
DOI:10.1587/transfun.2023EAP1135

Publicized:2024/05/28

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
High-Parallelism and Pipelined Architecture for Accelerating
Sort-Merge Join on FPGA

Meiting XUE†, Wenqi WU††, Jinfeng LUO††, Yixuan ZHANG††† ,††††, Nonmembers, and Bei ZHAO††, Member

SUMMARY Join is an important but data-intensive and compute-
intensive operation in database systems. Moreover, there are multiple types
of join operations according to different join conditions and data relation-
ships with diverse complexities. Because most existing solutions for accel-
erating the join operation on field programmable gate arrays (FPGAs) focus
only on the easiest join application, this study presents a novel architecture
that is suitable for multiple types of join operation. This architecture has a
modular design and consists of three components that are executed sequen-
tially and in pipeline. Specifically, the top-K sorter is used instead of the full
sorter to reduce resource utilization and advance the merge processing. Fur-
ther, the architecture is perfectly compatible with both N-to-1 and N-to-M
join relationships, and can also adapt well to both equi-join and band-join.
Experimental results show that this design, which is implemented on an
FPGA, achieved a high join throughput of 242.1 million tuples per second,
which is better than other reported FPGA implementations.
key words: FPGA-based acceleration, database, join operation, sort.

1. Introduction

With the development of significant breakthroughs in
field programmable gate array (FPGA) design, FPGA-based
architectures have become an attractive option for acceler-
ating various database systems [1, 2]. FPGAs provide enor-
mous flexibility for users and can be custom-designed to
suit individual requirements and data qualities because of
their programmable characteristics. Moreover, FPGAs are
particularly appropriate for solving problems that can be
naturally parallel and pipelined. It can not only be used as
a co-processor for existing systems, but also as a separate
system and platform for independent work due to its fully
programmable characteristics. One such problem is the ac-
celeration of the join query, an essential database operation
that combines tables characterized by given conditions.

Based on the join condition, join queries can be catego-

†The authors are with the Department of Cyberspace,
Hangzhou Dianzi University, Hangzhou 310018, China (e-
mail:munuan@hdu.edu.cn).
††The author is with the College of Biomedical Engineering

and Instrument Science, Zhejiang University, Hangzhou 310027,
China (e-mail:winkywow@zju.edu.cn (Corresponding Author), lu-
ojf9@zju.edu.cn).
†††The author is with Institute of information engineering, CAS,

Beijing 100085, China (e-mail:zhangyixuan234@mails.ucas.ac.cn).
††††The author is with School of Cyber Security, University

of Chinese Academy of Sciences, Beijing 101408, China (e-
mail:zhangyixuan234@mails.ucas.ac.cn).
†The author is with the School of Computer Science and Tech-

nology, Hangzhou Dianzi University, Hangzhou 310018, China
(e-mail:zhaobei@hdu.edu.cn).

rized into two types: equi-join with equality conditions, and
non-equi-join (also called 𝜃-join) with inequality conditions.
Here, 𝜃 refers to a binary relational operator belonging to the
set {<, ≤, =,≠, >, ≥}. If 𝜃 refers to the equality sign (=), then
this join degrades into an equi-join [3, 4]. Most research ef-
forts on join acceleration have been dedicated to the equi-join
because of its easy implementation that can be achieved with
efficient acceleration through a number of advanced strate-
gies. At the same time, the 𝜃-join is not developed with
equi-join synchrony. It is significant to integrate them into
one architecture.

Join operations can also be divided into three types
based on the data model relationship: as one-to-one (1-
to-1), many-to-one (N-to-1), and many-to-many (N-to-M)
joins. The main difference between these three relationships
is whether there are duplicate keys in one table.

On the other hand, the three fundamental algorithms
for performing a join operation are the nested-loop join,
hash join, and sort-merge join [5–8]. Among these, the
nested-loop join has a relatively simple algorithm; however,
it is usually time-consuming and inefficient. Therefore, the
hash join and sort-merge join are more widely applied in
join queries than the nested-loop join is. A hash join is
implemented in two phases: a build phase for constructing
hash tables, and a probe phase for finding match joins in
hash tables. Because of the advantages of the hash function,
a hash join is theoretically able to support fast searches, yet
involves random accesses. It also requires another storage
to store hash key-value pairs, making it more suitable for
situations where one table is much smaller than the other.
The hash join is well suited to equi-join operations; however,
because of its random accesses, it is not as suitable for 𝜃-join
operations. Moreover, when hash join is applied to N-to-M
joins, the join performance is greatly affected because there
will be more hash collisions with complete traversal. The
sort-merge join also consists of two phases: a sort phase
for sorting elements, and a merge phase for exporting match
joins. However, unlike the hash join, the sort-merge join
performs better when two tables are in the same order of
magnitude and requires no additional storage. Moreover, the
sort-merge join can be competent for any join type regardless
of the join condition and data model relationship, without
performance degradation. Thus, this study focuses on a
general architecture for the join operation, exploiting the
sort-merge join algorithm as our basic skeleton.

In this paper, we present a novel architecture that has
a modular design and is suitable for multiple types of join

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

operation. This architecture consists of three main compo-
nents: partition, sorter, and comparison, which are executed
sequentially and in pipeline. Each of these components is
flexible. Moreover, the architecture can easily realize par-
allelism, leading to a further improvement of performance.
The main contributions of this study are as follows:

• A hardware architecture with high parallelism and a
deep pipeline is constructed, such that it accommodates
the characteristics of FPGA.

• The architecture is created with a modular serial design
that can be easily implemented and can be tailored to
suit individual requirements.

• Its high-throughput, FPGA-based implementation for
accelerating sort-merge join operations outperforms
other approaches.

• The proposed solution provides for all scenarios of the
join query, including equi-join and 𝜃-join in N-to-1 and
N-to-M data model relationships.

The remainder of this paper is organized as follows:
Section 2 provides information regarding closely related
work. Section 4 describes the basic algorithm in the sort
and merge phases. Section 5 introduces the architecture im-
plementation. Section 6 presents the experimental details
and a comparison of the results with those of existing meth-
ods. Finally, section 7 concludes this study.

2. Related work

2.1 FPGA-Based Database Accelerator

In the era of big data, as accelerators continue to be
designed and used on databases, several FPGA-based al-
gorithms have been performing well in specific operations
[1, 9]. For example, compaction plays a critical role in Log-
Structured-Merge-tree (LSM-tree) based key-value stores,
which are widely used in applications with write-intensive
workloads. To this end, Sun et al. [10] designed and imple-
mented an FPGA-based compaction engine with key-value
separation and index-data block separation strategies, while
fully utilizing the bandwidth of the FPGA chip to improve
the compaction performance. On the other hand, with regard
to storage, to solve the severe bandwidth bottlenecks that oc-
cur when vast amounts of data are moved from storage to
query processing nodes, Woods et al. [11] developed Ibex, a
prototype of a hybrid intelligent storage engine that supports
off-loading of GROUP BY aggregation and projection- and
selection-based filtering operators. Taking advantage of the
programmability offered by the OpenCL HLS tool, Wang et
al. [12] proposed an FPGA-specific cost model that includes
two components, namely unit cost and optimal query plan
generation, to determine the optimal query plan in less than
one minute.

Meanwhile, sorting is essential for many scientific and

data processing problems. For example, combining the par-
allelization of algorithms and the use of designs based on
specialized hardware structures, Li et al. [13] proposed an
extended nonstrict partially ordered set-based configurable
linear sorter for FPGAs, which consists of multiple cus-
tomizable micro-cores as sorting units. The sorting units
in their architecture package the storage and comparison of
tuples, are connected and communicated into a chain, and
act the same way in each clock cycle to improve the real-
ized frequency of the sorter. As a basic data structure, hash
tables are widely used in the database, as in the hash join
operation mentioned earlier. To address the possibility of
hash collision, which will involve several probes on item re-
location, Li et al. [14] proposed an efficient Cuckoo hashing
scheme, called Multi-copy Cuckoo or McCuckoo, to fore-
see ways of successfully kicking items by using multiple
copies, to check for and avoid expensive rehashing during
insertion failures. Jinyu Zhan et al. [15] designed a novel
data processing framework to prefilter data, and then pro-
pose a CPU-FPGA co-design to accelerate the queries with
a workload-aware task scheduler.

2.2 Hardware-Based Equi-Join Accelerator

Hardware-accelerated equi-join operations have been
receiving much attention from the engineering community
in recent years [16–19]. In relevant research studies, two tar-
geted platforms, namely FPGA and GPU, have been consid-
ered. For instance, Chen et al. [20] used a hybrid CPU-FPGA
heterogeneous platform by operating ”folded” bitonic sort-
ing networks in parallel on the FPGA and merging the partial
results on the CPU to benefit from both high parallelism and
large available memory. Based on this hybrid sorting design,
they developed two streaming join algorithms by optimizing
the classic CPU-based nested-loop join and sort-merge join
algorithms, thus obtaining good throughput improvement.
On the other hand, Zhou et al. [8] utilized hierarchical in-
dexes to identify result-yielding regions in a solution space
to take advantage of result sparseness and achieve accelera-
tion with low match rates on an FPGA. Further, in addition
to one-dimensional equi-join query processing, their solu-
tion supports processing of multidimensional similarity join
queries. Meanwhile, Papaphilippou et al. [21] proposed a
co-grouping engine on an FPGA for the merge phase of the
sort-merge join, with which the input data are summarized
on-the-fly, preserving the linear access pattern for faster data
movement and eliminating the need for a replay buffer/cache.

With the rapid development in the GPU world, many
accelerators have also been designed based on GPU. For
instance, Rui et al. [22] overhauled the popular radix hash
join and redesigned sort-merge join algorithms on GPUs by
applying a series of novel techniques to utilize the hardware
capacity of the latest Nvidia GPU architecture and the new
features of the CUDA programming framework. They took
advantage of revised hardware arrangement, larger register
file and shared memory, native atomic operation, dynamic
parallelism, and CUDA Streams to improve the performance

XUE et al.: HIGH-PARALLELISM AND PIPELINED ARCHITECTURE FOR ACCELERATING SORT-MERGE JOIN ON FPGA
3

of the operation. Meanwhile, Sioulas et al. [23] designed and
implemented a family of novel, partitioning-based GPU-join
algorithms that work around the limited memory capacity
and slow PCIe interface in GPU. Lin Qian et al. [24] de-
signed a write-optimized edge storage system via concurrent
microwrites merging. They implement a two-level cache
structure that dispatches the concurrent write threads effi-
ciently and significantly mitigates the cache block compe-
tition problem with a flexible merging scheme. Tarikul et
al. [25] proposed Relational Fabric. It is a near-data verti-
cal partitioner that allows memory or storage components
to perform on-the-fly transparent data transformation. Re-
lational Fabric also pushes vertical partitioning to the hard-
ware. Huan Zhang et al. [26] proposed a resource-efficient
join architecture based on a tree model with a parallel im-
plementation. It needs build and probe phase to achieve.
However, when the data is skewed, the binary tree may be
quite unbalanced.

2.3 Theta-Join Accelerator

By contrast, with regard to 𝜃-joins, although these oper-
ations are widely used in various applications, very minimal
research related to their hardware-based implementation,
especially FPGA-based acceleration, has been conducted.
Therefore, queries containing such joins are notably slow
because of their inherent quadratic complexity. In an attempt
to mitigate this problem, Koumarelas et al. [3] proposed an
ensemble-based partitioning approach to save on communi-
cation cost and reduce the total execution time of 𝜃-joins in a
massively parallel setting. The key idea is to cluster join key
values following matrix re-arrangement and agglomerative
clustering techniques in isolation or combination. On the
other hand, Wang et al. [4] used Hadoop with GPU to speed
up nested-loop join, hash join, and 𝜃-join operations used
on big data. They used MapReduce and HDFS in Hadoop
to handle large data tables, and estimated the number of re-
sults accurately and allocated the appropriate storage space
without unnecessary costs.

Besides, there are some methods accelerated on CPU.
For example, Okcan et al. [27] derived a simple randomized
algorithm, referred to as 1-Bucket-Theta, for implementing
arbitrary joins in a single MapReduce job, which requires
minimal statistics. Moreover, they proposed the M-Bucket
class of algorithms, which can further improve runtime as
long as sufficiently detailed input statistics are available.
Meanwhile, Li et al. [28] proposed a prefix tree index with a
holistic pruning ability on multiple attributes, in conjunction
with a cost model, to quantify the prefix tree. Based on this,
they further devised a filter-verification framework to sup-
port similarity search and join on multi-attribute data. On
the other hand, Khayyat et al. [29] introduced an inequality
join algorithm based on sorted arrays and space-efficient bit-
arrays and devised a simple method for estimating the selec-
tivity of inequality joins used to optimize multiple predicate
queries and multi-way joins.

3. Symbol description

The symbol description is shown in table 1

Table 1: The meaning of each symbol in paper.
Symbol Meaning

𝑅, 𝑆 Name of table

𝑅𝑟𝑖𝑑 The 𝑟𝑖𝑑𝑡ℎ record in table 𝑅

𝑅𝑟𝑖𝑑 .𝑘𝑒𝑦 The key value of 𝑟𝑖𝑑𝑡ℎ record in table 𝑅

𝐾 The number of elements in a single sort

𝑃 The number of parallelisms to divide data in average

𝑁𝑅 The size of table 𝑅

𝑛𝑟 The match size in table 𝑅

4. Proposed solution

Our objective is to design a hardware-based accelerat-
ing architecture suited for both equi- and 𝜃-joins. The skele-
ton of our architecture is based on sort-merge join, which
consists of sort and merge phases. Accordingly, we aim to
design pipelined algorithms for both phases. In this section,
we describe the proposed basic algorithms in the order of
execution.

4.1 Join Example

It is assumed that a join query operates between two
tables, namely table R and table S. Tuples in {𝑟𝑖𝑑, 𝑘𝑒𝑦}
format are the records streaming into the join architecture,
and matching tuples are exported in {(𝑟𝑟𝑖𝑑 , 𝑠𝑟𝑖𝑑)} format.
Here, 𝑟𝑖𝑑 is used to identify the row address, 𝑘𝑒𝑦 is the join
attribute, and 𝑟𝑟𝑖𝑑 (resp., 𝑠𝑟𝑖𝑑) is the corresponding tuple of
table R (resp., S). As an example, for tables R and S in Fig.
1, an equi-join query 𝑄𝑒 can be applied, as follows:

𝑄𝑒: SELECT 𝑟.𝑟𝑖𝑑, 𝑠.𝑟𝑖𝑑
FROM R 𝑟, S 𝑠
WHERE 𝑟.𝑘𝑒𝑦 = 𝑠.𝑘𝑒𝑦.

Query 𝑄𝑒 returns a set of pairs {(𝑟𝑖 , 𝑠 𝑗)}, where 𝑟𝑖 .𝑘𝑒𝑦 =

𝑠 𝑗 .𝑘𝑒𝑦; here, the result is {(𝑟3, 𝑠2), (𝑟5, 𝑠1)}. On the other
hand, an example of a 𝜃-join query, 𝑄 𝜃 , can be as follows:

𝑄 𝜃 : SELECT 𝑟.𝑟𝑖𝑑, 𝑠.𝑟𝑖𝑑
FROM R 𝑟 , S 𝑠
WHERE 𝐴𝐵𝑆(𝑟.𝑘𝑒𝑦 − 𝑆.𝑘𝑒𝑦) < 5.

Here, 𝜃 is the binary relational operator ’>’, and
query 𝑄 𝜃 returns a set of pairs {(𝑟𝑖 , 𝑠 𝑗)}, where
𝑟𝑖 .𝑘𝑒𝑦 > 𝑠 𝑗 .𝑘𝑒𝑦. The result here is {(𝑟1, 𝑠1), (𝑟1, 𝑠2),
(𝑟1, 𝑠3), (𝑟1, 𝑠4), (𝑟2, 𝑠1), (𝑟2, 𝑠3), (𝑟2, 𝑠4), (𝑟3, 𝑠1), (𝑟3, 𝑠3),
(𝑟3, 𝑠4), (𝑟4, 𝑠1), (𝑟4, 𝑠3), (𝑟4, 𝑠4)}.

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

RID KEY KEY RID

1 25 7 1

2 14 19 2

3 19 13 3

4 18 12 4

5 7

TABLE R TABLE S

Fig. 1: Example of join tables.

4.2 Sort Phase

One of the critical parts of the sort-merge join is the
sorting of the two tables. For hardware implementation,
it should be noted that executing a full sorter is naturally
more resource-intensive and time-consuming than executing
a partial sorter. Specifically, when a full sorter is applied, the
merge phase has to wait until the whole sorting is completed.
By contrast, if a partial sorter is applied, the merge phase
for each part can start immediately after the sorting for that
given part is finished. That is to say, the partial sort for
the next part and the merge phase for the previous part can
run simultaneously and independently, resulting in further
improvement of efficiency. Thus, in this study, we apply the
top-K sorter, as a partial sorter, in the sort phase instead of a
full sorter, unlike in other sort-merge join algorithms.

The top-K sorter in our architecture can process contin-
uous sequences of any variable length and output the sorted
top K elements for each sequence together with the remain-
ing unsorted elements. In this way, we realize the full sort-
ing of the whole table, which sort-merge join requires, by
calling the top-K sorter multiple times. Specifically, we in-
put the whole table into the top-K sorter in the first round
and obtain the sorted top K tuples with the other unsorted
tuples. Then, we input the unsorted tuples as a new se-
quence and obtain the secondary top K sorted tuples. This
step is repeated until no unsorted tuples remain, i.e., the
whole table is sorted out. In this way, the fully sorted re-
sult is eventually formed as needed. For example, as shown
in Fig. 2, we are given a table that has five tuples listed
as {(1, 25), (2, 14), (3, 19), (4, 18), (5, 7)}, where the first
number in each tuple is the 𝑟𝑖𝑑, and the second is the 𝑘𝑒𝑦.
We then use a top-2 sorter in the sort phase and sort the
tuples in descending order. The procedure of the sort phase
is as follows:

(a) In the first round, we input the whole table into the top-
2 sorter, and obtain {(1, 25), (3, 19)} correctly sorted
(highlighted in gray cells).

(b) In the second round, we input the remaining three tu-
ples, and obtain {(4, 18), (2, 14)} correctly sorted.

(c) Lastly, in the final round, we input the last tuple {(5, 7)}

and obtain it as is.

As a result, we obtain the fully sorted table as {(1, 25),
(3, 19), (4, 18), (2, 14), (5, 7)}. The sort order of the top-
K sorter, i.e., in ascending or descending order, should be
selected according to the 𝜃 operator.

TOP-K SORTER
sorted top K tuples

unsorted tuples

raw table

RID KEY

1 25

2 14

3 19

4 18

5 7

(a) RID

KEY

1

25

3

19

2

14

4

18

5

7

(b) RID

KEY

1

25

3

19

4

18

2

14

5

7

(c) RID

KEY

1

25

3

19

4

18

2

14

5

7

Fig. 2: Algorithm and example of the top-K sort.

4.3 Merge Phase

Another essential part of the sort-merge join is the merg-
ing of two sorted tables. Herein, we designed two types of
merge strategies for the merge phase: one is the equi-merge,
for equi-join; and the other is the range-merge, aimed for use
with 𝜃-join. Although the only difference between the two
strategies is in the comparison condition, which are equality
and non-equality, respectively, the range-merge has a higher
complexity than that of equi-merge.

4.3.1 Equi-merge

In equi-merge, we read one tuple separately from each
of the two sorted tables and check if they have equal 𝑘𝑒𝑦s. If
not, we move the larger (resp., smaller) one to the next tuple
when the table is sorted in descending (resp., ascending)
order. Otherwise, the common 𝑘𝑒𝑦 and equal tuples are
recorded in a temporary storage, and then we enter into the
comparison subroutine. In this subroutine, we operate the
two tables separately. For each table, we obtain the next
tuple to determine if the 𝑘𝑒𝑦 of the new tuple is equal to
the common 𝑘𝑒𝑦, and store the equal one in the temporary
storage; this step is repeated until the 𝑘𝑒𝑦 of the new tuple
is no longer equal to the common 𝑘𝑒𝑦 or if we reach the
end of the table. After these independent comparisons are
completed for both tables, we make a Cartesian product of
tuples in the temporary storage and export the join matches.
Afterward, we continue to read one tuple from each of the
two tables and check for equality. Equi-merge is terminated
once at least one of the tables is empty. In the example shown
in Fig. 3, the sorted 𝑘𝑒𝑦s of table R are {25, 19, 18, 14, 7},

XUE et al.: HIGH-PARALLELISM AND PIPELINED ARCHITECTURE FOR ACCELERATING SORT-MERGE JOIN ON FPGA
5

and the sorted 𝑘𝑒𝑦s of table S are {19, 13, 12, 7}. Note that
we have omitted the 𝑟𝑖𝑑 for description convenience. The
procedure of equi-merge can be executed as follows and the
pseudo-code is shown below:

RID KEY KEY RID

1 25 19 2

3 19 13 3

4 18 12 4

2 14 7 1

5 7

TABLE R TABLE S

(a)

(b)

(c)

(d)

(e) (f)
(g)

(a)(b)

(c)(d)
(e)
(f)

(g)

Step

Common 𝑘𝑒𝑦

Table R

Table S

Join Match

Temporary
Storage

b

19

(3, 19)

(2, 19)

(𝑟3, 𝑠2)

g

7

(5, 7)

(1, 7)

(𝑟5, 𝑠1)

Fig. 3: Example of equi-merge.

Algorithm 1 Equi-merge
Require: table 𝑆, table 𝑅

if unsort(L) then
sort(L)

if unsort(R) then
sort(R)

𝑖 ← 0, 𝑗 ← 0, 𝑟𝑒𝑠𝑢𝑙𝑡 ← Φ

𝑛𝑙 ← 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜 𝑓 𝐿, 𝑛𝑟 ← 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜 𝑓 𝑅

while 𝑖 ! = 𝑛𝑙 or 𝑗 ! = 𝑛𝑟 do
if 𝑠𝑖 .𝑘𝑒𝑦 == 𝑟 𝑗 .𝑘𝑒𝑦 then
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 + {𝑠𝑖 , 𝑟 𝑗 }
𝑗 + +

elseif 𝑠𝑖 .𝑘𝑒𝑦 > 𝑟 𝑗 .𝑘𝑒𝑦
𝑖 + +

else
𝑗 + +

while 𝑖 ! = 𝑛𝑙 do
if 𝑠𝑖 .𝑘𝑒𝑦 == 𝑟 𝑗 .𝑘𝑒𝑦 then
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 + {𝑠𝑖 , 𝑟 𝑗 }

𝑖 + +
while 𝑗 ! = 𝑛𝑟 do

if 𝑠𝑖 .𝑘𝑒𝑦 == 𝑟 𝑗 .𝑘𝑒𝑦 then
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 + {𝑠𝑖 , 𝑟 𝑗 }

𝑗 + +
return 𝑟𝑒𝑠𝑢𝑙𝑡

(a) Read the top tuple from each of the two tables, i.e., 25
from table R, and 19 from table S, then compare them,
and find that they are not equal. Note that the step letters

with arrows in the figure indicate that the tuple pointed
at by the arrow is read at the corresponding step; the
same applies to subsequent figures.

(b) Read the next tuple, i.e., 19, from table R (because
25 > 19), compare it with the tuple 19 from table S,
and find that they are equal. Enter the comparison
subroutines (highlighted in light yellow):

i. Record the common 𝑘𝑒𝑦 and equal tuples in the
temporary storage.

ii. Read the next tuple, i.e., 18, from table R, compare
it with the common 𝑘𝑒𝑦, and find that they are not
equal; thus, exit the comparison subroutine for
table R.

iii. Read the next tuple, i.e., 13, from table S, compare
it with the common 𝑘𝑒𝑦, and find that they are not
equal either; thus, exit the comparison subroutine
for table S.

iv. After both comparison subroutines are finished,
make a Cartesian product from the temporary stor-
age and export the join match {(𝑟3, 𝑠2)}.

(c)-(f) Continue to compare the tuples of the two tables to
check if they are equal, and find that they are not all
equal (namely, 18 vs. 13; 14 vs. 13; 7 vs. 13; 7 vs. 12).

(g) Read the next tuple, i.e., 7, from table S, compare it
with 7 of table R, and find that they are equal. Enter
the comparison subroutines as in step (b) (highlighted
in green). Because the two tables are now both empty,
the equi-merge of these two tables is terminated.

Finally, after equi-merging of the two tables is com-
pleted, we obtain join matches {(𝑟3, 𝑠2), (𝑟5, 𝑠1)}. It is easy
to determine that the time complexity of the equi-merge al-
gorithm is

𝑂𝑒𝑞𝑢𝑖 𝑚𝑒𝑟𝑔𝑒 = 𝑂 (𝑁𝑅 + 𝑁𝑆) +𝑂𝑒𝑥𝑝𝑜𝑟𝑡 𝑚𝑎𝑡𝑐ℎ, (1)

because each step will take a new tuple from either table R
or table S. Here, 𝑁𝑅 and 𝑁𝑆 are the sizes of tables R and
S, respectively. For exporting matches, the time complexity
depends on the number of results for each match and the
interval of each adjacent match. For each common 𝑘𝑒𝑦, the
match exporting has an 𝑂 (𝑛𝑟 × 𝑛𝑠) time complexity, where
𝑛𝑟 and 𝑛𝑠 denote the numbers of tuples equal to this com-
mon 𝑘𝑒𝑦 in tables R and S, respectively, and the symbol ×
means Cartesian product; the product here is also the num-
ber of matches to this common 𝑘𝑒𝑦. Moreover, because of
the use of a temporary storage, we can parallel the export-
ing of the temporary storage and the comparison of the next
pair of tuples to hide the exporting cost and further improve
the performance. However, if two common 𝑘𝑒𝑦s are found
to be excessively close, i.e., the interval between two ad-
jacent matches is excessively small, the parallelism will be
affected because of the recycling of the temporary storage.
Nonetheless, overall, the match-exporting time complexity

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

RID KEY KEY RID

1 25 19 2

3 19 13 3

4 18 12 4

2 14 7 1

5 7

TABLE R
TABLE S

(basis)

(a)

(b)

(c)

(d)

(e) (h)
(k)

(a)(b)
(c)(d)(e)
(f)(g)
(h)
(i)(j)
(k)
(l)(m)

Step

Queue
Buffer

Step

Queue
Buffer

a b c d e f g

h i j k l m

19 19

18

19

18

14

19

18

14

18

14

18

14

18

14

14 14 14

7

7 7

Step Match

e

h

k

m

(𝑟3, 𝑠2)
(𝑟4, 𝑠2)
(𝑟2, 𝑠2)

(𝑟4, 𝑠3)
(𝑟2, 𝑠3)

(𝑟2, 𝑠4)
(𝑟5, 𝑠4)

(𝑟5, 𝑠1)

Fig. 4: Example of range-merging.

in equi-merge can be neglected for most applications.

4.3.2 Range-Merge

With regard to the range-merge, the procedure is a
slightly more complex. Herein, we consider one table as
the comparison basis, from which tuples will be compared
sequentially with tuples from the other table. Furthermore,
we record the match tuples for the basis table with the help
of a Queue buffer, to which each tuple of the other table will
be inserted only once at most. Specifically, for each tuple
from the basis table (referred to as 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 temporarily),
we follow these three steps to execute a comparison:

1 Compare 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 with the head of the Queue buffer (if
existing) to check whether they match the join condition
or not. If not, pop the head out and repeat this step;
otherwise, turn to the next step.

2 Compare 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 with the new tuple from the other
table to check if there is a new match. If yes, insert the
new tuple into the Queue buffer and repeat this step;
otherwise, finish the comparison for 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 .

3 Pair 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 with all the tuples from the Queue buffer
and export the join matches.

Fig. 4 shows an example of range-merge based on the
tables from the previous examples. The sorted 𝑘𝑒𝑦s of table
R are {25, 19, 18, 14, 7}, whereas the sorted 𝑘𝑒𝑦s of table S
are {19, 13, 12, 7}. We consider table S as the comparison
basis (i.e., the basis table), and compare each of its tuples

with the whole table R using a Queue buffer. The match
condition is that the absolute value of the difference between
the 𝑘𝑒𝑦s of the two tuples is smaller than 5, i.e., |𝑘𝑒𝑦𝑅 −
𝑘𝑒𝑦𝑆 | ≤ 5. The procedure of range-merge is executed as
follows:
Initially, the pointers and Queue are all 𝑛𝑢𝑙𝑙s.

(a) Read the first tuple, i.e., 19, of table S as 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 , and
begin the range-merge for this tuple. Because the Queue
is presently empty, we skip step 1O mentioned earlier,
and read the first tuple, i.e., 25, of table R. Compare
the two tuples, and find that they are unmatched (19 vs.
25). At this point, the Queue is still 𝑛𝑢𝑙𝑙.

(b)-(d) Read the next tuple, i.e., 19 (resp. 18, 14), of table
R, and compare it with 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 ; find that they are all
matched (i.e., 19 vs. 19; 18 vs. 19; and 14 vs. 19), and
insert them (i.e., 19, 18, and 14) into the Queue.

(e) Read the next tuple, i.e., 7, of table R, and compare it
with 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 ; find that they are unmatched, and thus
the comparison for this 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 is finished. Then, as
in step 3O described earlier, we export the join matches
as {(𝑟3, 𝑠2), (𝑟4, 𝑠2), (𝑟2, 𝑠2)}.

(f) Read the next tuple, i.e., 13, of table S as 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 ,
and begin the range-merge for this tuple. As in step
1O described earlier, we first check if the head tuple
of the Queue satisfies the match condition for current
𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 , and find that 19 is unmatched, which should
be popped out.

(g) Repeat checking the head tuple of the Queue, and find
that 18 and 14 also matches with the new 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 ; turn
to step 2O for 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 .

(h) Read the new tuple, i.e., 7, of table R, and compare it
with 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 . Find that they are unmatched, and thus
the comparison for this 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 is finished. Then, the
join matches listed as {(𝑟4, 𝑠3), (𝑟2, 𝑠3)} are exported.

(i)-(k) Read the next tuple, i.e., 12, of table S as 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 .
After the execution of steps 1O- 2O, we pop 18 out of and
insert 7 into the Queue, and export the join matches as
{(𝑟2, 𝑠4), (𝑟5, 𝑠4)}.

(l) Read the next tuple, i.e., 7, of table S as 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 , and
compare it with the head of the Queue (i.e., 14); find that
they are unmatched, and pop the 14 out of the Queue.

(m) Repeat the comparison between 𝑡𝑢𝑝𝑙𝑒𝑐𝑢𝑟 and the head
of the Queue (i.e., 7), and find that they are matched.

(n) Now that no more tuples remain to be compared, export
the last join match as {(𝑟5, 𝑠1)}, and finish the whole
merge procedure.

Finally, eight pairs that match the join condition are ex-
ported. The theoretical time complexity of the range-merge
algorithm is

XUE et al.: HIGH-PARALLELISM AND PIPELINED ARCHITECTURE FOR ACCELERATING SORT-MERGE JOIN ON FPGA
7

𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑂 (𝑁𝑅 + 𝑁𝑆) +𝑂𝑒𝑥𝑝𝑜𝑟𝑡 𝑚𝑎𝑡𝑐ℎ . (2)

The first part, 𝑂 (𝑁𝑅 + 𝑁𝑆), can be obtained easily based
on calculating the amounts of time for reading the tuples,
because the tuples of table S are traversed once, whereas
each tuple of table R is inserted into or popped out of the
Queue only once at most. On the other hand, the second
part, i.e., the match-exporting time complexity, depends on
the number of results per match, and can be expressed as
follows:

𝑂𝑒𝑥𝑝𝑜𝑟𝑡 𝑚𝑎𝑡𝑐ℎ =
∑︁

𝑂 (𝑛𝑟 × 𝑛𝑠). (3)

Note that this method performs better in band-range
merges, i.e., where the match condition is that the differ-
ence/distance between two elements should be smaller than
a threshold. In problems involving matches where one el-
ement is smaller/bigger than or not equal to the other ele-
ment, the time complexity of range-merge will increase to
𝑂 (𝑁𝑅 × 𝑁𝑆) because the 𝑛𝑟 and 𝑛𝑠 for each matching will
approximate 𝑁𝑅 and 𝑁𝑆 , respectively.

5. Proposed hardware architecture

Because FPGA is good at realizing high-parallelism
and deep-pipelined work, we propose a new architecture
for accelerating the sort-merge join operation based on the
algorithms described in Section 4.

PARTITION

SORTER

STORAGE

Table R

PARTITION

SORTER

STORAGE

Table S

COMPARISON

Fig. 5: The proposed join architecture.

5.1 System Components

The join architecture, shown in Fig. 5, consists of
three components apart from storage, namely the partition,
sorter, and comparison components.

5.1.1 Partition Component

The partition component reads the data from data
sources and divides the data into several parts according to
user-defined coarse-grained partition rules, such as feature-
based partition methods, data-distribution-based partition
manners, and hash-based partition functions. A good parti-
tion component can help further accelerate the join operation

because it performs the preliminary filtering and reduces the
number of tuples that should be sorted and merged for each
part. Additionally, the parallelism of our architecture de-
pends on the partition component. More specifically, the
parallelism level is equal to the number of partition modules
in the partition component, and that number can be arbitrary.

5.1.2 Sorter Component

The sorter component consists of several top-K sorters,
each of which processes the data of one partition part cor-
respondingly after the partition component. Therefore, the
number of top-K sorters is equal to the number of partition
parts. After a thoroughgoing research of top-K sorter ar-
chitecture, we adopt the serial pipelined sorting architecture
proposed in [30] as the default for each top-K sorter com-
posed of K identical sorting cells. We also implement the
top-K sorter architecture proposed in [31] to demonstrate the
modular design of our architecture. Note that the selection
of the parameter K is a trade-off between resource utilization
and sort efficiency. A larger value for K denotes fewer repe-
titions of the rounds mentioned in Section 4.2 but requires a
higher logic usage.

5.1.3 Comparison Component

The comparison component is the last step in the pro-
cess and generates the final join match results. The sorted
tuple lists for the corresponding parts of the two tables (for
example, both the first parts of the two tables) are compared
and merged in one comparison module to find matches ac-
cording to the merge algorithms. Therefore, the number of
comparison modules is equal to the number of top-K sorters,
the same as for the partition modules.

Above all, the entire architecture we proposed is of a
modular design. The specific method for each component
can be selected and optimized according to the character-
istics of the tables waiting to be joined, to obtain better
performance in different application scenarios.

5.2 Join Process

The processing by the proposed architecture is fully
pipelined, and tuples go through the three aforementioned
components sequentially. Furthermore, the proposed al-
gorithm can be paralleled in arbitrary threads to improve
performance. Specifically, the tuples of two tables are par-
titioned and sorted simultaneously in parallel, followed by
comparisons between corresponding sorted parts to produce
the join matches.

Fig. 6 provides an example of the architecture for a
parallelism of three. The partition, sorter, and comparison
components are marked with yellow, green, and red rectan-
gular blocks, respectively. Because of the limitation in figure
size, we show only the detailed modules for the processing
of table R, which is indicated with a dashed line; the omitted
hardware design, for the processing of table S, is the same.

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 6: Example of the architecture when parallelism is three.

As described in Section 5.1, the partition component contin-
uously fetches tuples from the data sources and distributes
the tuples to their partition First In First Outs (FIFOs) ac-
cording to pre-defined partition rules. In this example, the
value of data in table R is shown in partition module. The
hash function is the value mod 3. After the partition, the
value in table R will be hashed into three different slots.
And that is also the evidence of partition FIFOs. Here, the
partition FIFOs are used to catch the tuples after the parti-
tion functions to resolve the time consumed on partitioning
and sorting inconsistency. Because there are three identi-
cal partition modules for each table, the central controller
will cyclically call the three partition modules to balance
the number of tuples for three partition branches. After the
partitioning, three multiplexers (MUXs) wait to collect the
tuples from the same parts and send them to the correspond-
ing top-K sorter. In this example, we can see there are two
14 in value list, they are divided into part1 and part2, but
they also get into slot2. That means they are both sent to
the MUX2. After the MUX, the top-k buffer will sort the
same FIFO from differnet parts. And the processing is from
14 to 14,14, and 14,14,11, finally. The top-K sorters yield
the sorted tuples to sort buffers for subsequent comparison
and output the remaining unsorted tuples to unsorted storage
for re-sorting. Here, sort buffers are where the tuples are
stored originally; we recycle the storage to store the sorted
and unsorted tuples. The sorted tuples in the sort buffers will
be merged with the corresponding sorted buffers of the other
table. The comparison and merging of two sort buffers can
start when they are both non-empty. Each comparison mod-
ule fetches tuples from corresponding paired sort buffers,
checks if they fulfill the join conditions, and outputs the join
matches. In addition to these, we use dual-port block RAMs
(BRAMs) for the storage to execute the operation of reading
and writing independently and ensure a pipelined workflow.

In comparison, it have different mode for equi-join and theta-
join. In equi-join comparison, the data only need to compare
with the corresponding part in table S. In theta-join part, the
data need to compare with all the parts in table S. The two
situations are shown in different arrows.

5.3 Complexity Analysis

5.3.1 Time Complexity

The time complexity of the proposed architecture con-
sists of three parts, which correspond precisely to the three
components.

For the partition component, it is easy to pipeline the
partition function, e.g., hash functions. Thus, the time com-
plexity of the partition component can be readily obtained
as 𝑂 (𝑁). Here, 𝑁 refers to the total number of data points
for each table which means 𝑁 = 𝑁𝑅 + 𝑁𝑆 .

On the other hand, for the sort component, as described
in [30], if 𝑁 > 𝐾 + 1, the top-K sorter can produce the
top K elements of the input sequence after 𝑁 + 𝐾 clock
cycles, and if 𝑁 ≤ 𝐾 + 1, the sorted elements will come out
after a constant delay of 2𝐾 clock cycles. Thus, the time
complexity of sorting out the top K elements in N tuples
is 𝑂 (𝑁), leading to a total time complexity for our sort
component of 𝑂 (𝑁 × 𝑁

𝐾
), because of the multiple execution

times (i.e., ⌈ 𝑁
𝐾
⌉) of the top-K sorter.

Based on the analysis presented in Section 4.3.1 and
4.3.2, the time complexity of comparison in equi-merge and
range-merge both approximate 𝑂 (𝑁) +𝑂𝑒𝑥𝑝𝑜𝑟𝑡 𝑚𝑎𝑡𝑐ℎ.

However, the architecture is fully pipelined, and thus the
time complexity should be the maximum among all compo-
nents, which can be expressed as

XUE et al.: HIGH-PARALLELISM AND PIPELINED ARCHITECTURE FOR ACCELERATING SORT-MERGE JOIN ON FPGA
9

𝑂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = max (𝑂 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛, 𝑂𝑠𝑜𝑟𝑡𝑒𝑟 , 𝑂𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛)

= max (𝑂 (𝑁), 𝑂 (𝑁
2

𝐾
), 𝑂 (𝑁) +𝑂𝑒𝑥𝑝𝑜𝑟𝑡 𝑚𝑎𝑡𝑐ℎ)

= 𝑂 (𝑁
2

𝐾
).

(4)
If there are 𝑃 parallelisms taken into account, the total num-
ber of each branch should be 𝑁

𝑃
. Thus, the time complexity

of the parallel architecture should be similar to 𝑂 (𝑁2

𝑃2×𝐾).

5.3.2 Space Complexity

The space complexity (i.e., resource utilization com-
plexity) of the proposed architecture is much easier to ana-
lyze. The main part of the logical resource is used on the
sort component, of which the space complexity is𝑂 (𝑃×𝐾).
Because the original storage of tables can be recycled dur-
ing sorting, and because no additional storage is needed,
the space complexity of storage is also 𝑂 (𝑁), which is not
mentioned later, like other sort-merge join approaches.

6. Experimental results and discussion

This section discusses the complexity analysis of the
proposed architecture, and the performance evaluation in
terms of throughput and resource utilization. Further, the
proposed method is compared with existing join approaches.

6.1 Experimental Setup

Our design was implemented on a Xilinx Virtex-7
FPGA using Xilinx Vivado 2019.2. We use v7 690t as
the experiment platform, and the detail model is xc7vx690t,
in particular. A {𝑟𝑖𝑑, 𝑘𝑒𝑦} generator was used; the 𝑟𝑖𝑑 and
𝑘𝑒𝑦 were set to integers for simplification, and the 𝑘𝑒𝑦 was
set to 32 bits wide. The generator is used in both basis and
compared tables. Tuples were streamed into the architecture
one by one. Table sizes were varied from 4𝐾 to 64𝐾 for
performance evaluation. A CRC hash function was used as
the partition method. The depths of the partition FIFOs,
which are used as caches, were set to 16. We use the result
of hash functions to make the partition, that means the same
value will be divide into the same partition. We realized
and experimented with two sorting architectures to demon-
strate the modular design, as described in Section 5.1. On
the other hand, the sorter component adopted the sorting
architecture proposed in [30] as its default and obtained the
performance correspondingly, unless otherwise stated. Be-
cause there is a trade-off in setting the 𝐾-values, we tested
different𝐾-values, i.e., 32, 64, 128, 256, and 512, for the sort
component. With regard to the comparison component, we
implemented two merge methods, namely equi- and range-
merges, yielding matches for equi- and 𝜃-joins, respectively.
For 𝜃-join, we assumed a match condition such that the ab-
solute value of the difference between the 𝑘𝑒𝑦s of two tuples
is smaller than 5, as has been demonstrated previously in

Section 4.3.2. However, regardless, the throughput of our
architecture is calculated based on the equi-join without ad-
ditional statement. Moreover, we constructed parallelisms
𝑃=2, 4, 8 for comparison and observed the performance
improvement. We conducted these experiments under the
condition that the two tables have the same size, for simpli-
fication and fair comparison (i.e., 𝑁𝑅=𝑁𝑆=𝑁). Meanwhile,
we measured the performance based on how many millions
of tuples can be processed in one second by dividing the
total number of tuples by the total time required to obtain the
average throughput.

4K 8K 16K 32K 64K
0

2

4

6

8

Input table size

Pr
oc

es
si

ng
tim

e(
𝑚
𝑠
)

(a) Total processing time.

𝑃 = 2 𝑃 = 4 𝑃 = 8

4K 8K 16K 32K 64K
0

500

1,000

Inpute table size

m
ill

io
n-

tu
pl

es
/s

(b) Throughput.

2 4 8
0

2

4

6

8

Parallelism

Pr
oc

es
si

ng
tim

e(
𝑚
𝑠
)

(c) Total Processing time.

𝑆 = 4𝐾 𝑆 = 8𝐾 𝑆 = 16𝐾
𝑆 = 32𝐾 𝑆 = 64𝐾

2 4 8

0

500

1,000

Parallelism

m
ill

io
n-

tu
pl

es
/s

(d) Throughput.

Fig. 7: Performance of different parallelisms with various
input table sizes when 𝐾 = 64.

6.2 Results for Different Parallelisms

In this part of the study, we varied the parallelism to
check for performance improvement from increasing the
parallelism level. Because the length of each tuple is 96
bits, we can use million-tuple per second as the unit. Fig.
7a shows the total processing times for various parallelisms
with respect to input table sizes when 𝐾-value = 64, whereas
Fig. 7b shows the corresponding throughputs. For compar-
ison, Fig. 7c and Fig. 7d visualize the same performance,
except that the horizontal axis denotes the parallelism, to
demonstrate the performance improvement with respect to
parallelism more intuitively. We can observe that when the
processing tables are of the same size, then as the parallelism
doubles while the 𝐾-value is kept unchanged, the total pro-
cessing time is reduced to nearly a quarter, and approaches

10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

32 64 128 256
0

1

2

3

4

𝐾-value

Pr
oc

es
si

ng
tim

e(
𝑚
𝑠
)

(a) Total processing time.

𝑆 = 4𝐾 𝑆 = 8𝐾 𝑆 = 16𝐾
𝑆 = 32𝐾 𝑆 = 64𝐾

32 64 128 256
0

200

400

600

𝐾-value
m

ill
io

n-
tu

pl
es

/s

(b) Throughput.

4K 8K 16K 32K 64K
0

1

2

3

4

Input table size

Pr
oc

es
si

ng
tim

e(
𝑚
𝑠
)

(c) Total processing time.

𝐾 = 32 𝐾 = 64 𝐾 = 128 𝐾 = 256

4K 8K 16K 32K 64K
0

200

400

600

Input table size

m
ill

io
n-

tu
pl

es
/s

(d) Throughput.

Fig. 8: Performance of different 𝐾-values with various input
table sizes when 𝑃 = 4.

4K 8K 16K 32K 64K
0

50

100

Input table size

Pr
oc

es
si

ng
tim

e(
𝑚
𝑠
)

(a) Total processing time.

sort from [31]

0

0.5

1

1.5

2

sort from [30]

4K 8K 16K 32K 64K
0

2

4

6

8

10

Input table size

m
ill

io
n-

tu
pl

es
/s

(b) Throughput.

0

100

200

300

400

Fig. 9: Performance of different sort architecture which has
been proposed in [30] and [31] with various input table sizes.

a quarter as the table size grows. Correspondingly, the im-
provements in throughput are similar, i.e., as the parallelism
doubles while the 𝐾-value is kept unchanged, the throughput
quadruples. Moreover, based on the first two subfigures in
Fig. 7, when the parallelism is kept unchanged, the pro-
cessing time nearly quadruples as the input table size grows
doubly, while the throughput is reduced to half. The results
can be expressed as

𝑡𝑖𝑚𝑒 ∼ 𝑁
2

𝑃2 ,

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∼ 𝑁𝑃2.

(5)

These formulas are consistent with the time complexity an-
alyzed in Section 5.3, i.e., 𝑂 (𝑁2

𝑃2×𝐾).

4K 8K 16K 32K 64K

0

0.5

1

1.5

2

Input table size

Pr
oc

es
si

ng
tim

e(
𝑚
𝑠
)

(a) Total processing time.

equi-merge range-merge

4K 8K 16K 32K 64K
0

200

400

600

Input table size

m
ill

io
n-

tu
pl

es
/s

(b) Throughput.

Fig. 10: Performance of different merge methods with vari-
ous input table sizes when 𝑃 = 4 and 𝐾 = 64.

4K 8K 16K 32K 64K
0

1

2

3

4

Inpute table size

Pr
oc

es
si

ng
tim

e(
𝑚
𝑠
)

(a) Total processing time.

𝑃 = 2, 𝐾 = 128 𝑃 = 4, 𝐾 = 64 𝑃 = 8, 𝐾 = 32

4K 8K 16K 32K 64K
0

500

1,000

Inpute table size

m
ill

io
n-

tu
pl

es
/s

(b) Throughput.

Fig. 11: Performance of different combination of parall-
lelism and 𝐾-values with various input table sizes.

Table 2: Resource utilization and processing time consump-
tion for each component.

Config Component LUT FF Time(s)

𝑃 = 2, 𝐾 = 128

Partition 269 62 15.55

Sorter 35795 62043 244.38

Merge 1990 416 229.70

Total 38054 62521 244.40

𝑃 = 4, 𝐾 = 64

Partition 612 62 7.67

Sorter 38662 65262 123.67

Merge 3979 832 116.14

Total 43253 66156 123.88

𝑃 = 8, 𝐾 = 32

Partition 1146 62 3.88

Sorter 48198 76226 67.50

Merge 7961 1664 53.17

Total 57305 77952 67.69

6.3 Results for Different Sorters

First, we adjusted the setting of the 𝐾-value and ob-
served the performance change trends therewith. Fig. 8
shows the performance for different 𝐾-values with respect

XUE et al.: HIGH-PARALLELISM AND PIPELINED ARCHITECTURE FOR ACCELERATING SORT-MERGE JOIN ON FPGA
11

Table 3: Comparison between the proposed method and previous methods.

Method Platform
Frequency

LUT FF Slice1 BRAM Power2 Throughput Ratio13
Ratio24

(MHz) (KB) (W) (million-tuples/s) (×10−3)
[32], NLJ Xilinx Virtex-6 238 1362 - 341 203 0.343 0.12 0.35 0.35
[32], AHJ Xilinx Virtex-6 200 1200 - 300 135 0.283 1.8 6.00 6.36
[32], SHJ Xilinx Virtex-6 167 1509 - 377 203 0.295 1.25 3.32 4.24

[20] Xilinx Zynq 100 42609 27838 10653 104 0.397 85 7.98 214.11
[26], 𝑇5= 4 Xilinx Zynq 349 1706 2238 427 186 0.599 14.9 34.89 24.87
[26], 𝑇 = 8 Xilinx Zynq 261 3744 4842 936 208 0.774 28.9 30.88 37.34

[26], 𝑇 = 16 Xilinx Zynq 261 7820 10050 1955 250 1.302 62.4 31.92 47.93
[33], 𝐾 = 128 Xilinx Virtex-7 276 18176 7296 4544 - 0.514 38.8 8.54 75.51
[33], 𝐾 = 256 Xilinx Virtex-7 266 36352 14592 9088 - 0.746 65.6 7.22 87.91

[33], 𝐾 = 1024 Xilinx Virtex-7 248 145408 58368 36352 - 2.028 162.1 4.46 79.92
Ours, 𝑃 = 2, 𝐾 = 128 Xilinx Virtex-7 300 38054 62521 9514 - 1.213 67.1 7.05 55.32
Ours, 𝑃 = 4, 𝐾 = 64 Xilinx Virtex-7 300 43253 66156 10814 - 1.315 132.3 12.23 100.61
Ours, 𝑃 = 8, 𝐾 = 32 Xilinx Virtex-7 300 57305 77952 14327 - 1.576 242.1 16.90 153.62

1 It was assumed that slices are fully used as LUTs and registers.
2 Power was estimated using the Xilinx Power Estimator based on the platform, clock frequency, and resource consumption provided in the table.
3 Ratio1 refers to the ratio of throughput to slices.
4 Ratio2 refers to the ratio of throughput to power.
5 The number of binary-tree model in parallel tree-based join architecture.

to various input table sizes while the parallelism is set to
4. Specifically, Fig. 8a illustrates the processing times for
different 𝐾-value settings, whereas Fig. 8b shows the corre-
sponding throughputs. It can be concluded that the process-
ing time for the same table is reduced to half as the 𝐾-value
is doubled, and thus the throughput is doubled accordingly.
Fig. 8c shows the processing times for different input table
sizes for each 𝐾-value, whereas Fig. 8d shows the corre-
sponding throughputs. Similar to the results shown in the
previous subsection, when the 𝐾-value is kept unchanged,
the processing time nearly quadruples as the input table size
grows doubly, while the throughput is reduced to half. Thus,
the overall inference can be expressed as follows:

𝑡𝑖𝑚𝑒 ∼ 𝑁
2

𝐾
,

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∼ 𝑁𝐾.
(6)

Eq. 6 further proves the theoretical time complexity
𝑂 (𝑁2

𝑃2×𝐾).
In addition, to verify the design criteria for the modular-

ity, we also implemented the top-K sorter proposed in [31]
and tested its performance. Fig. 9 shows a performance
comparison of the two different sort architectures. Note that
the two curves in the same plot use the opposite sides of the
graph for their respective ordinates. The difference in value
is caused by differences in the sort architecture, which led to
different realized frequencies for the hardware, i.e., 300 MHz
and 6.67 MHz, respectively, for the two aforementioned sort
architectures. As shown in the figure, if the subtle numer-
ical differences could be ignored, these two curves will be
almost identical. This phenomenon indicates that any top-
K architecture can replace the detailed implementation of
the sorter component. Also, the performance of the top-K
sorter architecture will greatly influence the performance of

the entire system because the sorter component is the most
time-consuming part of the architecture.

6.4 Results for Different Merge Methods

In this part of the study, we implemented the two pro-
posed merge algorithms and tested their performance in dif-
ferent join scenarios. Fig. 10 shows the performance of
equi-merge and range-merge in terms of processing time and
throughput, respectively. As shown in Fig. 10a, the change
pattern in the processing time of range-merge for 𝜃-join is
similar to that of equi-merge for equi-join. Furthermore, as
the input table size gets larger, the gaps between the process-
ing times in Fig. 10a and between the throughputs shown in
Fig. 10b for the two merge methods become smaller. This
is because, as the tables grow, the bottleneck is transferred
from merging to sorting, i.e., when big tables are processed,
the cost of merging can be covered by that of sorting.

6.5 Utilization and Performance Comparisons

Based on the observation that the performance increases
as the parallelism and/or 𝐾-value is increased, combined
with the fact that the resource utilization also increases as
the parallelism and/or 𝐾-value is increased, there should be
a trade-off between resource utilization and hardware perfor-
mance. Therefore, in this section, we tested the performance
of different combinations of parallelism and 𝐾-values such
that the product of these two parameters is kept unchanged, to
be able to observe the real benefits of increasing parallelism.
Based on the results shown in Fig. 11, we can conclude
that when the product of parallelism and 𝐾-value is kept
constant, the decrease in processing time and the increase
in throughput equally becomes nearly close to a factor of 𝑃.

12
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Similarly, this conclusion can be derived from the theoretical
time complexity 𝑂 (𝑁 2

𝑃2×𝐾). We list the resource utilization
and time consumed for each component in Table 2. As shown
in Table 2, the sorter component is always the most dominant
part in terms of complexity, whereas the merge component
is the second, because it needs to wait for the sorting results
in order to perform the merging.

Table 3 shows a detailed comparison of the proposed
method and several state-of-the-art methods for FPGA-based
join accelerators. To ensure fair comparisons, we present the
throughputs of these methods for a table size of 16𝐾 . The
ratio of throughput to slices and that to power are considered
as indicators of effective resource utilization. As mentioned
before, sort-merge-based join architectures do not require
additional storage, leading to zero BRAM usage. From Table
3, it can be observed that our design achieved a throughput of
242.1 million tuples per second when 𝑃 = 8, 𝐾 = 32, which
is the highest among all evaluated methods. The ratio1 and
ratio2 for the proposed method are the second-highest. It
also takes a great trade-off between power consumption and
throughput, although the power consumption is larger than
previous works. For comparison, the researchers in [32]
implemented different join algorithms in large semantic web
databases and exhibited the lowest throughput with the least
resource utilization. The approach of [20] operated only the
sort phase on FPGA with the help of merging on CPU, and
thus obtained the highest ratio of throughput to power. The
researchers in [33] also used the top-K sorter instead of full
sorting to improve the performance of their method; however,
unlike in our method, their proposed architecture cannot
benefit from parallelism. The approach of [26] obtained the
highest ratio of throughput to slices, but the performance is
not stable enough for the skewed input data.

7. Conclusion

This paper presents a novel architecture that is highly
paralleled and deeply pipelined to accelerate the sort-merge
join operation used in database systems. Unlike traditional
sort-merge algorithms, we use a top-K sorter to reduce re-
source consumption and achieve synchronization with the
merge phase. For the merge phase, we propose two compar-
ison units compatible with different types of join conditions
and realize a general join operation accelerator. The pro-
posed architecture was shown to provide high throughput and
superior resource utilization efficiency. Furthermore, the ar-
chitecture is of a modular design, which can be tailored as
needed, thereby allowing performance enhancement in spe-
cific scenarios after targeted adjustment or even replacement.

Acknowledgement

This paper has been supported by the Fundamental Re-
search Funds for the Provincial Universities of Zhejiang un-
der Grant GK219909299001-22.

References

[1] P. Papaphilippou and W. Luk, “Accelerating database systems using
fpgas: A survey,” in 2018 28th International Conference on Field
Programmable Logic and Applications (FPL), pp. 125–1255, IEEE,
2018.

[2] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
et al., “A reconfigurable fabric for accelerating large-scale datacen-
ter services,” in 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), pp. 13–24, IEEE, 2014.

[3] I. Koumarelas, A. Naskos, and A. Gounaris, “Flexible partitioning
for selective binary theta-joins in a massively parallel setting,” Dis-
tributed and Parallel Databases, vol. 36, no. 2, pp. 301–337, 2018.

[4] H. Wang, N. Li, Z. Wang, and J. Li, “Gpu-based efficient join algo-
rithms on hadoop,” The Journal of Supercomputing, vol. 77, no. 1,
pp. 292–321, 2021.

[5] H. Roh, M. Shin, W. Jung, and S. Park, “Advanced block nested loop
join for extending ssd lifetime,” IEEE Transactions on Knowledge
and Data Engineering, vol. 29, no. 4, pp. 743–756, 2017.

[6] A. Nguyen, M. Edahiro, and S. Kato, “Gpu-accelerated voltdb: A
case for indexed nested loop join,” in 2018 International Conference
on High Performance Computing & Simulation (HPCS), pp. 204–
212, IEEE, 2018.

[7] W.-Q. Wu, M.-T. Xue, Q.-J. Xing, and F. Yu, “High-parallelism
hash-merge architecture for accelerating join operation on fpga,”
IEEE Transactions on Circuits and Systems II: Express Briefs, 2021.

[8] Z. Zhou, C. Yu, S. Nutanong, Y. Cui, C. Fu, and C. J. Xue, “A
hardware-accelerated solution for hierarchical index-based merge-
join,” IEEE Transactions on Knowledge and Data Engineering,
vol. 31, no. 1, pp. 91–104, 2018.

[9] J. Fang, Y. T. Mulder, J. Hidders, J. Lee, and H. P. Hofstee, “In-
memory database acceleration on fpgas: a survey,” The VLDB Jour-
nal, vol. 29, no. 1, pp. 33–59, 2020.

[10] X. Sun, J. Yu, Z. Zhou, and C. J. Xue, “Fpga-based compaction
engine for accelerating lsm-tree key-value stores,” in 2020 IEEE 36th
International Conference on Data Engineering (ICDE), pp. 1261–
1272, IEEE, 2020.

[11] L. Woods, Z. István, and G. Alonso, “Ibex: An intelligent storage
engine with support for advanced sql offloading,” Proceedings of the
VLDB Endowment, vol. 7, no. 11, pp. 963–974, 2014.

[12] Z. Wang, J. Paul, H. Y. Cheah, B. He, and W. Zhang, “Relational
query processing on opencl-based fpgas,” in 2016 26th International
Conference on Field Programmable Logic and Applications (FPL),
pp. 1–10, IEEE, 2016.

[13] D. Li, L. Huang, T. Gao, Y. Feng, A. Tavares, and K. Wang, “An
extended nonstrict partially ordered set-based configurable linear
sorter on fpgas,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 5, pp. 1031–1044, 2020.

[14] D. Li, R. Du, Z. Liu, T. Yang, and B. Cui, “Multi-copy cuckoo
hashing,” in 2019 IEEE 35th International Conference on Data En-
gineering (ICDE), pp. 1226–1237, IEEE, 2019.

[15] J. Zhan, W. Jiang, Y. Li, J. Wu, J. Zhu, and J. Yu, “Accelerating
queries of big data systems by storage-side cpu-fpga co-design,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 7, pp. 2128–2141, 2022.

[16] Ç. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu, “Main-memory
hash joins on modern processor architectures,” IEEE Transactions
on Knowledge and Data Engineering, vol. 27, no. 7, pp. 1754–1766,
2014.

[17] K. Huang, “Multi-way hash join based on fpgas,” 2018.
[18] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu, “Multi-core,

main-memory joins: Sort vs. hash revisited,” Proceedings of the
VLDB Endowment, vol. 7, no. 1, pp. 85–96, 2013.

[19] J. Paul, B. He, S. Lu, and C. T. Lau, “Revisiting hash join on graphics
processors: a decade later,” Distributed and Parallel Databases,

XUE et al.: HIGH-PARALLELISM AND PIPELINED ARCHITECTURE FOR ACCELERATING SORT-MERGE JOIN ON FPGA
13

vol. 38, no. 4, pp. 771–793, 2020.
[20] R. Chen and V. K. Prasanna, “Accelerating equi-join on a cpu-fpga

heterogeneous platform,” in 2016 IEEE 24th Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 212–219, IEEE, 2016.

[21] P. Papaphilippou, H. Pirk, and W. Luk, “Accelerating the merge phase
of sort-merge join,” in 2019 29th International Conference on Field
Programmable Logic and Applications (FPL), pp. 100–105, IEEE,
2019.

[22] R. Rui and Y.-C. Tu, “Fast equi-join algorithms on gpus: Design and
implementation,” in Proceedings of the 29th international conference
on scientific and statistical database management, pp. 1–12, 2017.

[23] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and
A. Ailamaki, “Hardware-conscious hash-joins on gpus,” in 2019
IEEE 35th International Conference on Data Engineering (ICDE),
pp. 698–709, IEEE, 2019.

[24] L. Qian, Z. Qu, M. Cai, B. Ye, X. Wang, J. Wu, W. Duan, M. Zhao,
and Q. Lin, “Fastcache: A write-optimized edge storage system via
concurrent merging cache for iot applications,” Journal of Systems
Architecture, vol. 131, p. 102718, 2022.

[25] T. I. Papon, J. Hyoung Mun, S. Roozkhosh, D. Hoornaert,
A. Sanaullah, U. Drepper, R. Mancuso, and M. Athanassoulis, “Re-
lational fabric: Transparent data transformation,” in 2023 IEEE 39th
International Conference on Data Engineering (ICDE), pp. 3688–
3698, 2023.

[26] H. Zhang, B. Zhao, W.-J. Li, Z.-G. Ma, and F. Yu, “Resource-efficient
parallel tree-based join architecture on fpga,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 66, no. 1, pp. 111–115,
2018.

[27] A. Okcan and M. Riedewald, “Processing theta-joins using mapre-
duce,” in Proceedings of the 2011 ACM SIGMOD International Con-
ference on Management of data, pp. 949–960, 2011.

[28] G. Li, J. He, D. Deng, and J. Li, “Efficient similarity join and search
on multi-attribute data,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pp. 1137–1151,
2015.

[29] Z. Khayyat, W. Lucia, M. Singh, M. Ouzzani, P. Papotti, J.-A.
Quiané-Ruiz, N. Tang, and P. Kalnis, “Fast and scalable inequal-
ity joins,” The VLDB Journal, vol. 26, no. 1, pp. 125–150, 2017.

[30] T. Chen, W. Li, F. Yu, and Q. Xing, “Modular serial pipelined sorting
architecture for continuous variable-length sequences with a very
simple control strategy,” IEICE TRANSACTIONS on Fundamentals
of Electronics, Communications and Computer Sciences, vol. 100,
no. 4, pp. 1074–1078, 2017.

[31] S. Dong, X. Wang, and X. Wang, “A novel high-speed parallel scheme
for data sorting algorithm based on fpga,” in 2009 2nd International
Congress on Image and Signal Processing, pp. 1–4, 2009.

[32] S. Werner, S. Groppe, V. Linnemann, and T. Pionteck, “Hardware-
accelerated join processing in large semantic web databases with
fpgas,” in 2013 International Conference on High Performance Com-
puting & Simulation (HPCS), pp. 131–138, IEEE, 2013.

[33] W. Chen, W. Li, and F. Yu, “Modular pipeline architecture for accel-
erating join operation in rdbms,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 67, no. 11, pp. 2662–2666, 2020.

Meiting Xue received the PhD degree in
instrument science and technology from Zhejiang University,
China, in 2020. She is an instructor with the Department
of Cyberspace, Hangzhou Dianzi University. Her research
interests include database acceleration embedded computer
systems and data security governance.

Wenqi Wu received the B.S. degree from
the College of Biomedical Engineering and Instrument Sci-
ence, Zhejiang University, in 2017, where she is currently
pursuing the Ph.D. degree. Her research interests include
machine learning and novel acceleration architecture on
hardware, especially for biomedical data processing.

Jinfeng Luo is pursuing the Ph.D. degree
from the College of Biomedical Engineering and Instrument
Science, Zhejiang University. His interests include hard-
ware acceleration, network switching technology, network
security technology, and digital signal processing.

14
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Yixuan Zhang received the B.S. degree
from the Department of Cyberspace, Hangzhou Dianzi Uni-
versity, in 2017, and he is currently working toward the
master degree in the School of Cyber Security, University of
Chinese Academy of Sciences, Beijing, China. His research
interests include approximate membership queries and net-
work traffic identification.

Bei Zhao received the B.S. degree in elec-
trical engineering, and the Ph.D. degree in instrument sci-
ence and technology from Zhejiang University, Hangzhou,
China, in 2000 and 2009, respectively. Currently, he is
working as a lecturer with the School of Computer Science
and Technology, Hangzhou Dianzi University, China. His
research interests include wireless sensor networks, mobile
computing, high performance embedded computing, digital
signal processing and related aspects.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

