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SUMMARY  The performance of target detection and tracking is 

primarily limited by ionospheric interference in High Frequency Surface 

Wave Radar (HFSWR). Joint Domain Localised (JDL) has been proved to 

be an effective algorithm for ionospheric clutter suppression in HFSWR. 

However, the implementation of JDL in the traditional CPU platform 

cannot afford the real-time requirement in HFSWR. With the help of the 

tremendous parallel computational horsepower in GPU, in this paper we 

investigate the real-time implementation of JDL algorithm for HFSWR 

using Graphics Processing Unit (GPU). We also perform a comparative 

analysis in terms of the performance using the CPU-based implementation 

and the GPU-based implementation. Experimental result shows that the 

GPU-based implementation accelerates the computation by over 24.72 

times as compared to the CPU-based implementation which meets the real-

time requirement of HFSWR. 
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1. Introduction 

Generally, High Frequency Surface Wave Radar (HFSWR) 

transmits the high frequency band (3-30MHz) 

electromagnetic energy into a specific volume in space to 

search for targets, such as ships and aircrafts [1]-[3]. The 

target echoes data are then transmitted to the signal 

processing subsystem to extract target information such as 

range, velocity, angular position, and other target identifying 

characteristics [4]. Usually, the performance of target 

detection and tracking in HFSWR is primarily limited by 

ionospheric interference [5]-[7]. Ionospheric interference is 

characterized by a high degree of nonhomogeneity and 

nonstationarity, which makes its suppression difficult using 

conventional processing techniques. 

Space-time Adaptive Processing (STAP) has been 

proved to be an efficient adaptive clutter suppressed 

algorithm which has enjoyed great success in HFSWR [8], 

[9]. Real-time implementation of STAP is considered 

impossible, as the computational cost of inverting a 

covariance matrix is considered too expensive [9]. Joint 

Domain Localised (JDL) algorithm which is a kind of partial 

STAP algorithm has been proved to be an effective clutter 

suppressed algorithm in HFSWR especially for ionospheric 

interference [10], [11]. Comparing with STAP, JDL can 

reduce the computing load quite a lot by transforming the 

huge channel-pulse dimension to the concerned angle-

Doppler frequency domain [12]. However, HFSWR is a 

long distance detecting and high Doppler frequency 

resolution system which means the concerned region 

contains hundreds to thousands Doppler frequency units and 

hundreds range units. Combined with tens angle units, a 

huge three-dimension cube is organized. For each unit in this 

huge cube, JDL have to execute one time. In this case, the 

computing load for executing the whole cube for JDL is still 

quite heavy. 

Originally, the Graphics Processing Unit (GPU) is a 

specialized circuit designed to accelerate computation for 

building and manipulating images. With CUDA which is a 

parallel computing and programming model developed by 

NVIDIA in 2006 [13], developers were able to dramatically 

speed up computing applications by harnessing the power of 

GPU. Hence, GPU has become a significant compute engine 

in the general computing, such as signal processing [14]-

[16], computer vision and pattern recognition [17]-[19], 

machine learning [20]-[22] and data simulation [23]-[25]. A 

post-Doppler STAP extended factored algorithm (EFA) with 

a block training approach to estimate the required 

covariance matrices and through solving the linear system to 

achieve near-peak utilization using the compute unified 

device architecture (CUDA) framework GPU based 

implementation provided by NVIDIA [26]. 

In this paper, we investigate the real-time 

implementation of JDL algorithm for HFSWR. Owing to the 

implementation of JDL in the traditional CPU platform 

cannot afford the real-time requirement in HFSWR. 

Therefore, our team with the help of the tremendous parallel 

computational horsepower in GPU, we investigate the real-

time implementation of JDL algorithm for HFSWR using 

GPU as specific novelty of the research. The remainder of 

this paper is organized as follows. Section 2 presents the JDL 

algorithm for HFSWR. Section 3 describes our real-time 

implementation of JDL algorithm using GPU in detail. 

Section 4 provides experimental results of our approach and 

evaluates its effectiveness. Finally, we summarize our work 

and make conclusion in Section 5. The JDL algorithm for 

HFSWR using GPU was completed together by Bowen 

ZHANG and Chang ZHANG. Di YAO completed the 

implementation and analysis of the CPU based JDL 

algorithm, while Xin ZHANG complete the algorithm 

experimental results. This paper was jointly written by the 
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four individuals mentioned above. 

2. Joint Domain Localised (JDL) for HFSWR 

2.1 Space-time data model for HFSWR 

For HFSWR, the receiving array comprised of N isotropic, 

point sensors separated by a distance of d  , receiving an 

incident plane wave, as shown in Fig. 1. 
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Fig. 1  Receiving array antenna of HFSWR 

The reflected target echoes are collected and sampled at N 

array channels and M successive pulses in a coherent 

processing interval (CPI) for each range unit. For a given l-

th range bin, the space–time snapshot vector is defined 

  1

1 2

T MN

l M C = X x x x        (1) 

where 1N

i C x is used to denote the spatial snapshot of data 

corresponding to the i-th pulse repetition interval (PRI). 

 By dividing each pulse repetition interval (PRI) into K 

separate range bins, the corresponding space-time snapshots 

are compiled into one  N M K  data-cube, as shown in Fig. 

2. 

K range bins
 

Fig. 2  A 3-dimensional representation of a data-cube in JDL 

The space–time snapshot vector lX   is used to construct 

the estimated covariance matrix R  
H MN MN

l l C = R X X          (2) 

and the weight w for STAP is given as. 
1−=w R v                (3) 

where 1MNC v  is the space-time steering vector 

corresponding to a target at azimuth angle t  and Doppler 

frequency tf  . This space-time steering can be written as 

follows. 

                 ( ) ( )t tf = v b a               (4) 

where  represents the rronecker product of two vectors, 

( )ta  is a space steering vector defined by 

( )
2 sin( ) (2)2 sin( ) ( 1)2 sin( )

T=[1    ]
t t t

d d d
j π j π j N π

λ λ λe e e
t

  


−

a  (5) 

and ( )tfb is a time steering vector defined by 

( ) 2 (2)2 ( 1)2
=[1    ]

−t R t R t Rj π f f j π f f j M π f f T

tf e e eb    (6) 

where is wavelength and Rf is pulse repetition frequency 

(PRF). 

Real-time Implementation of STAP is considered impossible, 

as the computation cost of inverting a MN MN

dimensional matrix, ( 3( )O MN ), is considered too expensive 

for large values of M and N. 

2.2 Joint Domain Localised (JDL) 

JDL algorithm was first introduced by Wang and Cai[27]. 

By using a transformation matrix T, it can transform the 

space-time signal vector lX   from channel-pulse domain 

data to the partial angle-Doppler frequency domain data lX , 

which is as follows 

                  H

l l= X T X               (7) 

and the corresponding transformed space-time steering 

vector can be written as. 
H= v T v                 (8) 

 Usually we called the partial angle-Doppler frequency 

domain as localised processing region (LPR). Adaptive 

processing is restricted to the LRP. Fig. 3 shows a LPR 

contains 3aη =   angle units and 3dη =   Doppler units 

which with the center of Doppler frequency 0f  , angle 0φ  

and range gate k. So the transformation matrix T can be 

written as  

( ) ( ) ( ) ( ) ( ) ( )1 0 1 1 0 1[ , , ] , ,f f f φ φ φ− −=    T b b b a a a   (9) 

Angle unit LPR

Doppler unit
 

Fig. 3  An example of localised processing region 

and the covariance matrix R in JDL is defined as  
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0

1
a d a d

P
η η η ηH

l l C
P

−


= R X X         (10) 

where P is the number of weight training data samples 

employed. To ensure the expectation of the ratio of the 

adaptive SNIR to optimum SNIR is greater than 0.5, P 

should satisfy 2 a dP η η . And l=k±2，k±3,…, k±(P/2+1) 

with one range protected unit[9, 12]. Forming LPR 

significantly reduced the number of unknowns while 

remaining maximal gain against noise, that is from
MN MNC R  to a d a dη η η η

C


R  . The lower degrees of 

freedom lead to a corresponding reduction in required 

sample support as well as computational cost. 

So the optimal weights can be expressed as 
1−=w R v                  (11) 

and the result of JDL algorithm is as follows 

                 H

l=y w X                 (12) 

3. JDL Algorithm parallel Implementation 

3.1 The Math rernel Library of CPU 

The implementation process of JDL algorithm on CPU and 

GPU is the same, but the difference is that GPU has stronger 

computing power than CPU, and using GPU can greatly 

improve the efficiency of engineering implementation. As 

CPU does not provide the ability to make the cells 

calculating parallelly. We had to loop the processing to 

process the whole three-dimensional data-cube. By 

simulating on the CPU and implementing the JDL algorithm 

with the same batch of echo data as the GPU. And calculate 

the average time cost of implementing the JDL algorithm on 

the CPU. 

The library functions that implement the JDL 

algorithm have been widely used on CPU. The Intel® Math 

rernel Library [29] includes the Basic Linear Algebra 

Subprograms (BLAS) routines that provide standard 

building blocks for performing basic vector and matrix 

operations. The Level 1 BLAS perform scalar, vector and 

vector-vector operations, the Level 2 BLAS perform matrix-

vector operations, and the Level 3 BLAS perform matrix-

matrix operations. By applying the matrix operation 

functions involved in this library, the JDL algorithm can be 

implemented on CPU, such as cblas_cgemm() perform 

matrix-matrix multiplication operations, cblas_cgemv() 

perform general matrix-vector multiplication operations, 

cblas_chemv() perform the Hermitian matrix-vector 

multiplication operations, etc.  

3.2 NVIDIA CUDA Programming Model 

CUDA is a general-purpose parallel computing platform and 

programming model that leverages the parallel compute 

engine in NVIDIA GPUs [13]. Usually, a modern NVIDIA 

GPU hardware consists of thousands of elementary 

processing units, called CUDA cores, divided in blocks 

called Streaming Multiprocessors (SM). Each SM has a 

constant memory and a shared memory, which have much 

lower latency than the device global memory, as shown in 

Fig. 4. 

 In CUDA programming, the function that can be 

executed in CUDA threads is called kernel. A kernel is  

 
Fig. 4  The composition of GPU 

defined using the __global__ declaration specifier. A kernel 

can be executed by multiple equally-shaped thread blocks. 

There is a limit to the number of threads per block, since all 

threads of a block are expected to reside on the same SM and 

must share the limited memory resources of that SM. In 

principle, blocks are organized into a one-dimension, two-

dimensional, or three-dimensional grid of thread blocks as 

illustrated by Fig. 5 Each block within the grid can also be 

identified by a one-dimensional, two-dimensional, or three-

dimensional grid of threads. The number of the thread 

blocks in a grid is usually dictated by the size of the data 

being processed. The core of CUDA are three key 

abstractions, that is a hierarchy of thread groups, shared 

memories and barrier synchronization. 

 
Fig. 5  Grid of thread blocks in CUDA 

3.3 Implementation 

As the limited global memory resources of one GPU card, 

assuming a  N M K data-cube can be executed in one GPU 

card, where N is the number of angle units, M is the number 

of Doppler frequency units and K is the number of range 

units. The transformed space-time signal vector Host_X is 

formed by  N M K cells. As the LPR is formed by 3 angle 
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units and 3 Doppler units, in each cell, the input data is 

formed by the extraction of adjacent Doppler frequency 

units and adjacent angle units which formed a vector with 

the size 9 1   in Eq. (7). The transformed steering vector 

Host_V should also be prepared by Eq. (8). 

Our scheme for implementing the JDL algorithm takes 

the following steps in the code, as shown in Fig. 6. 

 
Fig. 6  Parallel implementation of JDL algorithm in GPU 

By transmitting Host_X and Host_V from the CPU memory 

to the GPU global memory (line 1, 2), the implementation 

begin. For step 1, a kernel function __global__ void 

matrixMulXxhBatch() (line 3) is used to calculate  N M K

cells of matrix multiplication 
H

i l l=R X X  . The grid of 

thread blocks for Step 1 is shown in Fig. 8. That is a two-

dimensional grid of threads in each block is identified by 

dim3 thrd_xxh(9,90) and a one-dimensional grid of blocks 

in this grid is identified by dim3 grid_xxh(Q, 1), where 

10

N M K
Q

 
= . As shown in Fig. 7, in each block, we divide 

the threads grid into 10 regions, each region is formed by 81 

threads with the size of 9 9  which maps to one cell of
iR . 

 

 
Fig. 7  Grid of thread blocks in Step 1 

For step 2, a kernel function __global__ void 

sumCovarianceMatrix() (line 6) is used to calculate Eq.  

(10), as 3a dη η= =  , in order to satisfy (10), we choose 

18P = . The grid of thread blocks in step 2 is as follows, 

dim3 thrd_sum(81,10) and dim3 grid_sum(
10

M K
, N), 

shown in Fig. 8. In each block, we divide the threads grid 

into 10 regions, each region is formed by 81 threads with the 

size of 81 1  to calculate one cell of R . In this grid, we 

divide the blocks into N regions, each region calculate the

M K cells of R  in one angle unit.  

 
Fig. 8  Grid of thread blocks in Step 2 

For step 3, to calculate the inverse matrix of R , we use 

cuBLAS API library [28] which is an implementation of 

Basic Linear Algebra Subprograms (BLAS) on top of the 

CUDA runtime. The cublas<t>getriBatched() function (line 

8) performs the inversion of matrix 
iR   for i=0, 

… ,batchSize-1. Prior to calling cublas<t>getriBatched(), 

the matrix 
iR  must be factorized first by using the routine 

cublas<t>getrfBatched() function (line 7). The 

cublas<t>getrfBatched() function performs the LU 

factorization of each 
iR   for i=0, … ,batchSize-1. 

Following the LU factorization, cublas<t>getriBatched() 

function uses forward and backward triangular solvers to 

complete inversion of matrix 
iR  for i=0, … ,batchSize-1. 

For step 4, a kernel function __global__ void 

sumCovarianceMatrix() (line 10) is used to calculate the 

 N M K cells of the optimal weights w . The grid of thread 

blocks in step 4 is as follows, dim3 thrd_Rv(9,100) and dim3 

grid_sum(
100

M K N 
, 1).  

For step 5, a kernel function __global__ void 

matrixMulWxBatch() (line 12) is used to calculate the result 

of JDL algorithm. The grid of thread blocks in Step 5 is as 

follows, dim3 thrd_Wx(1024,1) and dim3 grid_Wx(
1024

M K N 
, 

1). By transmitting the result Device_Y from the GPU global 

memory to the CPU memory Host_Y, the implementation of 

JDL on GPU is accomplished. 

For the implementation of JDL on GPU, there are three 

key points as follows: 

1) As the threads in kernel function are not 

synchronized while they are running, the 

cudaDeviceSynchronize() function should be used at the end 
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of each kernel function for data synchronization. 

2) Shared memory [29] is used in every kernel 

functions (Step 1, 2, 4, 5). Because it is on-chip, shared 

memory has much higher bandwidth and much lower 

latency than global memory. By using shared memory, we 

can get maximum performance of the JDL implementation. 

3) The data for the JDL implementation are double-

precision. In step 3, only when the data are double-precision, 

the rank of 
iR  is full rank, then we can get the correct result 

of step 3. In this case, double-precision performance (FP64) 

should be considered for the JDL implementation. 

The JDL algorithm steps are shown in Fig. 6, but the 

actual data needs to be cycled due to the limitation of GPU 

memory capacity. The number of cycles is equal to the ratio 

of the total amount of data to the memory capacity. The 

computation process can be optimized according to different 

computing graphics cards to improve the utilization rate of 

memory and reduce the number of cycles. This is the special 

feature of this paper that uses GPU computing.  

3.4 Comparison between the JDL and existing method 

In order to improve the target detection ability in ionospheric 

clutter, a series of STAP algorithm have been proposed to 

suppress clutter. The dimensionality reduction STAP 

processing methods include JDL processing method, D3 

processing method, and D3-JDL processing method [30]. 

The dimensionality reduction STAP reduces the degree of 

freedom (DOF) of the system, thereby reducing the clutter 

degree of freedom in the angle-Doppler region to be 

processed, achieving the goal of reducing the demand for 

training samples and reducing computational complexity. 

D3 algorithm processed on the cell under test data only, 

which does not statistical processing on the range domain. 

Therefore, D3 has no requirement for the correlation of 

range domain. D3 method obtains training data samples by 

smoothing and removing target data information in the 

Doppler domain and angle domain respectively. By seek the 

optimal weight vector and constructs the space-time steering 

to achieve the dimensionality reduction. Ideally, the Doppler 

and angle information of the target can be completely 

removed, but there may be mismatch issues due to sampling, 

which will not have a significant impact on the processing 

result. The JDL processing and the D3-JDL are both better 

than the D3 processing in terms of both homogeneous clutter 

and non-homogeneous clutter from the performance of 

clutter suppression, whereas the D3 processing method is 

more suitbale for suppressing non-homogeneous clutter [31]. 

For the comparison between JDL and other method, 

there are two aspects as follows: 

1) Clutter suppression performance. From the 

perspective of clutter suppression, whether it is stationary or 

nonstationary clutter, the JDL processing method and D3-

JDL method have good suppression effects, while the D3 

processing method performs poorly in suppressing 

stationary clutter, mainly highlighting its suppression 

performance for nonstationary clutter. 

2) Computational complexity. The JDL processing 

method has the smallest computational complexity, while 

the D3-JDL method has the largest computational 

complexity. 

 Overall, the JDL processing method is more suitable 

for High Frequency Radar systems. 

4. Experimental results 

To evaluate the proposed method, the experiment was 

conducted on a Linux 64bit machine (Centos 6.5) with 2x 

Intel Xeon E5-2609V2 4 core @ 2.5GHz, 64GB DDR3 

memory, a 512GB Crucial SSD and NVIDIA Tesla r40c 

2880 cores. The FP64 of Tesla r40c is 1.42Tflops which 

accommodate our needs regarding parallel computation. 

The data-cube in this experiment is formed by 369 Doppler 

frequency unit, 200 range units and 31 angle units. The LPR 

in JDL is formed by 3 angle units and 3 Doppler frequency 

units. So the transformed space-time signal vector Host_X is 

formed by 29 367 200  cells and the transformed steering 

vector Host_V is also formed by 29 367 200  cells. 

4.1 CPU-based implementation of JDL 

For the implementation of JDL on Intel E5-2609V2, we use 

Intel Math rernel Library (MrL) which provides abundant 

math libraries, such as BLAS and LAPACr linear algebra 

routines, fast Fourier transforms, vectorized math functions 

[32, 33]. As it does not provide the ability to make the cells 

calculating parallelly. We had to loop the processing to 

process the whole three-dimensional data-cube. Table 1 

shows statistical properties of our CPU implementation of 

JDL. 

Table 1  Average time cost for JDL on Intel E5-2609V2 
 Average time cost (ms) 

H

i l l
=R X X

 

1

0
/

P

ii
P

−

=
= R R

 

1−
=w R v  

H

l
y = w X

 
Each step 1.02×10-4 6.95×10-4 1.08×10-2 1.03×10-4 

One cell 1.17×10-2 

Whole cube 24904.6 

4.2 GPU-based implementation of JDL 

For NVIDIA Tesla r40c, it can make 367×200×6 cells 

processed together. So only 5 loops are needed for the whole 

data-cube. Before the implementation of JDL on GPU, we 

had to initialize the GPU global memory, and then copy the 

data from CPU memory to GPU global memory. When the 

implementation of JDL is over, the data should also be 

copied from GPU global memory to CPU memory. Thus, the 

time cost of copying data should be considered. Table 2 

shows statistical properties of our GPU implementation of 

JDL. 

Comparing with CPU platform, GPU provides parallel 

processing more effectively with few loops. It was clear that 
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the GPU-based implementation can improve the speedup to 

24.72 times, thus indicating that GPUs are very well suited 

to JDL algorithm. Fig. 9 shows partial enlargement of the 

range-Doppler maps (RDMaps) obtained in practical 

HFSWR before and after JDL processing. And the Signal to 

Clutter Ratio increased with the JDL method as shown in 

Fig.9. As indicated in Fig. 9(a), the ionospheric interference 

covers part of the RDMaps, the target in this area cannot be 

detected. After JDL processing, the target can be detected 

directly, as shown in Fig. 9(b). The results show that the 

presented algorithm is effective. indicate 

Table 2  Average time cost for JDL on Tesla r40c 
 Average time cost (ms) 

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5 

Copy data from 

CPU to GPU 
113.62 113.95 113.88 113.98 113.42 

H

i l l
=R X X

 
2.23 2.20 1.99 2.00 1.99 

1

0
/

P

ii
P

−

=
= R R

 
8.70 8.66 7.98 7.97 7.95 

1−
R  66.62 65.48 65.20 65.03 65.55 

w  8.46 8.49 8.49 8.50 8.48 

H

l
y = w X

 
1.39 1.39 1.39 1.39 1.39 

Copy data from 

GPU to CPU 
2.07 2.10 1.66 2.07 1.64 

Whole cube 1007.31 

The CPU has a large amount of memory, but the storage 

space of the GPU is limited, it is necessary to use a cyclic 

approach for data processing in GPU which contribute to the 

significant differences in the definitions of tables and 

columns between Table 1 and Table 2. 

5. Conclusion 

JDL has been proved to be an effective algorithm for 

ionospheric clutter suppression for HFSWR. As the 

computational cost of JDL is considered too expensive. In 

HFSWR system, the real-time implementation of JDL is 

impossible in the CPU-based platform. In this paper, we 

proposed a real-time implementation of JDL algorithm for 

HFSWR. The experiment results confirmed that the 

proposed method accelerates the computation by over 24.72 

times as compared to the CPU-based implementation which 

meets the real-time requirement of HFSWR. By comparing 

Fig. 9 (a) and Fig. 9 (b), it was clear that after JDL algorithm 

processing the clutter can be greatly suppressed and targets 

can be directly detected. Meanwhile the clutter suppression 

result of the proposed GPU-based method is show in Fig. 9 

(c), which obtains the completely same results comparing 

with the conventional CPU-based method. Although the 

detection performance of GPU-based implementation same 

from the CPU that the parallel computing power of GPU far 

exceeds that of CPU. Therefore, by applying JDL algorithm 

into real HFSWR system, the ability of the target detection 

is significantly improved. 

 
(a) RDMap of HFSWR without JDL 

 
(b) RDMap of the conventional CPU-based with JDL 

 
(c) RDMap of the GPU-based with JDL 

Fig. 9  RDMaps comparation of HFSWR based on GPU and GPU  
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