
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024
1277

PAPER
A Joint Coverage Constrained Task Offloading and Resource
Allocation Method in MEC

Daxiu ZHANG†a), Xianwei LI††,†††b), Nonmembers, Bo WEI††††,†††††c), Member,
and Yukun SHI††††††d), Nonmember

SUMMARY With the increase of the number of Mobile User Equip-
ments (MUEs), numerous tasks that with high requirements of resources
are generated. However, the MUEs have limited computational resources,
computing power and storage space. In this paper, a joint coverage con-
strained task offloading and resource allocation method based on deep rein-
forcement learning is proposed. The aim is offloading the tasks that cannot
be processed locally to the edge servers to alleviate the conflict between
the resource constraints of MUEs and the high performance task process-
ing. The studied problem considers the dynamic variability and complexity
of the system model, coverage, offloading decisions, communication rela-
tionships and resource constraints. An entropy weight method is used to
optimize the resource allocation process and balance the energy consump-
tion and execution time. The results of the study show that the number
of tasks and MUEs affects the execution time and energy consumption of
the task offloading and resource allocation processes in the interest of the
service provider, and enhances the user experience.
key words: Mobile Edge Computing, coverage constraint, deep reinforce-
ment learning, task offloading, resource allocation

1. Introduction

With the rapid development of IoT communication tech-
nologies [1], the Mobile User Equipment (MUE) is every-
where in people’s daily life and can be used for sensing,
computing and communication. MUEs will generate numer-
ous data tasks that with high requirements in terms of com-
putational resources, computing power and battery life. Due
to the limited computational resources, computing power
and storage space of MUEs, the data tasks can be offloaded
to data center in public clouds for processing [2]. However,

Manuscript received November 5, 2023.
Manuscript revised January 24, 2024.
Manuscript publicized March 6, 2024.
†School of Information Technology, Quanzhou Vocational

College of Economics and Business, Quanzhou, 362000, China.
††School of Computer and Information Engineering, Bengbu

University, Bengbu, 233000 China.
†††Anhui Engineering Research Center for Intelligent Applica-

tions and Security of Industrial Internet, Anhui University of Tech-
nology, Ma’anshan, Anhui, 243032 China.
††††Department of Systems Innovation, School of Engineering,

The University of Tokyo, Tokyo, 113-0033 Japan.
†††††Japan Science and Technology Agency (JST), PRESTO,

Kawaguchi-shi, 332-0012 Japan.
††††††School of Cyberspace Security Academy, Hangzhou Dianzi
University, Hangzhou, 310018 China.

a) E-mail: zhangdaxiu2021@163.com
b) E-mail: lixianwei163@163.com
c) E-mail: weibo@g.ecc.u-tokyo.ac.jp
d) E-mail: yukun.shi@hdu.edu.cn

DOI: 10.1587/transfun.2023EAP1139

the distance of public cloud data centers is far from MUEs
in traditional network systems leading to latency [3] and se-
curity issues [4] for some real-time processing applications,
which impacts the mobile user experience and reduces the
potential benefits of the public cloud [5].

To overcome these problems, Mobile Edge Computing
(MEC) is considered as a promising technology [6]. MEC
allows MEUs to offload tasks to the edge cloud for process-
ing, relieving congested waiting in the data center public
cloud [7]. However, it is difficult for MUEs to select the ap-
propriate computational node based on the resource require-
ments of the task. Considerable efforts have been devoted to
employing Deep Reinforcement Learning (DRL) algorithm
to study task offloading and resource allocation in the MEC
system [8], [9].

In this study, we apply the DRL joint task cover-
age constraint method in the MEC environment to offload
tasks generated by MUEs to the appropriate MEC-S server
for processing by jointly allocating computation, memory,
CPU, and bandwidth resources. We use the DRL joint task
coverage constraint method to select the appropriate com-
putational nodes for the tasks in the current environment to
complete the process of task offloading and resource alloca-
tion, which is described as MDP. This method optimizes the
execution time and energy consumption during the task of-
floading and resource allocation processes in the MEC sys-
tem, improving the quality of user’s life.

The main contributions of this study are as follows.
• Task coverage constraints are considered when build-

ing the problem model to ensure that the tasks generated by
MUEs can only be offloaded in the nodes within their sens-
ing range, which improves the reliability of the task offload-
ing process.

• This study proposes a task offloading and resource al-
location method in the MEC system based on DRL, named
Joint Task Coverage Constraint (JC-TORA), which consid-
ers the coverage constraints, adaptively selects appropriate
computing nodes for the tasks, and improves the reliability
of task offloading transmission.

• To obtain better experimental results, the interests be-
tween the user equipment and the server, the mobility of the
equipment are considered, and the entropy weight and gra-
dient descent methods are used to obtain the reward value of
the computational environment for the next step of feedback
learning to obtain the optimal TORA strategies.

Copyright c© 2024 The Institute of Electronics, Information and Communication Engineers

1278
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

2. Related Work

There are many approaches to study task offloading and re-
source allocation in multi-user and multi-server MEC sys-
tems, among which convex optimization and Lyapunov
methods are commonly used to solve the task offloading
and resource allocation problems [10]–[12]. This section
reviews some related studies on task offloading and DRL in
MEC systems.

At present, there are three main task offloading meth-
ods, namely, local computing, server computing and collab-
orative computing. If the local resources meet the demand
of the task, the task is directly computed locally; If the local
resources are insufficient, the task is offloaded to the nearest
server node for computing. These two cases are collectively
referred to as the binary offloading decisions [13]. Collab-
orative computing occurs when local resources are insuffi-
cient. Some tasks are processed locally, others are offloaded
to the edge server [14]. In task offloading and resource allo-
cation problems, the optimization objectives are divided into
two main categories, that are single-objective problems that
reduce latency and energy consumption, and multi-objective
problems that balance latency and energy consumption.

Some related work only considered the minimization
of either energy consumption or delay. Due to the limitation
of power stability of local MUEs, Li used the divide-and-
conquer strategy and integer linear programming algorithm
based on Lyapunov optimization to solve the offload allo-
cation, improve the CPU utilization of MEC server and re-
duce task latency [10]. When computational resources are
limited, Feng proposed a vehicular edge-computing-based
reverse offloading framework to further reduce system la-
tency by making full use of vehicle computational resources
[15]. Chen constructed an energy-saving resource allocation
scheme while considering the constraints of delay, channel
quality and transmission power, which aims to minimize the
energy consumption of task offloading [16].

Some related work considered the trade-off between
energy consumption and delay. To balance the energy con-
sumption and delay for task offloading and resource allo-
cated, Mao proposed an online task offloading algorithm
to optimize the power consumption and task delay in MEC
system, which improved the user’s QoE [17]. But it didn’t
consider mobility and overall cost. Combined with the dou-
ble deep Q-network, Tong built a novel task offloading al-
gorithm (DDTMOA) with an integrated trust assessment
mechanism to reduce the average task response time and
total system energy consumption, effectively [18]. Elgendy
proposed a joint task cache offload allocation method, which
only considered the bandwidth, deadline and offload con-
straints, but didn’t consider the dynamic movement of mo-
bile devices to different BSs [19].

Different from previous works, in this study, we con-
sider task offloading under the coverage, bandwidth, dead-
line, memory and CPU resource constraints. We develop a
model that balances execution time and energy consumption

and use the DRL method to update the policy to select the
optimal compute node for the task.

3. System Model

The objective of this study is to optimize task offloading
and resource allocation by combining task coverage to mini-
mize total offloading and allocation costs, including energy,
calculation and delay, which selects the appropriate com-
putational nodes for each task and completes data transfer
processing. Assuming that a MEC system contains multi-
ple MUEs and multiple MEC-S servers, the MUEs are ran-
domly deployed in the monitoring area to acquire and man-
age the task offloaded to the corresponding MEC-S servers
for processing in Fig. 1.

In this study, the problem input is the number of MEC-
S servers, BSs, MUEs and tasks, and the output is the opti-
mal offloading and resource allocation strategies.
Definition: The notations j, m, u and n represent the num-
ber of MEC-S servers, BSs, MUEs and tasks, respectively.
In addition, the MEC-S servers, BSs and MUEs are collec-
tively referred to as node k. Table 1 lists the necessary sym-
bols in JC-TORA.

MUE is a set of multi-user equipments that can be for-
malized as U = {u1, u2, . . . , uU} whose scale is U. Each
MUE generates N independent tasks, and it has an attribute
set, represented by Task. Task = {IDui, Ai,Dli , li, Bi,MEMi,
CPUi}, i ∈ (1, 2, . . . ,N), where li = Ai ∗ CPI. Each task
has a submission time and a deadline, the tasks are queued
according to the submission time, deadline and communi-
cation relationships, and is processed according to the first
come first served rule. Due to the mobility, the MUE may
be near different BSs at different times, so tasks generated
by the MUE at different times may be offloaded to MEC-S
servers on different BSs for execution. Each server has mul-
tiple task buffers that simultaneously store tasks offloaded
by multiple users but not yet processed. But the CPU of
each MEC-S server can be allocated to at most one user to
perform processing tasks. The binary variable xki=1, indi-
cating that the i-th task is processed and offloaded to edge
MEC-S server, otherwise it is processed locally.

The specific workflow of the system model is:
STEP 1: uu (u=1,2,. . . ,U) generates N tasks, and it has at-

Fig. 1 The MEC system model.

ZHANG et al.: A JOINT COVERAGE CONSTRAINED TASK OFFLOADING AND RESOURCE ALLOCATION METHOD IN MEC
1279

Table 1 Common term symbols.

tributes such as generation time, deadline processing time
and task data Ai.
STEP 2: uu estimates the calculation and processing meth-
ods of task i based on its scheduling and demand, etc. If the
local resource meets the request of task i, goes to STEP 3.
Otherwise, goes to STEP 4.
STEP 3: Task i completes the calculation on the local node
MUE or BS.
STEP 4: Task i completes the calculation on the MEC-S
server node.
STEP 5: The calculation result is returned to uu.

3.1 Local Computing Model

Since the local MUE has a certain computational capacity
to handle appropriate task requests. If the local resources
satisfy the request of task i and the computation processing
is done directly locally, the time of local computation of task
i on MUE u is denoted as.

T loc
ui =

N∑
i=1

li
Cloc

u
, i ∈ (1, 2, . . . ,N) (1)

The total time for local processing tasks is defined as Eq. (2).

T loc
tot =

K∑
k=1

N∑
i=1

T loc
ui (1 − xki) (2)

The energy consumption of the task at the local nodes is

Eloc
tot =

U∑
u=1

N∑
i=1

Aieloc(1 − xki) (3)

3.2 MEC-S Server-Computing Model

Because of the limited local computing resources, some
tasks will be offloaded to the MEC-S server for processing.
That is divided into two processes: offloading transmission
and calculation processing. Ru,m [18] is used to calculate
energy consumption and time.

Ru,m = B log2(1 +
PuIu,m

N0B
) (4)

where B is the communication bandwidth between MUE
u and BS m, Iu,m is a random independent identically dis-
tributed variable.

MEC-S server task offloading energy consumption in-
cludes both offloading energy consumption and calculation
energy consumption. The energy consumption of MUE u
offloading task i to server j through BS m is:

Eo f f
ui = Pu

Ai

Ru,m
+ Ai × qm j (5)

Therefore, combined with the offloading strategy xki,
the total energy consumption of tasks generated by MUE u
offloaded to server j through BS m is:

Eo f f
tot =

U∑
u=1

N∑
i=1

xkiE
o f f
ui (6)

Similarly, the time cost of task offloading to MEC-S
server is the sum of transmission time and computing time;
Therefore, the total time cost of task i generated by MUE u
being offloaded to server j through BS m is:

T o f f
tot =

U∑
u=1

N∑
i=1

xki(
Ai

Ru,m
+

li
Fm j

) (7)

4. Problem Formulation

To ensure minimal execution time and energy consumption,
some tasks are processed locally while others are offloaded
to the MEC-S server. In this process, the offload transfer
time is ignored due to the high transfer rate of the MEC-S
server and the returned computation results. If the tasks are
computed locally, the communication time is 0. The time

1280
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

required to complete all tasks is:

Ttotal = T loc
tot + T o f f

tot (8)

Similarly, the total energy consumed to complete all
tasks is:

Etotal = Eloc
tot + Eo f f

tot (9)

The optimization objective of the JC-TORA problem is
to minimize the total execution time and energy consump-
tion of all the tasks by selecting the appropriate computa-
tional node for each task. The JC-TORA problem is defined
as follows:

min
U∑

u=1

[ω1Etotal + ω2Ttotal] (10)

s.t xki =

1, ∀k ∈ J,∀i ∈ N
0, ∀k ∈ U,M,∀i ∈ N

(11)

yi,k ≤ 1, i ∈ N, k ∈ (U, J,M), (12)
lengtn(i) ≤ Dli , (13)∑

g∈Gi
γig

| Gi |
≥ δi,∀i ∈ N, (14)

U∑
u=1

N∑
i=1

MEMi ≤ MEMmax, (15)

U∑
u=1

N∑
i=1

CPUi ≤ CPUmax, (16)

U∑
u=1

N∑
i=1

Bi ≤ Bmax. (17)

Equation (10) is objective function to minimize the to-
tal energy consumption and time cost, where ω1 and ω2 the
weight parameters of energy consumption and time, which
is allocated using the entropy weight method of the objec-
tive weighting method.

Equation (11) and Eq. (12) represent the offloading and
resource allocation constraint for task nodes. Equation (12)
constrains that tasks must be allocated to nodes and that
nodes can only allocate one MUE to perform tasks at a time.

Equation (13) is used to limit the tasks that must be
completed by the deadline. lengtn(i) is the scheduling length
of task i.

Equation (14) represents the coverage constraint with a
perceptual metric [21]. g ∈ Gi denotes the perceptual range
(computational node) of the MUE u that generates task i,
which can only be detected if it is within the perceptual
range of task i. That is, using νiug = 1 indicates that the
perceived range Gi of task i is within the monitored range
of the corresponding MUE u; otherwise it is not. In addi-
tion, the accuracy of the monitoring rate must be guaranteed
in the monitored object. The target perception rate fiug is
assigned a value greater than 0 and less than yik ∗ viug ∗ fi
to indicate that the node k offloaded by the task i generated
by the MUE u is within the range g of its perceived target,

where fi is the minimum-sampling rate. Then, the coopera-
tive effective perception f e

ig is given as follows:

f e
ig =

∑
u∈U fiug

1 + Tui
∑

u∈U fiug
,∀i ∈ N, u ∈ U, g ∈ Gi (18)

Tui is the execution time. When the cooperative effective
perception rate of task i at target g is greater than or equal to
the min-sampling rate, γig = 1, otherwise 0.

Equation (15), Eq. (16) and Eq. (17) are used to limit
resource requirements to no more than the maximum value.

5. JC-TORA Algorithm

5.1 Theoretical Background

At present, the DRL method is often used to solve the Task
Offloading and Resource Allocation (TORA). DQN is a spe-
cific algorithm in the DRL method, which combines con-
volutional neural network (CNN) and Q-Learning. The in-
put of CNN is the original environment data (as state), and
the output is the Value Function (Q-value) corresponding to
each action. The agent guides the actions to obtain optimal
rewards by updating the policy and observing the state of
the environment, as shown in Fig. 2.

QL stores the state, action and reward in the memory
unit and repeatedly learns and trains the update value net-
work (Q-value) until convergence, obtaining a better action.
The Q-value is the expected reward for following a policy
to perform a particular action in a given state. A policy is a
reflection list that demonstrates how the state space S maps
to the action space A, i.e., π(s) : S → A. Therefore, the
optimal policy is a policy πθ(s, a) that maximizes the action-
value function from each state in MDP.

πθ(s, a) = argmax
a′

Qπ(s, a). (19)

The agent selects an action based on the Q-value to
make the current optimal decision. Then the mean-square
error is used as the Loss function to calculate the difference
in loss between these values and the gradient descent algo-
rithm is used to minimize this loss.

Fig. 2 The DRL framework.

ZHANG et al.: A JOINT COVERAGE CONSTRAINED TASK OFFLOADING AND RESOURCE ALLOCATION METHOD IN MEC
1281

Loss = (r + γmaxQt(s
′

, a
′

, θ
′

)
a′

− Qt(s, a, θ))2, (20)

After the target network is frozen, experience playback
is introduced to make the training process more stable. The
method stores a batch of sample records (s, a, r, s′) in the ex-
perience pool, randomly selects samples for training DQN
algorithm to accurately fit the Q-values of different states
and actions. Ultimately, the process of getting the Max re-
ward r through continuous environmental learning training
is the optimal policy.

5.2 JC-TORA Algorithm Key Elements

The optimization problem of TORA in the MEC system is
a typical mixed 0-1 nonlinear programming problem that is
NP-hard problem and is difficult to solve. We reformulate
it as an MDP, and it can be solved using the DRL method.
MDP is represented using a four tuple (s, a, r, s′), where s is
the current environment state, a is the action, r is the reward
value, and s′ is the new environment state.
State space s: Since the neural network can only have
one input value (at a time), the optimization objective is
weighted here as a state in order to simulate the realistic
scenario. The state space is a weighted sum of task exe-
cution time and energy consumption on each computational
node, defined as Eq. (21) after the weight entropy method
and max-min normalization. The main considerations are
the resource, idle and perceived status of the computational
nodes as well as the attributes and communication relation-
ships of the tasks.

s = (s1, s2, . . . , sp), si = λ1T tot
ui + λ2Etot

ui . (21)

Action space a: In this MEC environment, the selection of
computational nodes is taken as the action selection, where
computational node refers to the MUE that generates the
task and servers on the BS where the MUE is located. Ac-
tion space can be expressed as follows:

a = (UE, server1, server2, . . . , server j), (22)

The selected computational node’s action value is 1 and
others are 0. Assuming task i is processed locally, a =

(1, 0, . . . , 0).
Reward function r: Select an action a within the coverage
of task i in the current environment state s. If the task is al-
located to the MEC-S server for processing, it is offloaded;
Otherwise, it is processed locally. The system environment
feedback rewards to the agent based on the quality of the se-
lected action. In general, the higher the value of the reward,
the better the action selection. According to the optimiza-
tion objective of the problem model, the reward function r
is designed as the inverse of the weighted sum of time and
energy consumption as in Eq. (23), i.e., the larger the reward
value r, the smaller the time and energy consumption of the
task offloading and resource allocation process.

r =
1

λ1T tot
ui + λ2Etot

ui
(23)

Fig. 3 The DQN algorithm for the MEC system.

Discount factor γ: The discount factor γ ∈ [0, 1], when
γ → 1, the agent prefers the long-term reward, otherwise
focuses on the immediate benefit.

5.3 JC-TORA Algorithm Design

In the MEC system, the JC-TORA algorithm is used to
find the optimal offload and resource allocation policy for
MUE’s task within its coverage as shown in Fig. 3. The task
acts as an agent in the DRL framework and receives obser-
vations and rewards from the MEC environment during each
time slot. The agent learns offloading and allocation policies
based on the task execution time and energy consumption,
and realizes dynamic routing by guiding the task to select
the next action (computational node) through feedback re-
wards. After several training sessions, the action state with
maximum reward is selected.

In the process of TORA, the entropy weight method in
objective weighting method is used to optimize the objec-
tive and reduce bias. The whole process of TORA in MEC
system using the DQN is shown in Algorithm 1, which in-
cludes replay memory size, discount factor γ and learning
rate α. For each episode, the agent selects the action a by
the optimal policy. When the agent selects action a, the re-
ward r is computed by Eq. (23). With the step into the next
state st+1, the matrix of transition (s, a, r, s′) is stored and the
mini-batch size of transition (s, a, r, s′) is sampled randomly
in the memory pool. Gradient descent and cross-entropy are
used to optimize the Loss function and update the weight pa-
rameter. Finally, the target Q-network is reset at the end of
each episode. The process is an episode from the initial state
to a termination state, which is a completion sequence con-
sisting of state sets, action sets and rewards. The JC-TORA
algorithm is used to fit the environment states and makes a
reasonable decision for each state based on RL to choose a
reasonable action. Tasks generated by MUE are processed
locally or MEC-S server by policy, and a reward value is ob-
tained to guide the agent learning to explore in the direction
of the max reward, which improves the effectiveness of the
objective.

1282
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

6. Experimental and Analysis

6.1 Experimental Settings and Comparison Algorithms

This study uses Python 3.6 and Tensorflow1.14 as experi-
ment platform on Windows 10 system to evaluate the per-
formance of the JC-TORA algorithm in various experimen-
tal settings. The MUE is deployed in a specific area based on
the Poisson distribution, and the experimental parameters in
Table 2 were determined through repeated experiments us-
ing the Monte Carlo methods. During the parameter setting
process, the discount factor γ influences the trend of TORA
policies in Fig. 4. To keep the optimal objective, the dis-
count factor is 0.8. Then a comparison experiment is con-
ducted.

•QL algorithms has strong learning effects and is com-
monly used to solve the TORA problem.

• Local algorithms execute all tasks locally, resulting
in insufficient local resources and excessive computational
pressure that consumes a lot of energy and time.

• The greedy algorithm enumerates all offloading deci-
sion and selects the best result. However, enumerating op-
tions takes time, especially for large-scale tasks.

Table 2 Experimental parameters.

Fig. 4 The influence of discount factor on allocation policy.

• DTORA algorithm [9] uses DRL method to optimize
time and energy consumption based on memory and CPU
resource, but the resource constraints are partial.

6.2 Experimental Results and Analysis

Comparative experiments were designed in terms of en-
ergy consumption, time under different experimental envi-
ronments, including the number of task data size, MUEs and
BSs.

6.2.1 Task Data Size

The first group is shown in Fig. 5, which shows the changes
in energy consumption, execution time as the number of
tasks increases, respectively. In Fig. 5(a), as the number of
tasks increases, the energy consumption of each algorithm
increases. This is because there are more and more data
tasks that are offloaded to the computational nodes. As the
transmission channel and energy consumption increases, the
execution time also increases in Fig. 5(b).

ZHANG et al.: A JOINT COVERAGE CONSTRAINED TASK OFFLOADING AND RESOURCE ALLOCATION METHOD IN MEC
1283

Fig. 5 The performance under different tasks.

In Fig. 5, the greedy algorithm shows the optimal re-
sults, but at a high cost. The experimental results of the
JC-TORA, DTORA and QL are superior, due to their abil-
ity to make adaptive learning decisions. However, JC-
TORA is based on the adaptive DTORA, considers band-
width resources and task coverage to complete task of-
floading. Therefore, JC-TORA outperforms the DTORA
in all aspects. Since DQN algorithm combinates QL and
RL methods, so DTORA algorithm has better learning ef-
fect than QL algorithm. Local processing consumes the
most time and energy because of limited local computing
resources and capacity.

6.2.2 The Number of MUEs

In Fig. 6, the second group of experiments examines the en-
ergy consumption, execution time under different MUEs.
In Fig. 6(a) and Fig. 6(b), the energy consumption increases
with the number of MUEs, and the execution time of each
algorithm remains within a range. This is because increas-
ing MUE is increase of tasks, which directly affects system
energy consumption; But the tasks generated by the MUE in
the same time period are almost constant and the task queue
scheduling is less affected by the MUE, so the effect on the
execution time is not significant.

The greedy algorithm is the best solution in a complex
environment. In this study, compared with DTORA, the JC-

Fig. 6 The performance under different MUEs.

TORA considers bandwidth, task coverage, and other multi-
aspect factors in the TORA process. As a result, the JC-
TORA algorithm outperforms DTORA and QL algorithm
and is close to the greedy algorithm.

6.2.3 The Number of BSs

The third group analyzes the effect of different BSs. Be-
cause the number of BSs affects the computing power of the
MEC system, i.e., the more BSs, the more MEC-S servers,
and the more widely the BSs are distributed. The experi-
mental results under different BSs is shown in Fig. 7, which
show that the changes are smooth and insignificant as the
BSs increases, because the computing resources required for
the task are certain under the corresponding number of BSs.
Because the number of BSs doesn’t affect the task when
computational resources are sufficient, the optimization or-
der of algorithm performance for different numbers of BSs
is: the greedy, JC-TORA, DTORA, QL and local algorithm.

7. Conclusions and Future Works

In this study, we propose the JC-TORA algorithm to solve
the TORA problem in multi-MUE and multi-server MEC
environments. The focus of this work is to use DQN to se-
lect the appropriate compute node for the user’s task, and
complete the reliable transmission by adding the appropriate
constraints. In the future, the next work intends to conduct

1284
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.8 AUGUST 2024

Fig. 7 The performance under different BSs.

research in the area of reliable, efficient and secure TORA
to improve the security and reliability of task transmission
while balancing the computational performance.

Acknowledgments

This work was supported in part by Key Scientific
Research Projects of Colleges and Universities in An-
hui Province (2022AH051921), Funding project for the
cultivation of outstanding talents in Colleges and Uni-
versities (gxyqZD2021135), Start Up funds for scien-
tific research of high-level talents of Bengbu Univer-
sity (BBXY2020KYQD02), the Key research and devel-
opment projects in Anhui Province (202004a05020043),
the Key Scientific Research Projects of Anhui Provincial
Department of Education (2022AH051376) and Natural
Science Foundation Project of Bengbu University, China
(2020ZR12).

References

[1] N. Mast, M.A. Khan, M.I. Uddin, S.A. Ali Shah, A. Khan, M.A. Al-
Khasawneh, and M. Mahmoud, “Channel contention-based routing
protocol for wireless ad hoc networks,” Complexity, vol.2021, pp.1–
10, 2021.

[2] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol.5, no.1, pp.450–465,
2018.

[3] J. Xue and X. Guan, “Collaborative computation offloading and re-
source allocation based on dynamic pricing in mobile edge comput-
ing,” Computer Communications, vol.198, pp.52–62, 2023.

[4] Z. Li, V. Chang, H. Hu, D. Yu, J. Ge, and B. Huang, “Profit
maximization for security-aware task offloading in edge-cloud en-
vironment,” Journal of Parallel and Distributed Computing, vol.157,
pp.43–55, 2021.

[5] V. Cardellini, V.D.N. Persone, V.D. Valerio, F. Facchinei, V. Grassi,
F.L. Presti, and V. Piccialli, “A game-theoretic approach to com-
putation offloading in mobile cloud computing,” Math. Program,
vol.157, no.2, pp.421–449, 2021.

[6] N. Mazumdar, A. Nag, and J.P. Singh, “Trust-based load-offloading
protocol to reduce service delays in fog-computing-empowered
IOT,” Computers and Electrical Engineering, vol.93, 107223, 2021.

[7] M.P.J. Mahenge, C. Li, and C.A. Sanga, ”Energy-efficient task of-
floading strategy in mobile edge computing for resource-intensive
mobile applications,” Digit. Commun. Networks, vol.8, no.6,
pp.1048–1058, 2022.

[8] S. Vimal, M. Khari, N. Dey, R.G. Crespo, and Y.H. Robinson, “En-
hanced resource allocation in mobile edge computing using rein-
forcement learning based MOACO algorithm for IIOT,” Comput.
Commun., vol.151, pp.355–364, 2020.

[9] Z. Tong, X. Deng, F. Ye, S. Basodi, X. Xiao, and Y. Pan, “Adaptive
computation offloading and resource allocation strategy in a mobile
edge computing environment,” Inf. Sci., vol.537, pp.116–131, 2020.

[10] D. Li, Y. Jin, and H. Liu, “Resource allocation strategy of edge sys-
tems based on task priority and an optimal integer linear program-
ming algorithm,” Symmetry, vol.12, no.6, p.972, 2020.

[11] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mobility aware
joint task scheduling and resource allocation for cooperative mo-
bile edge computing,” IEEE Trans. Wireless Commun., vol.20, no.1,
pp.360–374, 2021.

[12] B. Gong and X. Jiang, “Dependent task-offloading strategy based on
deep reinforcement learning in mobile edge computing,” Wireless
Communications and Mobile Computing, vol.2023, p.12, 2023.

[13] T. Yang and J. Yang, “Deep reinforcement learning method of of-
floading decision and resource allocation in MEC,” Computer Engi-
neering, vol.47, no.8, pp.37–44, 2021.

[14] F. Zhou, Y. Wu, R.Q. Hu, and Y. Qian, “Computation rate max-
imization in uav-enabled wireless powered mobile edge computing
systems,” IEEE J. Sel. Areas Commun., vol.36, no.9, pp.1927–1941,
2018.

[15] W. Feng, N. Zhang, S. Li, S. Lin, R. Ning, S. Yang, and Y. Gao, “La-
tency minimization of reverse offloading in vehicular edge comput-
ing,” IEEE Trans. Veh. Technol., vol.71, no.5, pp.5343–5357, 2022.

[16] X. Chen, Y. Cai, L. Li, and M. Zhao, “Energy-efficient resource al-
location for latency-sensitive mobile edge computing,” IEEE Trans.
Veh. Technol., vol.69, no.2, pp.2246–2262, 2020.

[17] Y. Mao, T. Zhou, and P. Liu, “Multi-user task offloading based on de-
layed acceptance,” Computer Science, vol.48, no.1, pp.49–57, 2021.

[18] Z. Tong, F. Ye, J. Mei, B. Liu, and L. Li, “A novel task offloading
algorithm based on an integrated trust mechanism in mobile edge
computing,” Journal of Parallel and Distributed Computing, vol.169,
pp.185–198, 2022.

[19] I.A. Elgendy, W. Zhang, and H. He, “Joint computation offloading
and task caching for multi-user and multi-task MEC systems: Rein-
forcement learning-based algorithms,” Wireless Netw., vol.27, no.3,
pp.2023–2038, 2021.

[20] O.K. Shahryari, H. Pedram, and V. Khajehvand, “Energy and task
completion time trade-off for task offloading in fog-enabled IOT net-
works,” Pervasive and Mobile Computing, vol.74, no.101395, 2021.

[21] X. Zhu and Y. He, “Energy efficiency dynamic task scheduling
in wireless sensor networks,” Computer Engineering and Design,
vol.41, no.2, pp.313–318, 2020.

http://dx.doi.org/10.1155/2021/2051796
http://dx.doi.org/10.1155/2021/2051796
http://dx.doi.org/10.1155/2021/2051796
http://dx.doi.org/10.1155/2021/2051796
http://dx.doi.org/10.1109/jiot.2017.2750180
http://dx.doi.org/10.1109/jiot.2017.2750180
http://dx.doi.org/10.1109/jiot.2017.2750180
http://dx.doi.org/10.1016/j.comcom.2022.11.012
http://dx.doi.org/10.1016/j.comcom.2022.11.012
http://dx.doi.org/10.1016/j.comcom.2022.11.012
http://dx.doi.org/10.1016/j.jpdc.2021.05.016
http://dx.doi.org/10.1016/j.jpdc.2021.05.016
http://dx.doi.org/10.1016/j.jpdc.2021.05.016
http://dx.doi.org/10.1016/j.jpdc.2021.05.016
http://dx.doi.org/10.1007/s10107-015-0881-6
http://dx.doi.org/10.1007/s10107-015-0881-6
http://dx.doi.org/10.1007/s10107-015-0881-6
http://dx.doi.org/10.1007/s10107-015-0881-6
http://dx.doi.org/10.1016/j.compeleceng.2021.107223
http://dx.doi.org/10.1016/j.compeleceng.2021.107223
http://dx.doi.org/10.1016/j.compeleceng.2021.107223
http://dx.doi.org/10.1016/j.dcan.2022.04.001
http://dx.doi.org/10.1016/j.dcan.2022.04.001
http://dx.doi.org/10.1016/j.dcan.2022.04.001
http://dx.doi.org/10.1016/j.dcan.2022.04.001
http://dx.doi.org/10.1016/j.comcom.2020.01.018
http://dx.doi.org/10.1016/j.comcom.2020.01.018
http://dx.doi.org/10.1016/j.comcom.2020.01.018
http://dx.doi.org/10.1016/j.comcom.2020.01.018
http://dx.doi.org/10.1016/j.ins.2020.05.057
http://dx.doi.org/10.1016/j.ins.2020.05.057
http://dx.doi.org/10.1016/j.ins.2020.05.057
http://dx.doi.org/10.3390/sym12060972
http://dx.doi.org/10.3390/sym12060972
http://dx.doi.org/10.3390/sym12060972
http://dx.doi.org/10.1109/twc.2020.3024538
http://dx.doi.org/10.1109/twc.2020.3024538
http://dx.doi.org/10.1109/twc.2020.3024538
http://dx.doi.org/10.1109/twc.2020.3024538
http://dx.doi.org/10.1155/2023/4665067
http://dx.doi.org/10.1155/2023/4665067
http://dx.doi.org/10.1155/2023/4665067
https://doi.org/10.19678/j.issn.1000-3428.0058730
https://doi.org/10.19678/j.issn.1000-3428.0058730
https://doi.org/10.19678/j.issn.1000-3428.0058730
https://doi.org/10.1109/JSAC.2018.2864426
https://doi.org/10.1109/JSAC.2018.2864426
https://doi.org/10.1109/JSAC.2018.2864426
https://doi.org/10.1109/JSAC.2018.2864426
http://dx.doi.org/10.1109/tvt.2022.3151806
http://dx.doi.org/10.1109/tvt.2022.3151806
http://dx.doi.org/10.1109/tvt.2022.3151806
http://dx.doi.org/10.1109/tvt.2019.2962542
http://dx.doi.org/10.1109/tvt.2019.2962542
http://dx.doi.org/10.1109/tvt.2019.2962542
https://doi.org/10.11896/jsjkx.200600129
https://doi.org/10.11896/jsjkx.200600129
http://dx.doi.org/10.1016/j.jpdc.2022.07.006
http://dx.doi.org/10.1016/j.jpdc.2022.07.006
http://dx.doi.org/10.1016/j.jpdc.2022.07.006
http://dx.doi.org/10.1016/j.jpdc.2022.07.006
http://dx.doi.org/10.1007/s11276-021-02554-w
http://dx.doi.org/10.1007/s11276-021-02554-w
http://dx.doi.org/10.1007/s11276-021-02554-w
http://dx.doi.org/10.1007/s11276-021-02554-w
http://dx.doi.org/10.1016/j.pmcj.2021.101395
http://dx.doi.org/10.1016/j.pmcj.2021.101395
http://dx.doi.org/10.1016/j.pmcj.2021.101395
https://dx.doi.org/10.16208/j.issn1000-7024.2020.02.003
https://dx.doi.org/10.16208/j.issn1000-7024.2020.02.003
https://dx.doi.org/10.16208/j.issn1000-7024.2020.02.003

ZHANG et al.: A JOINT COVERAGE CONSTRAINED TASK OFFLOADING AND RESOURCE ALLOCATION METHOD IN MEC
1285

Daxiu Zhang received her M.S. degree
from Anhui University of Technology, Huainan,
China in 2018. She has been working in the
School of Computer Engineering, Bengbu Uni-
versity and Information Technology, Quanzhou
Vocational College of Economics and Busi-
ness. Her research interests include IoT, Ma-
chine Learning and Big Data.

Xianwei Li received his M.S. degree from
Hunan University, Changsha, China in 2010 and
ScD degree from Waseda University, Tokyo,
Japan in 2019. He is now an associate professor
with the School of Computer and Information
Engineering, Bengbu University. His research
interests include IoT, Machine Learning and Big
Data.

Bo Wei received the Ph.D. degree from
Waseda University, Tokyo, Japan, in 2019.
From 2019 to 2023, she was an Assistant Pro-
fessor with the Graduate School of Fundamen-
tal Science and Engineering, Waseda Univer-
sity. She is currently a specially appointed As-
sistant Professor with The University of Tokyo
and the PRESTO Researcher with JST. Her re-
search interests include wireless communica-
tion, machine learning, adaptive video transmis-
sion, computer networking, quantum comput-

ing, and the Internet of Things.

Yukun Shi received his M.S. degree
from Anhui University of Technology, Huainan,
China in 2018, and is currently a Ph.D. student
at the School of Cyberspace Security, Hangzhou
University of Electronic Science and Technol-
ogy, Hangzhou, China. His research interests
include Cyberspace Security, Machine Learning
and Big Data.

