment that crosses the scan line are obtained. To do this,
we first compute the average vector ®𝑉 of all vectors ®𝑣1, · · · , ®𝑣𝑛
each of which represents a segment in the target cluster. Then
we rotate the plane so that ®𝑉 becomes parallel to the 𝑋-axis
and the scanning is done along the direction of ®𝑉 .

3.5 Down Sampling

The obtained tracks may have too many points. To simplify
them, we apply the polyline simplification technique. In
this technique, a point is removed when its deviation from
the route is less than a given threshold value. We here use
Ramer-Douglas-Peucker (RDP) algorithm [18], [19]. RDP
is originally a technique for cartographic generalization of
drawing maps and is used for simplifying the map according
to its scale. RDP algorithm has one parameter 𝜀. If the devi-
ation of a point is smaller than 𝜀, then the point is removed.
We use 𝜀 = 926𝑚 (0.5 NM) here. The result of simplifica-
tion is shown in Fig. 4 (d). Note that RDP algorithm is also
applied to outputs of TRACLUS, skeleton graphs, and k-d-b
trees.

3.6 Composing Abstracted Route Graph

We obtain abstracted route graphs from results by DC/SE
and SP/TC, respectively. For the output of DC/SE, clus-
ters are concatenated to obtain graphs. For the output of
SP/TC, we first remove unnecessary edges that remain af-
ter the process using Delaunay/Voronoi diagrams, and apply
RDP algorithm. The obtained abstracted route graphs are
shown in Fig. 5. It is observed that the two methods give
similar graph structures but the details of the graphs such as
the number of branches at each node are slightly different.
Detailed comparison of the abstracted route graphs obtained
by SP/TC and DC/SE is described in [5]. The result of the
analysis shows that the abstracted route graph by SP/TC rep-
resents frequently used routes more accurately than that by

†Nautical mile.
††Aircraft arriving at and departing from Tokyo International

Airport are almost all large aircraft, and are flown using GNSS-
based satellite navigation. The instrument flight procedure set for
Tokyo International Airport requires an accuracy of 0.3 NM for the
highest requirement, therefore we set 0.25 NM in consideration of
actual navigational accuracy.

63

64
65 66

67 68 69 70

71

72

73

74

75 76

77 78

79

80
81 82
83

84

85

86

87

88
8990

91

92

93 94

95 96 97 98
99100
101
102

103 104 105 106

107 108

109

110

111112
113

114

115

116

117

118

119

120

121

122

123

124

125 12

-25

0

25

50

75

100

125

-130 -105 -80 -55 -30

x(103m)

y(
1

0
3 m

)

-25

0

25

50

75

100

125

-130 -105 -80 -55 -30

x(103m)

y(
1

0
3 m

)

(a) Space partition
(overlaid on traffic density grid)

(b) Trajectory clustering
(number of clusters=23).

-25

0

25

50

75

100

125

-130 -105 -80 -55 -30

x(103m)

y(
1

0
3 m

)

-25

0

25

50

75

100

125

-130 -105 -80 -55 -30

x(103m)

y(
1

0
3 m

)
(c) Representative routes
(number of clusters=20). (d) Polyline simplification.

Fig. 4 Extraction of main routes by SP/TC.

DC/SE.

4. PART II: Modeling Airspace Traffic Flow

4.1 Related Work

There are mainly two approaches to the modeling of airspace
traffic. The first approach is based on detailed modelling of
individual particle (aircraft), and future trajectory of each
particle is estimated by the model. This type of microscopic
modeling is called Lagrangian approach (e.g., [20], [21]).
Multi-agent simulation is classified as this approach (e.g.,
[22], [23]), and is used for air-traffic management tools (e.g.,
[24]). The trajectory-based models predict adequately for
short intervals of up to 20 minutes, but the accuracy de-
creases with the increasing prediction interval [25]. In the
second approach, space and time are divided into control
regions, and each region has properties such as size, density,
and flow rate. This type of macroscopic modeling is called
Eulerian approach and is used for estimation of traffic flow
between adjacent regions. The cell transmission model is
a typical Eulerian model for land road traffic. This model-
ing approach is extended and applied to airspace traffic flow



6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

1

2

3

45

6 7
8

9
1011

1213

14
15

16

17

18

19

20

21
22

-110

-85

-60

-35

-10

15

40

65

90

115

140

-130 -105 -80 -55 -30 -5

x(103m)

y(
1

0
3 m

)

1
2

3

4

6
7

8

910
11

12

13

14

15

16
17

18

19

20

21
2223

24

25

26

-110

-85

-60

-35

-10

15

40

65

90

115

140

-130 -105 -80 -55 -30 -5

x(103m)

y(
1

0
3 m

)

(a) DC/SE arrival. (b) SP/TC arrival.

1

2

3
4

5

6
7 8

9
10

11
12

1314
1516

17 18
19 20

21
22

23
24

25

-25

0

25

50

75

100

125

-130 -105 -80 -55 -30

x(103m)

y(
1

0
3 m

)

2

3
4

5

6

7
8

9

10

11
12

13

14
15

16

17

18
19

20

21

22

23

24

25

26

-25

0

25

50

75

100

125

-130 -105 -80 -55 -30

x(103m)

y(
1

0
3 m

)

(c) DC/SE departure. (d) SP/TC departure.

Fig. 5 Obtained abstracted route graphs.

[26]–[28]. As stated in Introduction, we here propose the
third approach, mesoscopic modeling.

4.2 Traffic Volume Analysis

In the actual aircraft operation, there are transitions between
nodes other than representative routes in the abstracted route
graph, due to shortcuts and detours. To analyze such irregu-
lar routes, we investigate transition information between the
nodes by using a process mining tool [29].

First, we extract passage information of each node by
fitting the raw data to the abstracted route graph, and then
record them as event logs, where we define an event occurs at
time instant when the aircraft reaches the point closest to one
of the nodes. Next, we obtain transition information between
two nodes as bigram by using the process mining tool. Fig.
6(a) shows the results of extracting transitions between two
nodes for all data under analysis. Fig. 6(b) shows the results
of the same analysis for one sample day. Although the major
traffic flows are consistent with edges of the abstracted route
graph, transitions not on edges are observed. In particular,
the arrival traffic graphs are complicated in approach routes
from the south.

In Fig. 6, major traffic flows can be easily identified

because line thickness of each edge denotes the frequency
of occurrence. For arrival routes, the pairs of the adjacent
nodes 𝑢𝑖 − 1 and 𝑢𝑖 with a high probability of occurrence
𝑃(𝑢𝑖 |𝑢𝑖−1) are (18𝑎, 19𝑎), (19𝑎, 6𝑎), (19𝑎, 21𝑎), (16𝑎, 4𝑎),
(4𝑎, 3𝑎), (3𝑎, 17𝑎), (17𝑎, 2𝑎), (2𝑎, 1𝑎) from the top, where
the superscript indicates 𝑎(arrival) or 𝑑(departure). On the
other hand, divergences from the representative routes are
also frequent. This is due to intervention of control instruc-
tions frequently causes arrival aircrafts to take shortcuts.
Arrival traffic traces with a high probability of occurrence
are

〈18𝑎, 19𝑎, 6𝑎, 13𝑎, 11𝑎〉0.103,

〈18𝑎, 19𝑎, 21𝑎, 22𝑎, 23𝑎〉0.030,

〈18𝑎, 20𝑎, 21𝑎, 22𝑎, 23𝑎〉0.022, 〈15𝑎, 24𝑎, 13𝑎, 11𝑎〉0.018,

〈18𝑎, 21𝑎, 22𝑎, 23𝑎〉0.017, 〈12𝑎, 24𝑎, 13𝑎, 11𝑎〉0.013,

〈14𝑎, 13𝑎, 11𝑎〉0.011, 〈15𝑎, 12𝑎, 24𝑎, 13𝑎, 11𝑎〉0.010,

where the superscript indicates the probability, and traces
lower than these eight traces have a probability of occurrence
less than 0.01. Also in the departure traffic trace, the top
high-probability traces are

〈5𝑑 , 19𝑑 , 17𝑑 , 20𝑑 , 26𝑑〉0.049,

〈18𝑑 , 2𝑑 , 23𝑑 , 4𝑑 , 1𝑑 , 3𝑑〉0.033,

〈18𝑑 , 13𝑑 , 8𝑑〉0.029, 〈18𝑑 , 2𝑑 , 13𝑑 , 8𝑑〉0.028,

〈18𝑑 , 2𝑑 , 23𝑑 , 10𝑑 , 9𝑑〉0.024,

and the top 24 traces have probability 0.01 or greater.
The results are well characterized by the arrival and

departure routes. The arrival traffic shows characteris-
tics such that the main paths exist at the north entry and
south entry around adjacent node pairs (18𝑎, 19𝑎), (19𝑎, 6𝑎),
(19𝑎, 21𝑎), (16𝑎, 4𝑎), (4𝑎, 3𝑎), (3𝑎, 17𝑎), (17𝑎, 2𝑎),
(2𝑎, 1𝑎) from which the traffic branches off in detail. Thus,
there are a small number of high-frequency traces and many
low-frequency traces with similar occurrence probabilities.
The departure routes, on the other hand, have many traces
with medium probability of occurrence, and are structured
in such a way that they branch in a well-balanced manner.
This is because the departure routes at Tokyo International
Airport are dispersed according to the direction of the desti-
nation.

The total number of pairs of adjacent nodes 𝑢𝑖 − 1 and
𝑢𝑖 for the sampled one day was 239 (136 pairs for arrival and
103 pairs for departure). In the airport surface model, traces
with low frequency of occurrence were removed as noise,
but in the airspace model, probability density distribution
parameters were obtained for all patterns to model more
rigorously.

4.3 Probability Density Distribution of Flight Time

In the airspace model, we extract the probability density dis-
tribution of flight time by the curve fitting technique. From



UEHARA and HIRAISHI: A FRAMEWORK FOR MODELING AIRSPACE TRAFFIC FLOW WITHOUT USING ANY SPECIFIC WAYPOINTS
7

1
2

3

4

6
7

8

910
11

12

13

14

15

16
17

18

19

20

212223

24

25

26

1

2

3
4

5

6

7 8

9
10

11
12
13

14
15
16

17

18
19

20

21

22

23

24

25

26

-110

-85

-60

-35

-10

15

40

65

90

115

140

-130 -105 -80 -55 -30 -5

x(103m)

y(
10

3 m
)

Arrival Departure

1
2

3

4

6
7

8

910
11

12

13

14

15

16
17

18

19

20

212223

24

25

26

1

2

3
4

5

6

7 8

9
10

11
12
13

14
15
16

17

18
19

20

21

22

23

24

25

26

-110

-85

-60

-35

-10

15

40

65

90

115

140

-130 -105 -80 -55 -30 -5

x(103m)

y(
10

3 m
)

(a) Overall graph (b) 1-day graph

Fig. 6 Departure/Arrival graphs reflecting traffic volumes.
Line thickness of each edge represents the proportion of traffic volume.

the two-node transition data obtained in 4.1 shows that flight
time on each edge varies little and is symmetrically dis-
tributed around the mean value on many edges. Therefore,
Gaussian family is suitable for airspace data. Fig. 7 shows
probability density distributions of flight time and the re-
sults of curve fitting on typical edges. The data fits Gaussian
distribution well. We conducted curve fitting on all two-
node transition data obtained from the trace analysis and
extract Gaussian distribution parameters 𝜇 (mean) and 𝜎
(variance). The obtained parameters allow us to reproduce
aircraft movement on the model without having real data.

� = 360
� = 34.79678

0.0%

1.0%

2.0%

3.0%

200 250 300 350 400 450 500 550

Arr 4-26

� = 204
� = 16.49907

0.0%

1.0%

2.0%

3.0%

100 150 200 250 300 350 400 450

Dep 2-8

� = 334
� = 19.09723

0.0%

1.0%

2.0%

3.0%

150 200 250 300 350 400 450 500

Arr 6-10

� = 260
� = 20.39589

0.0%

1.0%

2.0%

3.0%

100 150 200 250 300 350 400 450

Dep 10-9

� = 346
� = 29.66878

0.0%

1.0%

2.0%

3.0%

150 200 250 300 350 400 450 500

Arr 18-19

� = 222
� = 20.2232

0.0%

1.0%

2.0%

3.0%

0 50 100 150 200 250 300 350

Dep 20-26

Empirical
Fitted

Fig. 7 Typical probability density distribution of flight time.

4.4 Modeling by Object Petri Net

Based on the abstracted route graph and the probability den-
sity distribution parameters of inter-node flight time, we
compose airspace models using a modeling tool RENEW
[30]. It is a tool based on object Petri nets and runs on JAVA
VM. Object Petri nets are extension of Petri nets in such a way
that each token can be a Petri net having data and methods,
i.e., object Petri nets can have hierarchical structure. RE-
NEW is suitable for modeling discrete-event systems with
real time feature. Since RENEW supports dynamic gener-
ation of net instances, it is also suitable for implementing

multi-agent simulation models. Moreover, communication
channel between multiple instances is supported.

(1) Architecture of the Model

In the airspace model, we adopt hierarchical architecture.
The top layer is the airspace Petri net, on which aircraft Petri
nets move around. The airspace model has a total of 52 nodes
(26 nodes for departure and 26 nodes for arrival). Since the
number of patterns of two-node transition are 239 even in
one day of log data, directly reproducing the abstracted route
graph as a network would require an enormous amount of
work. This is a problem faced not only in airspace models,
but also in modeling traffic flows that have a vast area of
coverage, such as ship data, or traffic flows that are highly
random and do not have fixed paths, such as human or animal
walking paths.

Here, we take advantage of the characteristics of object
Petri nets. We prepare a common place ‘float’ that connects
all instances of node Petri nets. Aircraft Petri nets are as-
sembled in the float place, and by letting the aircraft itself
determine which node to go next, there is no need to construct
the abstracted route graph as the complex network diagram
entirely in Petri nets. In other words, each aircraft Petri net
has information of its flight trajectory on the abstracted route
graph.

Fig. 8 shows conceptual design of the airspace model.
It has a hierarchical structure, with the upper layer being
the airspace network created based on the abstracted route
graph. However, the actual Petri net do not have a concrete
network form, but a set of node instances on ‘float’ place
instead. Each node instance is assigned a node ID when it is
created, and the aircraft instance swims around in the ‘float’
in search of this node ID, which results in the same move-
ment as transitioning through the airspace network. The
delay time (flight time) cannot be generated by a single node
alone because the probability density distribution parameters
depend on the last node the aircraft has passed. Therefore,
the delay time is generated by the aircraft instance itself.
Since the aircraft instance has routing information, it knows
the previous node 𝑢𝑖 − 1 and the current node 𝑢𝑖 . The air-
craft instance is designed to impose delay time by Gaussian
distribution parameters based on the routing information.
The airspace Petri net model generates node instances and
aircraft instances at the start of the simulation, and then con-
nects all node instances to place ‘float’. All aircraft instances
are also placed in place ‘float’. After the simulation starts,
the aircraft repeatedly moves between ‘float’ and node in-
stances, and when there are no more nodes to move next, it
transitions to a dummy node and disappears. The simulation
model halts when the number of aircraft instances on ‘float’
reaches zero.

(2) Airspace Petri Net Model

The airspace Petri net consists of a set of node instances, all
of which are connected to a common place ‘float’. When
an aircraft instance enters place ‘float’, it searches for the
next node instance to enter, and if it can enter, then the



8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Queue “float”

Airspace network (Abstracted graph)

Node (significant point of traffic flow)

1

6

4

2

7

5

3

8

Edge (observed node transition)

Queue 1
(Node Instance)

Queue 2

Queue 3

Queue 4

Queue 5

Queue 6

Queue 7

Queue 8 Dummy

Aircraft Instance

Landing/En-route transition

Arrival/Departure aircraft

Fig. 8 Overview of model architecture.
An aircraft in the order 1 → 2 → 3 → 8 (upper figure). In the proposed
model architecture shown in the lower figure, all node instances are con-
nected to the common place ‘float’, and the aircraft instance swims among
node instances in the order 1 → 2 → 3 → 8. Therefore, we do not have to
prepare the network structure in the model.

node instance moves immediately. Once the aircraft instance
enters a node, it obtains the probability density distribution
parameters determined by the previous node 𝑢𝑖 − 1 and the
current node 𝑢𝑖 , and calculates the delay time. The time
is added to the timer of the aircraft instance, and the timer
counts down as the simulation proceeds. The node instances
act as FIFO queues. As the aircraft leaves the node, it checks
its timer value and if the timer is greater than or equal to 1,
then it waits; if it is 0, then the aircraft leaves the node and
returns to ‘float’ and search again for the next node to enter.

Air traffic control is the process of keeping aircraft in
line and evenly spaced, and all aircraft must follow the rules.
Air traffic service to aircraft is provided on a “first come,
first served” basis, except for emergency and presidential
aircraft [31]. Therefore, we can say the aircraft between
nodes behave as FIFO. If there are special airspace conditions
that are frequently disrupted by anormal traffic, then the
effects between aircraft must be taken into account, but such
cases do not usually occur. If they frequently occur, the
trajectory will be clustered as shorter part by the clustering
process, with variations occurring according to their effects.
In other words, the output is a queueing network with a finer
mesh according to the complexity of the airspace.

Fig. 2-5 shows node instances of the actual airspace
model for the arrival traffic. Although there are 26 inde-
pendent node instances, they are all connected to a common
place ‘float’.

Each aircraft instance moves among the node instances
according to its routing information. If the next node to go
cannot be identified in the node set, then the aircraft stays
at the ‘float’. The simulation completes when the number
of aircraft instances on ‘float’ reaches zero. As the aircraft
instances swim around the float and nodes, they record tran-
sition information as an event log. This event log is used
for conformance checking and model evaluation by process
mining.

We should remark that the proposing Petri net model is

not a multi-agent simulation model because of the following
reason. Although each aircraft model has information on the
flight plan, but it is nothing but an alternative representation
of the graph structure. Moreover, the flight speed of each
aircraft is determined by the common probabilistic distribu-
tion. Therefore, each aircraft is not capable of deciding its
behavior by itself.

Fig. 9 Floating queues (node 1-3).
In the model, 26 node instances and a dummy node are located, and all con-
nected to the common place ‘float’ (dark cyan place), where the same place
can be put on different net instances. Each aircraft instance in float can enter
a node if the transition having method ‘:go(n)’ of the aircraft instance fires
synchronously with the transition having methods ‘x:in(x,n)’ and ‘:in(x,n)’
of a node instance, where these methods compose a communication chan-
nel through a shared variable n. Note that n denotes the node ID and x
denotes the aircraft instance. When the aircraft exits the current node, the
transition having ‘:out(x,n)’ fires synchronously with the transition having
‘y:out(x,n)’ of the node instance and the aircraft instance returns to ‘float’.

5. Evaluation of the Model

Whether the simulation model shows desired performance or
not depends on its objective. Mesoscopic models have the
advantage of downsizing large amounts of raw data while
still preserving the information needed for analysis. The im-
portant information in airspace models is accuracy of flight
time for each aircraft and the throughput in the airspace.
Therefore, we evaluate the traffic congestion level in the tar-
get airspace area and the flight time of each aircraft. Note
that the evaluation is to be conducted after completing the
conformance checking by process mining, confirming that
the model is working as designed, and assuring that the event
logs do not contain any incorrect information [32].

(1) Validation of Airspace Traffic Level

We count the number of aircrafts flying in the target airspace
area at a given moment. We will refer this number as the
traffic level. Here, the time axis is divided into slots of a
fixed time interval (60 seconds), and the number of in-flight
aircrafts in the airspace is counted for each slot.

Fig. 10 shows the results of traffic level comparison for
arrival and departure aircrafts. For both arrival and depar-
ture, the simulation results show good tracking compared to
the raw data. In arrival traffic, there is a time period when
the traffic level drops around time slot 720 and 1080 (cor-
respond to 12:00 and 18:00, respectively), and the model
is able to reproduce almost the same drop points. On the
other hand, there are some areas where the traffic level in the



UEHARA and HIRAISHI: A FRAMEWORK FOR MODELING AIRSPACE TRAFFIC FLOW WITHOUT USING ANY SPECIFIC WAYPOINTS
9

model exceed the actual for both arrival and departure. For
example, in the vicinity of time slot 540 (9:00) for arrival,
the model shows around 24 aircrafts while the actual data is
around 20 aircrafts. Similarly for departures, there are time
slots where the traffic level by the simulation is higher than
the actual level. There are two possible reasons for this:

Queue capacity overflow: In the model, all node in-
stances have the same queue capacity 𝑙𝑞 = 5. This value is
set by considering the length of edges in the abstracted route
graph and the horizontal separation in the terminal area. If
more inputs than the queue capacity arrive at once, then the
queue overflows. The number of aircrafts that can fly simul-
taneously on an edge is equal to the capacity of the queue
in the node instance. Therefore, if the queue overflows, then
the aircraft instances will be stuck in ‘float’. However, we
assume that separation is well arranged in actual airspace,
and air traffic control operations are well performed without
overflows even during busy times. The queue capacity of
each node is also related to the throughput of the airspace
to some extent. Therefore, how much the queue capacity
can be expanded determines the throughput of the airspace.
Actually, unlimited expansion of queue capacity does not
necessarily improve the tracking of raw data. Table 1 shows
the maximum error, the mean error, and the standard devia-
tion between the raw data and the model for each queue size.
For the initial value of 𝑙𝑞 = 5, the mean error is 1.175 for
arrivals and 0.973 for departures, which is generally within
the range of about one aircraft for each time slot. As 𝑙𝑞
increases, the error becomes smaller for the arrival aircraft,
but conversely, the error becomes larger for the departure air-
craft. Moreover, although the accuracy can be improved by
adjusting queue capacity, the error at maximum congestion
is not due solely to queue overflow.

Runway alternation: In the normal airport operation,
the used runway is changed depending on the wind direction
or other factors. At large airports with multiple runways,
such as Tokyo International Airport, the change of runway
has a significant impact on arrival and departure routes, and
therefore it causes discrepancy between simulation and ac-
tual operations. The results of trace analysis for the ar-
rival traffic shows that the runway direction changed around
time slot 360 (6:00). The final approach phase of the traces
for the southbound approaching aircraft is 〈14𝑎, 13𝑎, 11𝑎〉
before time slot 360, but after that the phase changes to
〈22𝑎, 20𝑎, 9𝑎〉. As a result, both the aircrafts approaching
from the north and south use common segments, which af-
fected the following aircraft in the simulation and caused
delays. In actual operations, however, congestion was mit-
igated by the air traffic control (ATC) instructions, which
probably caused the discrepancy. In actual ATC operations,
runways are not suddenly switched without prior arrange-
ment. Since the wind direction is predictable, arrangement
should be made in advance to minimize the impact on oper-
ations before the runway is changed. Therefore, the actual
data shows less congestion than the simulation. Although
there are differences between actual operations and the model
outputs for traffic peaks during maximum congestion, they

converge quickly, and the model traffic volume follows the
actual data in a short time.

0

5

10

15

20

25

0 180 360 540 720 900 1080 1260 1440
Time slot (min)

T
ra

ffi
c 

le
ve

l (
co

un
t)

Empirical
Model

(a) Arrival traffic level

0

5

10

15

20

25

0 180 360 540 720 900 1080 1260 1440
Time slot (min)

T
ra

ffi
c 

le
ve

l (
co

un
t)

Empirical
Model

(b) Departure traffic level

Fig. 10 Airspace traffic level.
The size of the queue assigned to each node is set to 5. The x-axis is
represented in time slots of 60 seconds.

Table 1 Traffic level comparison between raw data and model output.

Route Queue size Max. error Mean error Std. dev.
5 7 1.175 1.380

Arrival 6 6 1.147 1.337
10 6 1.106 1.258
5 9 0.974 1.302

Departure 6 9 0.980 1.290
10 10 0.994 1.313

(2) Validation of Flight Time

The flight time is defined as the time between the appear-
ance and disappearance of an aircraft in the real data. In the
simulation by the airspace model, only the appearance time
is given to the aircraft instance as an individual property.
Therefore, if place ‘float’ is congested at the original appear-
ance time and the aircraft cannot enter the first node, then the
appearance time is delayed. If the preceding aircraft is stuck
in the node and it takes time to transition to the node, then
the accumulated delay will be the delay of the disappearance
time. The comparison results of flight times between the
raw data and the simulation of arriving aircrafts are shown



10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

in Fig. 11. We here show results for arrival flight, but sim-
ilar results were obtained for departure flight. The results
for departure flight is available in [5]. Fig. 11(a) shows the
results when good accuracy was obtained in the traffic level
comparison. The simulation reproduces the actual operation
generally well, with minimal errors. On the other hand, Fig.
11(b) shows the results when the model gives bad perfor-
mance. Increasing the operating time affected the following
aircraft. Delays begin to appear around time slot 510 (8:30),
and about 10 more aircrafts are affected by the delays that
follow, with the delays gradually increasing.

Unlike taxiing aircraft on the ground, aircraft in flight
cannot stop in mid-air, so if the preceding aircraft is stuck
and cannot proceed, then the following aircraft has to either
enter a holding pattern and wait for the congestion to ease, or
make a detour. Holding aircraft creates additional delay time
and has an additional impact on the following aircrafts. In
practice, however, few aircrafts are forced to hold in mid-air.
Even in congested airspace, the situation is well coordinated
through the ATC intervention, and efforts are made to pre-
vent the deterioration of punctuality. Let us focus on the
green bars in Fig. 11(b), although slightly longer than in
Fig. 11(a), is the same length for almost all aircrafts, with
no significant bias. It is thought that ATC interventions are
made to avoid negative effects on congestion by adjusting the
separations by radar vectors, adjusting the speed of following
aircraft, and applying narrower separation with tight margin.
The airspace model does not reproduce the flexible spacing
adjustments made by ATC intervention, making subsequent
aircraft more susceptible to congestion and changes in run-
ways in use. However, the duration of the impact is slight,
and the model shows considerable accuracy at other times
of the day. Thus, as with the traffic level assessment, the
airspace model reproduces aircraft behaviour to some extent
in the assessment of individual aircraft operating times, and
the necessary information is retained even after downsizing
by mesoscopic modeling.

6. Application to Other Traffic Flows

The methods presented in this paper can be applied to traffic
flows without fixed points other than air traffic flows. The
traffic flow data for vessels and vehicles have been widely
used for a long time, and there are a variety of methods for
their analysis. As mentioned in 3.1, vessel AIS data are used
in [13], [14] to perform space partition and also used the ge-
netic algorithm to extract key traffic flow points of the traffic
flow. In [8], trajectory clustering are also performed with
SSPD on cab trajectory data. These are applicable to the
modeling framework presented in this paper. The methods
could also be applied to pedestrian and animal tracking data.
Pedestrian data in station premises and plazas are different
from those with fixed routes, such as roads, where the ran-
domness of movement is high, and it is difficult to extract
the major traffic flow simply by plotting it directly. In the
method we proposed, the space is divided on a density basis
and the trajectories of each pedestrian are clustered. Thus,

MR14309
MR14265
MR14322
MR14185
MR14221
MR14424
MR14220
MR14216
MR14347
MR14323
MR14303
MR14126
MR14294
MR14325
MR13838
MR14335
MR14037
MR14214
MR14270
MR14182
MR14280
MR14152
MR14146
MR14245
MR14139
MR14170
MR14167
MR14202
MR14226
MR14239
MR14103
MR14087
MR14234
MR14071

�t=64

�t=7

�t=28
�t=31

�t=140
�t=172

�t=177

�t=21
�t=266

�t=351
�t=1

�t=37
�t=244

�t=73
�t=121

�t=17

�t=23

�t=46

�t=-153

�t=-26

�t=-86

�t=-384

�t=-118

�t=-45

�t=-13
�t=-640

�t=-5

�t=-97
�t=-3

�t=-373
�t=-3

�t=-3
�t=-97

�t=-346

420

430

440

450

605 615 625 635 645 655 665 675 685 695
Time slot(min)

T
ra

je
ct

or
y 

N
um

be
r

Match
Delay>0
Delay<0

(a) Time periods showing good consistency (arrival)

MR13837

MR13793

MR13882

MR13836

MR13890
MR13829

MR13808

MR13854

MR13789

MR13749
MR13587

MR13735

MR13774

MR13800
MR13767

MR13667

MR13769

MR13738

MR13722
MR13781

MR13561

MR13631

MR13766

MR13736
MR13621

MR13617

MR13550

MR13681

MR13672
MR13642

MR13677

�t=215

�t=450

�t=993

�t=339

�t=238

�t=25

�t=798

�t=992
�t=731

�t=453

�t=1369

�t=29
�t=1120

�t=1039

�t=633

�t=1188

�t=355
�t=436

�t=116

�t=69

�t=140

�t=174

�t=207

�t=329

�t=-963

�t=-570
�t=-64

�t=-237

�t=-22

�t=-926

500

510

520

480 490 500 510 520 530 540 550 560 570 580
Time slot(min)

T
ra

je
ct

or
y 

N
um

be
r

Match
Delay>0
Delay<0

(b) Time period showing bad consistency (arrival)

Fig. 11 Flight time comparison between model and actual data.
Green bars represent the model matches the real data. If the model took
longer flight time relative to the real data, these are indicated by magenta
bars; and if the model took less time relative to the real data, these are
indicated by blue bars. The strings on the right side of the y-axis indicate
the flight ID.

it is possible to extract the major traffic flows hidden in the
data. Animal Tracking Data can also be applied to extract
frequently traversed paths from animal activity histories in
forests, etc., where there are no fixed paths. Deer track
data are used in the evaluation of the TRACLUS trajectory
clustering [7].

7. Conclusion

In this paper, we have proposes a framework for modelling
airspace traffic flow. The framework consists of two parts.

In the first part, we have shown two methods, DC/SE
and SP/TC, for extracting route graphs that represent char-
acteristics of airspace traffic flow. Since fluctuation exists
in flight trajectories, representative routes are extracted. In
DC/SE, first density-based clustering is applied, and next a



UEHARA and HIRAISHI: A FRAMEWORK FOR MODELING AIRSPACE TRAFFIC FLOW WITHOUT USING ANY SPECIFIC WAYPOINTS
11

geometrically-defined skeleton is extracted from each clus-
ter. In SP/TC, first the airspace area is divided into grid
regions according to importance of each region and next tra-
jectory clustering is applied. The abstracted route graphs
are obtained by both methods but they have different charac-
teristics. Separate routes in the graph by SP/TC tend to be
merged in the graph by DC/SE, i.e., the SP/TC gives more
detailed graphs. We need to choose the method according to
usage of the model. Through the evaluation on geometrical
and operational points of view, we observe SP/TC gives a
more appropriate graph for the modeling but the result may
change by parameter setting.

In the second part, we have proposed a method for com-
posing mesoscopic discrete-event simulation models based
on statistical information on flight time along each edge of
the abstracted route graphs. Since the airspace models are
complex in their composition, we takes advantage of the char-
acteristics of object Petri nets and allow the aircraft instance
itself to swim among nodes instances in place ‘float’. This
contributes to reducing the amount of work required to create
the airspace network and improving the efficiency of model
implementation. In the evaluation of the airspace model,
good reproducibility was demonstrated for traffic level and
flight time. This means that the proposed mesoscopic model-
ing framework can reproduce airspace traffic flow with some
accuracy while significantly downsizing large volume data.
The raw traffic flow data used in the airspace modeling is sev-
eral gigabytes in size, but was downsized to a few megabytes
by replacing all of the node-to-node movement information
with statistical data in the model. Depending on the scale
of traffic flow data and the granularity required by designers
for mesoscopic models, the required modeling effort can be
enormous. Mesoscopic models originally had the advantage
of providing accurate results to some extent with lightweight
processing instead of directly handling raw data.

The proposed framework requires appropriate values
for parameters, especially in the extraction of abstracted route
graphs. Searching good values in a somewhat automatic way
remains as future work.

Acknowledgment This research is partly supported by
Grant-in-Aid for Scientific Research of MEXT under Grant
No. 20K04544 and No. 23K10996. The authors also
thank to Japan Civil Aviation Bureau, MLIT for providing
CARATS Open data.

References

[1] http://www.mlit.go.jp/report/press/kouku13 hh 000087.html
[2] K. Uehara , K. Hiraishi, An efficient mesoscopic modeling method

for large volume traffic flow using process mining techniques, Proc.
2021 IEEE Asia-Pacific Conference on Computer Science and Data
Engineering (CSDE) (2021).

[3] K. Uehara and K. Hiraishi, A framework for extracting abstracted
route graphs toward air traffic flow modelling. Proc. IEEE SMC2022
(online), pp. 1564-1569 (2022).

[4] Kenji Uehara, Kunihiko Hiraishi, Mesoscopic modeling of airspace
traffic flow, Proc. the 22nd IFAC world congress, pp. 5000-5005
(2023).

[5] K. Uehara, A study on mesoscopic modeling methodologies for large
volume traffic flow data, Ph.D. Thesis, Japan Advanced Institete of
Science and Technology (2022).

[6] B. R. Bowring, Total inverse solutions for the geodesic and great
elliptic, Survey Review, Vol. 33, No. 261, pp. 461-476 (1996).

[7] J. G. Lee, J. Han, K. Y. Whang, Trajectory clustering: a partition-and-
group framework, Proc. 2007 ACM SIGMOD International Confer-
ence on Management of Sata, Association for Computing Machinery,
pp. 593-604 (2007).

[8] P. Besse, B. Guillouet, J. M. Loubes, F. Royer, Review and perspec-
tive for distance based trajectory clustering, IEEE Transactions on
Intelligent Transportation, Vol. 17, No. 11, pp. 3306-3317 (2016).

[9] D. J. Berndt , J. Clifford, Using dynamic time warping to find pat-
terns in time series, AAAI-94 Workshop on Knowledge Discovery
in Databases, pp. 359-370 (1994).

[10] M. Vlachos, G. Kollios , D. Gun, Discovering similar multidimen-
sional trajectories, Proc. 18th International Conference on Data En-
gineering, pp. 673-684 (2002).

[11] L. Chen, M. T. Özsu , V. Oria, Robust and fast similarity search for
moving object trajectories, Proc. 2005 ACM SIGMOD international
conference on Management of data, pp. 491-502 (2005).

[12] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang , E. Keogh, Query-
ing and mining of time series data: experimental comparison of
representations and distance measures, Proc. 34th Very Large Data
Bases Endowment, Vol. 1, Issue 2, pp. 1542-1552 (2008).

[13] A. Dobrkovic, M. E. Iacob, J. van Hillegersberg, Maritime pattern
extraction and route reconstruction from incomplete AIS data, Inter-
national Journal of Data Science and Analytics, Vol. 5, pp. 111-136
(2018).

[14] D. Filipiak, K. Wȩcel, M. Stróżyna, M. Michalak , W. Abramowicz,
Extracting maritime traffic networks from AIS data using evolution-
ary algorithm, Business and Information Systems Engineering, Vol.
62, pp. 435-450 (2020).

[15] L. Basora, J. Morio , C. Mailhot, A trajectory clustering framework
to analyse air traffic flows, 7th SESAR Innovation Days (2017).

[16] X. Olive , M. Jérôme, Trajectory clustering of air traffic flows around
airports, Aerospace Science and Technology, Vol. 84, pp. 776-781
(2019).

[17] M. Ester, H.-P. Kriegel, J. Sander , X. Xu, A density-based algorithm
for discovering clusters in large spatial databases with noise, Proc.
Second International Conference on Knowledge Discovery and Data
Mining, pp. 226-231 (1996).

[18] U. Ramer, An iterative procedure for the polygonal approximation of
plane curves, Computer Graphics and Image Processing, Vol. 1, No.
3, 244-256 (1972).

[19] D. Douglas, T. Peucker, Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature, The
Canadian Cartographer, Vol. 10, No. 2, pp. 112-122 (1973).

[20] C. R. Kaplan, E. S. Oran, N. Alexandrov and J. P. Boris, The mono-
tonic Lagrangian grid particle grid: a fast tracking methodology for
air-traffic modeling, American Institute of Aeronautics and Astro-
nautics Paper 2009-1635 (2009).

[21] A. Bayen, P. Grieder, G. Meyer and C. J. Tomlin, Lagrangian delay
predictive model for sector-based air traffic flow, Journal of Guidance,
Control, and Dynamics, Vol. 28, No. 5, pp. 1015-1026 (2005).

[22] Á. Cámera, D. Castro, E. Oliveria and P. H. Abreu, Comparing a
centralized and decentralized multi-agent approaches to air traffic
control. Proc. 28th European Simulation and Modelling Conference,
pp.189-193 (2014).

[23] R. Breil, D. Delahaye, L.. Lapasset and É. Féron, Multi-agent sys-
tems for air traffic conflicts resolution by local speed regulation and
departure delay, Proc. IEEE/AIAA 35th Digital Avionics Systems
Conference (DASC) (2016).

[24] ETMS: https://www.fly.faa.gov/Products/Information/ETMS/etms.html
[25] B. Srighar, N. Y. Chen and H. K. Ng, An aggregate sector flow

model for air traffic demand forecasting. Proc. 9th AIAA Aviation
Technology, Integration, and Operations Conference, AIAA 2009-



12
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

7129 (2009).
[26] H. M. Arneson and C. Langbort, Distributed control design for a

class of compartmental systems and application to Eulerian models
of air traffic flows, Proc. 46th IEEE Conference on Decision and
Control, pp. 2876-2881 (2007).

[27] P. K. Menon, G. D. Sweriduk and K. D. Bilimoria, New approach
for modeling, analysis, and control of air traffic flow, Journal of
Guidance, Control, and Dynamics, Vol. 27, No. 5, pp. 737-744
(2004).

[28] D. Sun and A. M. Bayen, Multicommodity Eulerian-Lagrangian
large-capacity cell transmission model for en route traffic. Journal
of guidance, control, and dynamics, Vol. 31, No. 3, pp. 616-628
(2008).

[29] ProM: https://www.promtools.org/
[30] RENEW: http://www.renew.de/
[31] FAA Joint Order 7110.65W:

https://www.faa.gov/documentlibrary/media/order/atc.pdf
[32] K. Uehara and K. Hiraishi, Process mining approach for the con-

formance checking of discrete-event simulation model. Proc. 58th
Annual Conference of the Society of Instrument and Control Engi-
neers of Japan (SICE), pp. 615-62 (2019).

Kenji Uehara received from the Tokyo Uni-
versity of Foreign Studies the B. A. in Language
and Area Studies in 2010, and from the Japan
Advanced Institute of Science and Technology
(JAIST) the M. S. in Information Science in 2014
and D. S. in Information Science in 2022. His
research interests include discrete event systems,
traffic flow modeling and simulation.

Kunihiko Hiraishi received from the Tokyo
Institute of Technology the B. E. degree in 1983,
the M. E. degree in 1985, and D. E. degree in
1990. He is currently a professor at School of
Information Science, Japan Advanced Institute
of Science and Technology. His research inter-
ests include discrete event systems and formal
verification. He is a member of the IEEE, IPSJ,
and SICE.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

