
DOI:10.1587/transfun.2023EAP1137

Publicized:2024/07/23

This advance publication article will be replaced by
the finalized version after proofreading.

1

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers

PAPER

Real-time Implementation of Joint Domain Localised Algorithm for

High Frequency Surface Wave Radar using GPU
Bowen ZHANG†, Chang ZHANG††, Nonmembers, Di YAO†††, Member, and Xin ZHANG†*a), Nonmember

SUMMARY The performance of target detection and tracking is

primarily limited by ionospheric interference in High Frequency Surface

Wave Radar (HFSWR). Joint Domain Localised (JDL) has been proved to

be an effective algorithm for ionospheric clutter suppression in HFSWR.

However, the implementation of JDL in the traditional CPU platform

cannot afford the real-time requirement in HFSWR. With the help of the

tremendous parallel computational horsepower in GPU, in this paper we

investigate the real-time implementation of JDL algorithm for HFSWR

using Graphics Processing Unit (GPU). We also perform a comparative

analysis in terms of the performance using the CPU-based implementation

and the GPU-based implementation. Experimental result shows that the

GPU-based implementation accelerates the computation by over 24.72

times as compared to the CPU-based implementation which meets the real-

time requirement of HFSWR.

key words: HFSWR, ionospheric clutter, JDL, GPU

1. Introduction

Generally, High Frequency Surface Wave Radar (HFSWR)

transmits the high frequency band (3-30MHz)

electromagnetic energy into a specific volume in space to

search for targets, such as ships and aircrafts [1]-[3]. The

target echoes data are then transmitted to the signal

processing subsystem to extract target information such as

range, velocity, angular position, and other target identifying

characteristics [4]. Usually, the performance of target

detection and tracking in HFSWR is primarily limited by

ionospheric interference [5]-[7]. Ionospheric interference is

characterized by a high degree of nonhomogeneity and

nonstationarity, which makes its suppression difficult using

conventional processing techniques.

Space-time Adaptive Processing (STAP) has been

proved to be an efficient adaptive clutter suppressed

algorithm which has enjoyed great success in HFSWR [8],

[9]. Real-time implementation of STAP is considered

impossible, as the computational cost of inverting a

covariance matrix is considered too expensive [9]. Joint

Domain Localised (JDL) algorithm which is a kind of partial

STAP algorithm has been proved to be an effective clutter

suppressed algorithm in HFSWR especially for ionospheric

interference [10], [11]. Comparing with STAP, JDL can

reduce the computing load quite a lot by transforming the

huge channel-pulse dimension to the concerned angle-

Doppler frequency domain [12]. However, HFSWR is a

long distance detecting and high Doppler frequency

resolution system which means the concerned region

contains hundreds to thousands Doppler frequency units and

hundreds range units. Combined with tens angle units, a

huge three-dimension cube is organized. For each unit in this

huge cube, JDL have to execute one time. In this case, the

computing load for executing the whole cube for JDL is still

quite heavy.

Originally, the Graphics Processing Unit (GPU) is a

specialized circuit designed to accelerate computation for

building and manipulating images. With CUDA which is a

parallel computing and programming model developed by

NVIDIA in 2006 [13], developers were able to dramatically

speed up computing applications by harnessing the power of

GPU. Hence, GPU has become a significant compute engine

in the general computing, such as signal processing [14]-

[16], computer vision and pattern recognition [17]-[19],

machine learning [20]-[22] and data simulation [23]-[25]. A

post-Doppler STAP extended factored algorithm (EFA) with

a block training approach to estimate the required

covariance matrices and through solving the linear system to

achieve near-peak utilization using the compute unified

device architecture (CUDA) framework GPU based

implementation provided by NVIDIA [26].

In this paper, we investigate the real-time

implementation of JDL algorithm for HFSWR. Owing to the

implementation of JDL in the traditional CPU platform

cannot afford the real-time requirement in HFSWR.

Therefore, our team with the help of the tremendous parallel

computational horsepower in GPU, we investigate the real-

time implementation of JDL algorithm for HFSWR using

GPU as specific novelty of the research. The remainder of

this paper is organized as follows. Section 2 presents the JDL

algorithm for HFSWR. Section 3 describes our real-time

implementation of JDL algorithm using GPU in detail.

Section 4 provides experimental results of our approach and

evaluates its effectiveness. Finally, we summarize our work

and make conclusion in Section 5. The JDL algorithm for

HFSWR using GPU was completed together by Bowen

ZHANG and Chang ZHANG. Di YAO completed the

implementation and analysis of the CPU based JDL

algorithm, while Xin ZHANG complete the algorithm

experimental results. This paper was jointly written by the

 † The authors are Dept. of Electronic and Information
Engineering, Harbin Institute of Technology, Harbin,
Heilongjiang 150001, China.

 †† The author is with Jiangsu Automation Research Institute
(JARI), Jiangsu, 222000, China.

 ††† The School of Computer Science and Engineering,
Northeastern University, Shenyang 110819, China.

 *Songjiang Laboratory, Harbin Institute of Technology,
Harbin 150001, China.
a)zhangxinhit@hit.edu.cn

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

2

four individuals mentioned above.

2. Joint Domain Localised (JDL) for HFSWR

2.1 Space-time data model for HFSWR

For HFSWR, the receiving array comprised of N isotropic,

point sensors separated by a distance of d , receiving an

incident plane wave, as shown in Fig. 1.

···
d

Normal Direction

Incident Plane Wave

 ：Element Spacing

：Azimuth Angle
d



 ：Receiving Antenna

 N

Fig. 1 Receiving array antenna of HFSWR

The reflected target echoes are collected and sampled at N

array channels and M successive pulses in a coherent

processing interval (CPI) for each range unit. For a given l-

th range bin, the space–time snapshot vector is defined

  1

1 2

T MN

l M C = X x x x (1)

where 1N

i C x is used to denote the spatial snapshot of data

corresponding to the i-th pulse repetition interval (PRI).

 By dividing each pulse repetition interval (PRI) into K

separate range bins, the corresponding space-time snapshots

are compiled into one  N M K data-cube, as shown in Fig.

2.

K range bins

Fig. 2 A 3-dimensional representation of a data-cube in JDL

The space–time snapshot vector lX is used to construct

the estimated covariance matrix R
H MN MN

l l C = R X X (2)

and the weight w for STAP is given as.
1−=w R v (3)

where 1MNC v is the space-time steering vector

corresponding to a target at azimuth angle t and Doppler

frequency tf . This space-time steering can be written as

follows.

 () ()t tf = v b a (4)

where represents the rronecker product of two vectors,

()ta is a space steering vector defined by

()
2 sin() (2)2 sin() (1)2 sin()

T=[1]
t t t

d d d
j π j π j N π

λ λ λe e e
t

  


−

a (5)

and ()tfb is a time steering vector defined by

() 2 (2)2 (1)2
=[1]

−t R t R t Rj π f f j π f f j M π f f T

tf e e eb (6)

where is wavelength and Rf is pulse repetition frequency

(PRF).

Real-time Implementation of STAP is considered impossible,

as the computation cost of inverting a MN MN

dimensional matrix, (3()O MN), is considered too expensive

for large values of M and N.

2.2 Joint Domain Localised (JDL)

JDL algorithm was first introduced by Wang and Cai[27].

By using a transformation matrix T, it can transform the

space-time signal vector lX from channel-pulse domain

data to the partial angle-Doppler frequency domain data lX ,

which is as follows

 H

l l= X T X (7)

and the corresponding transformed space-time steering

vector can be written as.
H= v T v (8)

 Usually we called the partial angle-Doppler frequency

domain as localised processing region (LPR). Adaptive

processing is restricted to the LRP. Fig. 3 shows a LPR

contains 3aη = angle units and 3dη = Doppler units

which with the center of Doppler frequency 0f , angle 0φ

and range gate k. So the transformation matrix T can be

written as

() () () () () ()1 0 1 1 0 1[, ,] , ,f f f φ φ φ− −=    T b b b a a a (9)

Angle unit LPR

Doppler unit

Fig. 3 An example of localised processing region

and the covariance matrix R in JDL is defined as

IEICE TRANS. ELEC Real-time Implementation of Joint Domain Localised Algorithm for High Frequency Surface Wave Radar using GPUTRON., VOL.XX-X, NO.X XXXX
XXXX
Real-time Implementation of Joint Domain Localised Algorithm for High Frequency Surface Wave Radar using GPU

1

0

1
a d a d

P
η η η ηH

l l C
P

−


= R X X (10)

where P is the number of weight training data samples

employed. To ensure the expectation of the ratio of the

adaptive SNIR to optimum SNIR is greater than 0.5, P

should satisfy 2 a dP η η . And l=k±2，k±3,…, k±(P/2+1)

with one range protected unit[9, 12]. Forming LPR

significantly reduced the number of unknowns while

remaining maximal gain against noise, that is from
MN MNC R to a d a dη η η η

C


R . The lower degrees of

freedom lead to a corresponding reduction in required

sample support as well as computational cost.

So the optimal weights can be expressed as
1−=w R v (11)

and the result of JDL algorithm is as follows

 H

l=y w X (12)

3. JDL Algorithm parallel Implementation

3.1 The Math rernel Library of CPU

The implementation process of JDL algorithm on CPU and

GPU is the same, but the difference is that GPU has stronger

computing power than CPU, and using GPU can greatly

improve the efficiency of engineering implementation. As

CPU does not provide the ability to make the cells

calculating parallelly. We had to loop the processing to

process the whole three-dimensional data-cube. By

simulating on the CPU and implementing the JDL algorithm

with the same batch of echo data as the GPU. And calculate

the average time cost of implementing the JDL algorithm on

the CPU.

The library functions that implement the JDL

algorithm have been widely used on CPU. The Intel® Math

rernel Library [29] includes the Basic Linear Algebra

Subprograms (BLAS) routines that provide standard

building blocks for performing basic vector and matrix

operations. The Level 1 BLAS perform scalar, vector and

vector-vector operations, the Level 2 BLAS perform matrix-

vector operations, and the Level 3 BLAS perform matrix-

matrix operations. By applying the matrix operation

functions involved in this library, the JDL algorithm can be

implemented on CPU, such as cblas_cgemm() perform

matrix-matrix multiplication operations, cblas_cgemv()

perform general matrix-vector multiplication operations,

cblas_chemv() perform the Hermitian matrix-vector

multiplication operations, etc.

3.2 NVIDIA CUDA Programming Model

CUDA is a general-purpose parallel computing platform and

programming model that leverages the parallel compute

engine in NVIDIA GPUs [13]. Usually, a modern NVIDIA

GPU hardware consists of thousands of elementary

processing units, called CUDA cores, divided in blocks

called Streaming Multiprocessors (SM). Each SM has a

constant memory and a shared memory, which have much

lower latency than the device global memory, as shown in

Fig. 4.

 In CUDA programming, the function that can be

executed in CUDA threads is called kernel. A kernel is

Fig. 4 The composition of GPU

defined using the __global__ declaration specifier. A kernel

can be executed by multiple equally-shaped thread blocks.

There is a limit to the number of threads per block, since all

threads of a block are expected to reside on the same SM and

must share the limited memory resources of that SM. In

principle, blocks are organized into a one-dimension, two-

dimensional, or three-dimensional grid of thread blocks as

illustrated by Fig. 5 Each block within the grid can also be

identified by a one-dimensional, two-dimensional, or three-

dimensional grid of threads. The number of the thread

blocks in a grid is usually dictated by the size of the data

being processed. The core of CUDA are three key

abstractions, that is a hierarchy of thread groups, shared

memories and barrier synchronization.

Fig. 5 Grid of thread blocks in CUDA

3.3 Implementation

As the limited global memory resources of one GPU card,

assuming a  N M K data-cube can be executed in one GPU

card, where N is the number of angle units, M is the number

of Doppler frequency units and K is the number of range

units. The transformed space-time signal vector Host_X is

formed by  N M K cells. As the LPR is formed by 3 angle

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

4

units and 3 Doppler units, in each cell, the input data is

formed by the extraction of adjacent Doppler frequency

units and adjacent angle units which formed a vector with

the size 9 1 in Eq. (7). The transformed steering vector

Host_V should also be prepared by Eq. (8).

Our scheme for implementing the JDL algorithm takes

the following steps in the code, as shown in Fig. 6.

Fig. 6 Parallel implementation of JDL algorithm in GPU

By transmitting Host_X and Host_V from the CPU memory

to the GPU global memory (line 1, 2), the implementation

begin. For step 1, a kernel function __global__ void

matrixMulXxhBatch() (line 3) is used to calculate  N M K

cells of matrix multiplication
H

i l l=R X X . The grid of

thread blocks for Step 1 is shown in Fig. 8. That is a two-

dimensional grid of threads in each block is identified by

dim3 thrd_xxh(9,90) and a one-dimensional grid of blocks

in this grid is identified by dim3 grid_xxh(Q, 1), where

10

N M K
Q

 
= . As shown in Fig. 7, in each block, we divide

the threads grid into 10 regions, each region is formed by 81

threads with the size of 9 9 which maps to one cell of
iR .

Fig. 7 Grid of thread blocks in Step 1

For step 2, a kernel function __global__ void

sumCovarianceMatrix() (line 6) is used to calculate Eq.

(10), as 3a dη η= = , in order to satisfy (10), we choose

18P = . The grid of thread blocks in step 2 is as follows,

dim3 thrd_sum(81,10) and dim3 grid_sum(
10

M K
, N),

shown in Fig. 8. In each block, we divide the threads grid

into 10 regions, each region is formed by 81 threads with the

size of 81 1 to calculate one cell of R . In this grid, we

divide the blocks into N regions, each region calculate the

M K cells of R in one angle unit.

Fig. 8 Grid of thread blocks in Step 2

For step 3, to calculate the inverse matrix of R , we use

cuBLAS API library [28] which is an implementation of

Basic Linear Algebra Subprograms (BLAS) on top of the

CUDA runtime. The cublas<t>getriBatched() function (line

8) performs the inversion of matrix
iR for i=0,

… ,batchSize-1. Prior to calling cublas<t>getriBatched(),

the matrix
iR must be factorized first by using the routine

cublas<t>getrfBatched() function (line 7). The

cublas<t>getrfBatched() function performs the LU

factorization of each
iR for i=0, … ,batchSize-1.

Following the LU factorization, cublas<t>getriBatched()

function uses forward and backward triangular solvers to

complete inversion of matrix
iR for i=0, … ,batchSize-1.

For step 4, a kernel function __global__ void

sumCovarianceMatrix() (line 10) is used to calculate the

 N M K cells of the optimal weights w . The grid of thread

blocks in step 4 is as follows, dim3 thrd_Rv(9,100) and dim3

grid_sum(
100

M K N 
, 1).

For step 5, a kernel function __global__ void

matrixMulWxBatch() (line 12) is used to calculate the result

of JDL algorithm. The grid of thread blocks in Step 5 is as

follows, dim3 thrd_Wx(1024,1) and dim3 grid_Wx(
1024

M K N 
,

1). By transmitting the result Device_Y from the GPU global

memory to the CPU memory Host_Y, the implementation of

JDL on GPU is accomplished.

For the implementation of JDL on GPU, there are three

key points as follows:

1) As the threads in kernel function are not

synchronized while they are running, the

cudaDeviceSynchronize() function should be used at the end

IEICE TRANS. ELEC Real-time Implementation of Joint Domain Localised Algorithm for High Frequency Surface Wave Radar using GPUTRON., VOL.XX-X, NO.X XXXX
XXXX
Real-time Implementation of Joint Domain Localised Algorithm for High Frequency Surface Wave Radar using GPU

of each kernel function for data synchronization.

2) Shared memory [29] is used in every kernel

functions (Step 1, 2, 4, 5). Because it is on-chip, shared

memory has much higher bandwidth and much lower

latency than global memory. By using shared memory, we

can get maximum performance of the JDL implementation.

3) The data for the JDL implementation are double-

precision. In step 3, only when the data are double-precision,

the rank of
iR is full rank, then we can get the correct result

of step 3. In this case, double-precision performance (FP64)

should be considered for the JDL implementation.

The JDL algorithm steps are shown in Fig. 6, but the

actual data needs to be cycled due to the limitation of GPU

memory capacity. The number of cycles is equal to the ratio

of the total amount of data to the memory capacity. The

computation process can be optimized according to different

computing graphics cards to improve the utilization rate of

memory and reduce the number of cycles. This is the special

feature of this paper that uses GPU computing.

3.4 Comparison between the JDL and existing method

In order to improve the target detection ability in ionospheric

clutter, a series of STAP algorithm have been proposed to

suppress clutter. The dimensionality reduction STAP

processing methods include JDL processing method, D3

processing method, and D3-JDL processing method [30].

The dimensionality reduction STAP reduces the degree of

freedom (DOF) of the system, thereby reducing the clutter

degree of freedom in the angle-Doppler region to be

processed, achieving the goal of reducing the demand for

training samples and reducing computational complexity.

D3 algorithm processed on the cell under test data only,

which does not statistical processing on the range domain.

Therefore, D3 has no requirement for the correlation of

range domain. D3 method obtains training data samples by

smoothing and removing target data information in the

Doppler domain and angle domain respectively. By seek the

optimal weight vector and constructs the space-time steering

to achieve the dimensionality reduction. Ideally, the Doppler

and angle information of the target can be completely

removed, but there may be mismatch issues due to sampling,

which will not have a significant impact on the processing

result. The JDL processing and the D3-JDL are both better

than the D3 processing in terms of both homogeneous clutter

and non-homogeneous clutter from the performance of

clutter suppression, whereas the D3 processing method is

more suitbale for suppressing non-homogeneous clutter [31].

For the comparison between JDL and other method,

there are two aspects as follows:

1) Clutter suppression performance. From the

perspective of clutter suppression, whether it is stationary or

nonstationary clutter, the JDL processing method and D3-

JDL method have good suppression effects, while the D3

processing method performs poorly in suppressing

stationary clutter, mainly highlighting its suppression

performance for nonstationary clutter.

2) Computational complexity. The JDL processing

method has the smallest computational complexity, while

the D3-JDL method has the largest computational

complexity.

 Overall, the JDL processing method is more suitable

for High Frequency Radar systems.

4. Experimental results

To evaluate the proposed method, the experiment was

conducted on a Linux 64bit machine (Centos 6.5) with 2x

Intel Xeon E5-2609V2 4 core @ 2.5GHz, 64GB DDR3

memory, a 512GB Crucial SSD and NVIDIA Tesla r40c

2880 cores. The FP64 of Tesla r40c is 1.42Tflops which

accommodate our needs regarding parallel computation.

The data-cube in this experiment is formed by 369 Doppler

frequency unit, 200 range units and 31 angle units. The LPR

in JDL is formed by 3 angle units and 3 Doppler frequency

units. So the transformed space-time signal vector Host_X is

formed by 29 367 200  cells and the transformed steering

vector Host_V is also formed by 29 367 200  cells.

4.1 CPU-based implementation of JDL

For the implementation of JDL on Intel E5-2609V2, we use

Intel Math rernel Library (MrL) which provides abundant

math libraries, such as BLAS and LAPACr linear algebra

routines, fast Fourier transforms, vectorized math functions

[32, 33]. As it does not provide the ability to make the cells

calculating parallelly. We had to loop the processing to

process the whole three-dimensional data-cube. Table 1

shows statistical properties of our CPU implementation of

JDL.

Table 1 Average time cost for JDL on Intel E5-2609V2
 Average time cost (ms)

H

i l l
=R X X

1

0
/

P

ii
P

−

=
= R R

1−
=w R v

H

l
y = w X

Each step 1.02×10-4 6.95×10-4 1.08×10-2 1.03×10-4

One cell 1.17×10-2

Whole cube 24904.6

4.2 GPU-based implementation of JDL

For NVIDIA Tesla r40c, it can make 367×200×6 cells

processed together. So only 5 loops are needed for the whole

data-cube. Before the implementation of JDL on GPU, we

had to initialize the GPU global memory, and then copy the

data from CPU memory to GPU global memory. When the

implementation of JDL is over, the data should also be

copied from GPU global memory to CPU memory. Thus, the

time cost of copying data should be considered. Table 2

shows statistical properties of our GPU implementation of

JDL.

Comparing with CPU platform, GPU provides parallel

processing more effectively with few loops. It was clear that

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

6

the GPU-based implementation can improve the speedup to

24.72 times, thus indicating that GPUs are very well suited

to JDL algorithm. Fig. 9 shows partial enlargement of the

range-Doppler maps (RDMaps) obtained in practical

HFSWR before and after JDL processing. And the Signal to

Clutter Ratio increased with the JDL method as shown in

Fig.9. As indicated in Fig. 9(a), the ionospheric interference

covers part of the RDMaps, the target in this area cannot be

detected. After JDL processing, the target can be detected

directly, as shown in Fig. 9(b). The results show that the

presented algorithm is effective. indicate

Table 2 Average time cost for JDL on Tesla r40c
 Average time cost (ms)

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

Copy data from

CPU to GPU
113.62 113.95 113.88 113.98 113.42

H

i l l
=R X X

2.23 2.20 1.99 2.00 1.99

1

0
/

P

ii
P

−

=
= R R

8.70 8.66 7.98 7.97 7.95

1−
R 66.62 65.48 65.20 65.03 65.55

w 8.46 8.49 8.49 8.50 8.48

H

l
y = w X

1.39 1.39 1.39 1.39 1.39

Copy data from

GPU to CPU
2.07 2.10 1.66 2.07 1.64

Whole cube 1007.31

The CPU has a large amount of memory, but the storage

space of the GPU is limited, it is necessary to use a cyclic

approach for data processing in GPU which contribute to the

significant differences in the definitions of tables and

columns between Table 1 and Table 2.

5. Conclusion

JDL has been proved to be an effective algorithm for

ionospheric clutter suppression for HFSWR. As the

computational cost of JDL is considered too expensive. In

HFSWR system, the real-time implementation of JDL is

impossible in the CPU-based platform. In this paper, we

proposed a real-time implementation of JDL algorithm for

HFSWR. The experiment results confirmed that the

proposed method accelerates the computation by over 24.72

times as compared to the CPU-based implementation which

meets the real-time requirement of HFSWR. By comparing

Fig. 9 (a) and Fig. 9 (b), it was clear that after JDL algorithm

processing the clutter can be greatly suppressed and targets

can be directly detected. Meanwhile the clutter suppression

result of the proposed GPU-based method is show in Fig. 9

(c), which obtains the completely same results comparing

with the conventional CPU-based method. Although the

detection performance of GPU-based implementation same

from the CPU that the parallel computing power of GPU far

exceeds that of CPU. Therefore, by applying JDL algorithm

into real HFSWR system, the ability of the target detection

is significantly improved.

(a) RDMap of HFSWR without JDL

(b) RDMap of the conventional CPU-based with JDL

(c) RDMap of the GPU-based with JDL

Fig. 9 RDMaps comparation of HFSWR based on GPU and GPU

Acknowledgments

This work was supported in part by the National Natural

Science Foundation of China under Grant 62201563, Grant

61701140 and Grant 61171182, and research project fund of

Songjiang Laboratory (No. SL20230204).

References

 [1] Y. Qiang, et al.: “An approach to detecting the targets of aircraft and

ship together by over-the-horizon radar,” 2001 CIE International

Conference on Radar Proceedings (2001) 95 (DOI:

10.1109/ICR.2001.984631)

 [2] S. Park, et al.: “Compact HF surface wave radar data generating

IEICE TRANS. ELEC Real-time Implementation of Joint Domain Localised Algorithm for High Frequency Surface Wave Radar using GPUTRON., VOL.XX-X, NO.X XXXX
XXXX
Real-time Implementation of Joint Domain Localised Algorithm for High Frequency Surface Wave Radar using GPU

simulator for ship detection and tracking,” IEEE Geoscience and

Remote Sensing Letters 14 (2017) 969 (DOI:

10.1109/LGRS.2017.2691741)

 [3] Y. Wei, et al.: “Experimental analysis of a HF hybrid sky-surface

wave radar,” IEEE Aerospace and Electronic Systems Magazine 33

(2018) 32 (DOI: 10.1109/MAES.2018.170036)

 [4] G. Cirillo, et al: “Echo simulator systems for exomars 2016 radar

doppler altimeters tests,” 2015 IEEE Metrology for Aerospace

(MetroAeroSpace) (2015) 513 (DOI:

10.1109/MetroAeroSpace.2015.7180710)

 [5] L. Sevgi, et al.: “An integrated maritime surveillance system based

on high-frequency surface-wave radars, part 1: theoretical

background and numerical simulations,” IEEE Antennas and

Propagation Magazine 43 (2001) 28 (DOI: 10.1109/74.951557).

 [6] L. Huang, et al: “Ionospheric interference suppression in HFSWR,”

IEEE Conference on Industrial Electronics and Applications (2006)

(DOI: 10.1109/ICIEA.2006.257236)

 [7] H. Zhou, et al: “Ionospheric clutter suppression in HFSWR using

multilayer crossed-loop antennas,” IEEE Geoscience and Remote

Sensing Letters 11 (2014) 429 (DOI: 10.1109/LGRS.2013.2264531)

 [8] W.L. Melvin: “A STAP overview,” IEEE Aerospace and Electronic

Systems Magazine 19 (2004) 19 (DOI:

10.1109/MAES.2004.1263229).

 [9] R. rlemm: “Applications of Space-Time adaptive processing, part

VII: over-the-horizon radar applications,” IET Radar, Sonar and

Navigation Series 14 (2004) 603 (DOI: 10.1049/PBRA014E).

 [10] r.P. Ong, et al: “Angular bin compression for joint domain localized

(JDL) processor,” Twelfth International Conference on Antennas and

Propagation (ICAP 2003) (2003) 353 (DOI: 10.1049/cp:20030086)

 [11] R.S.Adve, et al: “Practical joint domain localised adaptive processing

in homogenoeous and nonhomogeneous environments. Part I :

Homogeneous environments,” IEE Proceedings-Radar, Sonar and

Navigation 147 (2000) 57 (DOI: 10.1049/ip-rsn:20000035)

 [12] X. Zhang, et al: “Ionospherci clutter suppression method based on

STAP,” Systems Engineering and Electronics 35 (2013) 1177

 [13] NVIDIA Corporation: CUDA C Programming Guide 10.2 (2019)

https://docs.nvidia.com/cuda/cuda-c-programming-guide

 [14] M. D. Mccool: “Signal Processing and General-Purpose Computing

and GPUs [Exploratory DSP],” IEEE Signal Processing Magazine 24

(2007) 109 (DOI: 10.1109/MSP.2007.361608)

 [15] C. Zhang, et al: “High frequency radar signal processing based on the

parallel technique,” IET International Radar Conference 2015 (2015)

2903 (DOI: 10.1049/cp.2015.1246)

 [16] S. P. Mohanty: “GPU-CPU multi-core for real-time signal

processing,” 2009 Digest of Technical Papers International

Conference on Consumer Electronics (2009) P-1-2 (DOI:

10.1109/ICCE.2009.5012160)

 [17] R. Benenson, et al: “Pedestrian detection at 100 frames per second,”

2012 IEEE Conference on Computer Vision and Pattern Recognition

(2012) 2903 (DOI: 10.1109/CVPR.2012.6248017)

 [18] F. James, M. Steve: “Using graphics devices in reverse: GPU-based

Image Processing and Computer Vision,” IEEE International

Conference on Multimedia and Expo (2008) (DOI:

10.1109/ICME.2008.4607358)

 [19] D. Pavel, et al: “Pattern Recognition in EEG Cognitive Signals

Accelerated by GPU,” International Joint Conference CISIS’12-

ICEUTE´12-SOCO´12 Special Sessions (2013) 477 (DOI:

10.1109/COASE.2007.4341818)

 [20] H. Jang, et al: “Neural network implementation using CUDA and

OpenMP,” 2008 Digital Image Computing: Techniques and

Applications (2008) 155 (DOI: 10.1109/DICTA.2008.82)

 [21] P. Li, et al: “HeteroSpark: A heterogeneous CPU/GPU Spark

platform for machine learning algorithms,” IEEE International

Conference on Networking, Architecture and Storage (NAS),(2015)

347 (DOI: 10.1109/NAS.2015.7255222)

 [22] L. Baldini, et al: “Predicting GPU Performance from CPU Runs

Using Machine Learning,” IEEE 26th International Symposium on

Computer Architecture and High Performance Computing (2014)

254 (DOI: 10.1109/SBAC-PAD.2014.30)

 [23] F. Zhang, et al: “Multiple mode SAR raw data simulation and parallel

acceleration for Gaofen-3 Mission,” IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing 11 (2018) 2115

(DOI: 10.1109/JSTARS.2017.2787728)

 [24] P. rang: “GPU-accelerated stochastic simulation of biochemical

networks,” IEICE Trans.INF. & SYST E101-D (2018) 786 (DOI:

10.1587/transinf.2017EDL8218)

 [25] N. rath, et al: “Robust GPU-based Virtual Reality Simulation of

Radio Frequency Ablations for Various Needle Geometries and

Locations,” International Journal of Computer Assisted Radiology

and Surgery (2019) 1 (DOI: 10.1007/s11548-019-02033-w)

 [26] T. M. Benson, R. r. Hersey, and E. Culpepper, "GPU-based space-

time adaptive processing (STAP) for radar," in 2013 IEEE High

Performance Extreme Computing Conference (HPEC), (2013) (DOI:

10.1109/HPEC.2013.6670341)

 [27] H. Wang and L. Cai: “On adaptive spatial-temporal processing for

airborne surveillance radar systems,” IEEE Transactions on

Aerospace and Electronic Systems 30 (1994) 660 (DOI:

10.1109/7.303737)

 [28] NVIDIA Corporation: cuBLAS API library,

https://docs.nvidia.com/cuda/cublas.html, accessed Feb.13. 2019.

 [29] NVIDIA Corporation: CUDA C Programming Guide 10.1,

https://docs.nvidia.com/cuda/cuda-c-programming-guide.html,

accessed Feb.13. 2019.

 [30] Y. Eunjung, C. Joohwan, R. Adve, and C. Jonghoon, "A hybrid D3-

Sigma Delta STAP algorithm in non-homogeneous clutter," in 2007

IET International Conference on Radar Systems, 15-18 Oct. 2007

2007.

 [31] M. Li, G. Sun, and Z. He, "Direct Data Domain STAP Based on

Atomic Norm Minimization," in 2019 IEEE Radar Conference

(RadarConf), 22-26 April 2019 (DOI:

10.1109/RADAR.2019.8835701)

 [32] Intel : Intel® Math rernel Library Developer

Reference,https://software.intel.com/en-us/mkl-developer-

reference-c.html, accessed Feb.15. 2019.

 [33] Intel : BLAS and Sparse BLAS Routines,

https://software.intel.com/en-us/mkl-developer-reference-c-blas-

and-sparse-blas-routines.html, accessed Feb.15. 2019.

 Bowen ZHANG received his B.Sc. degree

in Yanbian University, Yanji, China in 2022 .

Now, he is a Ph.D. student with the School of

Electronic and Information Engineering,

Harbin Institute of Technology, Harbin,

Heilongjiang,150001, China. His research

interests include array signal processing,

clutter and interference suppression, and

radar signal processing.

 Chang ZHANG received his B.Sc. degree

in electronic information engineering, and the

M.Sc. degree in information and

communication engineering from Harbin

Institute of Technology, Harbin, China, in

2009 and 2020, respectively. He is currently a

research assistant in Jiangsu Automation

Research Institute (JARI), Lianyungang,

China. His research interests include radar

signal processing and parallel computing.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

8

 Di YAO received the B.Sc. degree in

electronic information engineering and the

M.Sc. degree in underwater acoustic

engineering from Harbin Engineering

University, Harbin, China, in 2011 and 2014,

respectively, and the Ph.D. degree in

information and communication engineering

from the Harbin Institute of Technology,

Harbin, in 2019.

He is currently an associate professor with the

School of Computer Science and

Engineering, Northeastern University,

Shenyang 110819, China. His research

interests include array signal processing,

clutter suppression, and radar signal

processing.

 Xin ZHANG received the B.Sc., M.Sc.,

and Ph.D. degrees in information and

communication engineering from the Harbin

Institute of Technology, Harbin, China, in

2005, 2011, and 2016, respectively. He is

currently a associate Professor with the

School of Electronics and Information

Engineering, Harbin Institute of Technology.

His research interests are in radar signal

processing, clutter suppression, space-time

adaptive processing, and compressed sensing.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

