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PAPER
Backpressure Learning-Based Data Transmission Reliability-Aware
Self-Organizing Networking for Power Line Communication in
Distribution Network

Zhan SHI†a), Nonmember

SUMMARY Power line communication (PLC) provides a flexible-
access, wide-distribution, and low-cost communication solution for distri-
bution network services. However, the PLC self-organizing networking in
distribution network faces several challenges such as diversified data trans-
mission requirements guarantee, the contradiction between long-term con-
straints and short-term optimization, and the uncertainty of global informa-
tion. To address these challenges, we propose a backpressure learning-based
data transmission reliability-aware self-organizing networking algorithm to
minimize the weighted sum of node data backlogs under the long-term
transmission reliability constraint. Specifically, the minimization problem
is transformed by the Lyapunov optimization and backpressure algorithm.
Finally, we propose a backpressure and data transmission reliability-aware
state-action-reward-state-action (SARSA)-based self-organizing network-
ing strategy to realize the PLC networking optimization. Simulation results
demonstrate that the proposed algorithm has superior performances of data
backlogs and transmission reliability.
key words: distribution network, power line communication, self-
organizing networking, backpressure, reinforcement learning

1. Introduction

The utilization of power line communication (PLC) technol-
ogy has emerged as an effective means of addressing the
issue of information exchange within the “last kilometer” of
distribution networks [1]–[3]. The benefits of PLC include
its adaptability, wide distribution, and low construction cost,
rendering it a popular choice for distribution network ser-
vices such as power consumption information collection and
distributed energy access [4]–[6]. The energy supply for
PLC carrier modules is reliant on the power grid, whereas
the communication of electric equipment is dependent on the
PLC network. Consequently, distribution networks and PLC
networks are interdependent and exhibit a deep coupling [7]–
[9]. With the advent of the power internet of things (PIoT),
the introduction of various novel distribution devices, and
a high proportion of new energy access to the distribution
network, there has been a surge in the dynamic switching
of electric equipment, leading to increased complexity and
dynamism in the scale and structure of the distribution net-
work topology [10], [11]. Furthermore, the various noise
generated by the operation of electric equipment can cause
changes in channel states, which pose a threat to the reliabil-

Manuscript received November 29, 2023.
Manuscript publicized January 15, 2024.
†Power Dispatching and Controlling Center of Guangdong

Power Grid Company Limited, Guangdong 510600, China.
a) E-mail: w_1234567892021@163.com
DOI: 10.1587/transfun.2023EAP1154

ity of PLC data transmission and the dependable operation
of the distribution network [12], [13]. Therefore, there is a
pressing need to enhance the existing PLC networking tech-
nology. Nonetheless, several technical challenges must be
overcome to achieve this goal.

Firstly, the current networking optimization strategies
do not align with the differentiated data importance require-
ments of communication nodes within the network, which
carry distribution network services with varying data impor-
tance levels. The conventional networking approach over-
looks the significance of diverse data importance, thereby
failing to cater to the data transmission demands of distinct
distribution network services [14], [15]. Secondly, short-
term optimization based on limited information may result
in long-term performance degradation. Specifically, short-
termnetworking decisions aimed at enhancing the short-term
performance of data queue backlogs may compromise the
long-term transmission reliability performance [16], [17].
Lastly, global information, including PLC state, network
congestion, and dynamic changes in network topology, is
subject to uncertainty. Consequently, optimizing networking
decisions under such uncertain global information remains
an open issue [18], [19].

To support the provision of wide-area multi-scale new
distribution network services, the optimization of self-
organizing networking in PLC has made incremental ad-
vancements. In [20], Yu et al. proposed a multiple-input
and multiple-output (MIMO) PLC networking scheme to
improve transmission reliability and minimize networking
costs. In [21], Yan et al. proposed a particle swarm
optimization-based networking coordination algorithm for
a large complex distribution communication network, the
objective of which is to minimize the power wasting of dis-
tribution network devices. However, these works did not
account for the differentiated importance requirements of
data during the networking optimization process. In [22],
Sung et al. investigated an opportunistic routing-based net-
working method for PLC-access networks, which minimizes
the packet transmission delay. However, the above work ig-
nores the contradiction between long-term constraints and
short-term performance optimization. Mauro et al. [23] de-
vised a Geo-routing-based algorithm to optimize network-
ing decisions within the constraints of PLC path energy and
delay. However, the above work relies on certain global
information, rendering it less suitable for accommodating
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the dynamic changes in PLC channel state and distribution
network topology.

In this article, we propose a backpressure learning-
based data transmission reliability-aware self-organizing net-
working algorithm. Initially, we establish a comprehensive
PLC self-organizing networking model to serve as the foun-
dation for our optimization framework. The optimization
objective is to minimize the weighted sum of node data back-
log while adhering to the long-term constraint of ensuring
reliable data transmission. To achieve this, we leverage the
backpressure algorithm and Lyapunov optimization to trans-
form the optimization problem. The networking decision is
optimized by backpressure and data transmission reliability-
aware state-action-reward-state-action (SARSA)-based self-
organizing networking strategy. Finally, the performance of
the proposed algorithm is verified by simulation. The main
contributions are summarized as follows.
•Guarantee of data transmission performance with

differentiated data importance: We consider the different
levels of data importance and reliability constraints for dif-
ferent nodes, and minimize the node data backlog using a
weighted sum objective, where the weights correspond to the
data importance levels. This allows nodes with higher data
importance to enhance their performance in terms of data
backlog reduction, data transmission volume, and transmis-
sion reliability, fulfilling their data transmission demands.
• Data transmission reliability awareness: We use

Lyapunov optimization to convert the long-term transmis-
sion reliability constraint into a virtual queue stability prob-
lem. Data transmission reliability awareness is achieved by
dynamically adapting the networking decisions based on the
virtual queue backlog of the long-term transmission reliabil-
ity constraint.
• Backpressure learning-based self-organizing net-

working: The proposed algorithm calculates the node queue
backlog difference based on the backpressure algorithm to
assess the congestion level of the next-hop node. Then, the
node queue backlog difference is incorporated in the penalty
value of SARSA to enhance its convergence and learning
capabilities for the self-organizing networking strategy.

2. System Model

Figure 1 illustrates the PLC self-organizing networking
model. The PLC network and the power grid are deeply cou-
pled. On one hand, the PLC channel shares the power trans-
mission channel of the distribution network, which makes it
susceptible to the electromagnetic interference from electric
equipment. Moreover, the grid connection and islanded op-
eration of electric equipment cause a topology change in the
communication network. On the other hand, the PLC net-
work collects and transmits service data such as operation
state information of electric equipment, which influences the
stability of the distribution network.

Define the topology of PLC network as G = {V, ε},
whereV = {1, vi, · · · , vI } indicates the set of PLC commu-
nication nodes and ε = {Ei, j |vi, vj ∈ V} indicates the set of

Fig. 1 PLC self-organizing networking model.

PLC communication links. A quasi-static time slot model is
adopted in this paper. The overall networking optimization
time is divided into T time slots with the same length τ, the
set of which is T = {1, · · · , t, · · · ,T}. The network state
remains constant within a time slot and changes dynamically
across different time slots. Define the networking decision
indicator variables as xi, j(t) ∈ {0,1}, where xi, j(t) = 1 indi-
cates the node vi selects node vj as the next-hop transmission
node, otherwise xi, j(t) = 0. At the same time, there must
be a link between vi and vj , i.e., Ei, j ∈ ε, and vi can only
select one next-hop node for data transmission at each time
slot due to the PLC communication link characteristics and
data reception capability. The constraint is expressed as

I∑
j=1

xi, j(t) ≤ 1. (1)

The distribution network has distinctmulti-level topolo-
gies, mainly bus type, star type, and tree type. Each node
assigns its networking level based on the shortest distance
to the aggregation node. We define the shortest distance
between vi and the aggregation node as ρi using the Dijk-
stra algorithm. To enhance the networking efficiency, the
next-hop node of the current node should be closer to the
aggregation node, i.e.,

ρi − ρj > 0. (2)

2.1 PLC Channel Noise Model

The PLC channel has various noise sources, among which
the background noise can be modeled as the Gaussian noise
[24], [25], and its power spectral density N( f ) can be written
as

N( f ) = 10K−3.95 f 10−5
, (3)

where K follows a normal distribution. Hence, the back-
ground noise N0 in the PLC channel is generally modeled as
an additive Gaussian white noise with mean 0 and variance
σ2
bg
.
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Impulse noise is mainly caused by the operation of elec-
trical equipment. We adopt Middleton’s Class A model to
describe the impulse noise in the PLC channel, the prob-
ability density function (PDF) of which can be expressed
as

FM (δm) =

η∑
λ=0

pλH(λm; 0;σ2
λ), (4)

where λ indicates the noise state and η is the total number
of states. pλ is the generation probability of impulse noise
under the λ-th state and satisfies pλ = βλe−α/λ!, where β ≤ 1
is the impulse noise index that describes the impulse property
of noise. H(λm; 0;σ2

λ) is the Gaussian PDF. Define σ2
im

as the cumulative impulse noise power for all states. The
impulse noise generated by different interference sources
follows the Poisson distribution, which is expressed as

σ2
λ = (σ

2
bg + σ

2
im)

λ/β + θ

1 + θ
, (5)

where θ = σ2
bg
/σ2

im.

2.2 PLC Channel Model

The PLC channel is modeled using the transmission line
theory [26]. In this model, the power line is conceptualized
as a distributed circuit comprising a sequence of discrete
components. These components include the series resistance
R′, inductance L ′, parallel conductance G′, and capacitance
C ′ per unit length ∆l of the power line, as illustrated in
Fig. 2. The propagation coefficient $ of the power line can
be defined as

$ =
√
(R′ + 2π f L ′)(G′ + 2π f C ′) = ε + jζ, (6)

where f is the frequency of the carrier signal. The real part
of the propagation coefficient ε corresponds to the attenua-
tion constant, which characterizes the amplitude attenuation
parameter during the transmission of carrier signals. As
stated in [27], within the frequency range of carrier commu-
nication, ε can be expressed as

ε = k1
√

f + k2 f . (7)

Fig. 2 Distribution circuit model of power line.

Considering the sharing and openness of power lines,
the signal attenuation constant and the circuit parameters at
the line branch will change when the load is connected to the
power grid. To reflect the changes in the noise environment,
the effective communication distance between nodes is se-
lected to quantify the channel state. The signal attenuation
value between node vi and vj can be expressed as

δi, j = (k1
√

f + k2 f )li, j, (8)

where li, j is the length of the power line between the node vi
and vj .

When the node vi selects the node vj for data transmis-
sion, the transmission rate between nodes can be expressed
as

ri, j(t) = log2(1 +
Pi, j(t)δi, jWi, j(t)

Γi
), (9)

where Pi, j(t) represents the transmission power between vi
and vj . Define P as the power spectral density mask. Pi, j(t)
needs to satisfy the constraint Pi, j(t) ≤ P. Wi, j(t) represents
the signal-to-noise ratio (SNR) gain between vi and vj , and
is expressed as

Wi, j(t) =
| Qi, j(t) |2

σ2
bg
+ σ2

im

, (10)

where Qi, j(t) is the channel frequency response of the node
vi . Γi is the SNR gap, which can quantitatively reflect the
anti-interference performance of the distribution network
communication topology when the SNR deteriorates. Γi
is expressed as

Γi ≈
[Y−1(Pe)]2

3
, (11)

where Y−1(x) represents the inverse function of Y (x) =
1

2π

∫ ∞
x

e−t
2/2dt.

2.3 Node Queue Backlog Model

Due to the influence of channel state, the data of the node vi
may not be able to transmit completely within a fixed time
slot length τ. Therefore, a data queue is constructed to store
the untransmitted data and the data transmitted from other
nodes [28], the backlog of which is updated as

Zi(t + 1) = (12)

Zi(t) −
I∑
j=1

xi, j(t)Ui, j(t) +
I∑

k=1
xk ,i(t)Uk ,i(t),

whereUk ,i(t) is the amount of data transmitted from the pre-
vious node vk , and Ui, j(t) is the amount of data transmitted
to the node vj . Ui, j(t) can be expressed as

Ui, j(t) = min{τri, j(t), Zi(t)}. (13)

Similarly, the formula of Uk ,i(t) can be obtained.
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2.4 Transmission Reliability Model

Due to the coupling between the distribution network and
the PLC network, and the interference of background noise
and impulse noise in the PLC channel, data transmission
between nodes may be affected by error codes. Therefore,
the cyclic redundancy check (CRC) mechanism is used to
verify the data error received during networking. The error
probability between vi and vj is expressed as

pi, j(t) = 1 − exp(−
ξ(σ2

bg
+ σ2

im)

Pi, j(t)Wi, j(t)
), (14)

where ξ represents the waterfall threshold. Define mi, j(t) ∈
{0,1} as the binary data transmission error indicator variable,
where mi, j(t) = 1 indicates that no errors occurred during
data transmission, mi, j(t) = 0 otherwise. mi, j(t) is expressed
as

mi, j(t) =
{ 1, The probability is 1 − pi, j(t)

0, The probability is pi, j(t)
. (15)

To ensure the long-term reliable transmission of distri-
bution network service data, a long-term transmission relia-
bility constraint is defined as

lim
T→∞

1
T

T∑
t=1

I∑
j=1

xi, j(t)mi, j(t) ≥ $i,min, (16)

where $i,min is the minimum tolerance reliability threshold
of vi . This constraint means that for node vi , the total times of
no transmission errors between vi and all other nodes should
satisfy a threshold over a long term.

2.5 Networking Optimization Problem Model

In this paper, a PLC self-organizing networking optimiza-
tion problem is proposed. The objective is to minimize the
weighted sum of the node data backlog by optimizing the
networking strategy under the long-term transmission relia-
bility constraint. The optimization problem is modeled as

P1: min
{xi , j (t)}

I∑
i=1

ϑiZi(t)

s.t. C1 : xi, j(t) ∈ {0,1},∀vi, vj ∈ V,∀t ∈ T ,

C2 :
I∑
j=1

xi, j(t) ≤ 1,∀vi ∈ V,∀t ∈ T ,

C3 : Ei, j ∈ ε,∀vi, vj ∈ V,

C4 : ρi − ρj > 0,∀vi, vj ∈ V,

C5 : lim
T→∞

1
T

T∑
t=1

I∑
j=1

xi, j(t)mi, j(t) ≥ $i,min,

(17)

where ϑi is the data importance weight of vi . C1 is the
constraint of the networking decision indicator variable. C2

indicates that each node can select only one next-hop node
for data transmission in each time slot. C3 indicates that the
PLC channel must exist between the current node and the
next-hop node. C4 indicates that the next-hop node selected
by the current node is closer to the aggregation node. C5 is
the long-term transmission reliability constraint.

3. Backpressure Learning-Based Data Transmission
Reliability-Aware Self-Organizing Networking Algo-
rithm

In this section, we propose a backpressure learning-based
data transmission reliability-aware self-organizing network-
ing algorithm to address P1. First, the problem transfor-
mation based on the backpressure algorithm and Lyapunov
optimization is introduced. Then, a backpressure and data
transmission reliability-aware SARSA-based self-organizing
networking strategy is given.

3.1 Problem Transformation Based on Backpressure Algo-
rithm and Lyapunov Optimization

To ensure the long-term transmission reliability constraint,
a reliability virtual queue is constructed and updated as [29]

Ei (t + 1) = (18)

max
{
Ei (t) +$i,min −

l∑
j=1

xi, j (t)mi, j (t) ,0
}
.

Based on Lyapunov optimization theory [30], [31], P1
is converted to

P2: min
{xi , j (t)}

Θ (t) =
l∑

i=1

l∑
j=1

[
VZϑiZi

(
t
)
−

Ei

(
t
)
xi, j

(
t
)
mi, j

(
t
) ]

s.t. C1 ∼ C4,

C6 : Zi

(
t
)
and Ei

(
t
)
are mean rate stable, (19)

where VZ is the weight of the weighted sum of node data
backlog.

Further, based on the backpressure algorithm, the prob-
lem of minimizing data backlog can be transformed into the
problem of maximizing the node data backlog difference.
Define ∆Zi, j(t) as the backlog difference between node vi
and vj , which is given by

∆Zi, j (t) = Zi (t) − Z j (t). (20)

When ∆Zi, j(t) is larger, the backlog of the next-hop node
vj is smaller than that of vi , which helps to smooth the data
transmission load to avoid network congestion. Therefore,
Θ(t) can be converted to Θ̂(t), which is given by

Θ̂(t) =
I∑

i=1

I∑
j=1
Θ̂i, j (t)
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= −

I∑
i=1

I∑
j=1

[
Vzϑi∆Zi, j

(
t
)
+ Ei

(
t
)
xi, j

(
t
)
mi, j

(
t
) ]
.

(21)

3.2 Backpressure and Data Transmission Reliability-
Aware SARSA-Based Self-Organizing Networking
Strategy

Owing to the intricate nature of PLC channels, which en-
compasses complex background and pulse noise, as well as
the dynamic structure of PLC networks, acquiring real-time
global information becomes a challenging task for individ-
ual nodes. To address this challenge, reinforcement learn-
ing (RL) algorithms enable nodes to continually learn about
the network state through real-time interactions between the
agent and the environment. By leveraging the value of state-
action pairs, i.e., Q value, RL algorithms facilitate online
optimization of self-organizing networking decisions within
PLC networks, even in the absence of comprehensive global
network information.

To incorporate the sequential coupling characteristics
of state and action in RL, we transform P2 into a Markov de-
cision process (MDP) that encompasses distinct components
such as the state space, action space, and reward. The sub-
sequent sections provide a comprehensive account of these
components.
• State space: The state space includes node, node data

backlog, virtual queue backlog of this time slot, networking
decision indicator and data transmission error variables of
the previous time slot, which are given by

Si (t) =
{
vi, Zi (t) ,Ei (t) , xi, j (t − 1) ,mi, j (t − 1)

}
.

(22)

• Action space: The action space is defined as the set
of next-hop nodes that can be selected by each node, which
is given by

Ai (t) =
{
νj | ρi − ρj > 0,Ei, j ∈ ε

}
. (23)

• Penalty: According to the optimization goal after
transformation, the penalty for vi selecting vj as the next-
hop node is defined as

ϕi, j (t) = Θ̂i, j (t) . (24)

The SARSA algorithm, as a RL technique, incorporates
an online optimization mechanism that demonstrates supe-
rior robustness compared to the Q-Learning algorithm in
decision-making scenarios. By effectively analyzing the dy-
namic changes in the node data queue and the transmission
reliability virtual queue, the SARSA algorithm significantly
enhances transmission reliability and alleviates network con-
gestion within PLC networking. Consequently, the SARSA
algorithm holds substantial potential for enhancing the trans-
mission performance of PLCs within distribution networks.
To further enhance convergence performance and learning

ability, we introduce amodification to the traditional SARSA
algorithm by incorporating the discrepancy between the con-
verted data transmission reliability virtual queue backlog and
the node data queue backlog as a penalty within the network-
ing decision process. The proposed algorithm is shown as
Algorithm 1, which includes three stages: initialization, net-
working decision, and learning. The details are described as
follows.
• Initialization: Initialize the networking decision in-

dicator variables xi, j(t), action Ai(t), and Q(Si(t), vj).
• Networking decision: The node vi observes the state

space Si(t) in the t-th time slot and selects the next-hop node
with the maximum Q value, which is given by

νj∗ = arg max
{νj }

Q
(
Si (t) , vj

)
. (25)

If vi selects vj for the next-hop transmission, set xi, j(t) = 1.
Then, vi performs the action selected in the previous stage
for data transmission.
• Learning: Each node within the network observes

the performance of the data queue backlog and the data trans-
mission reliability virtual queue. Subsequently, each node
calculates the penalty using (24). The node then proceeds
to update the data queue and transmission reliability virtual
queue by employing (12) and (18), respectively. Following
this, each node transitions from the current state to the next
state, selects the corresponding action, and updates the Q
value as

Q
(
Si (t) , vj

)
=Q

(
Si (t) , vj

)
+ α

[
γQ

(
Si (t + 1) , vj

)
−

Q
(
Si (t) , vj

)
+ ϕi, j (t)

]
. (26)

where α is the learning rate and γ is the attenuation factor
of penalty. Repeat Networking decision and Learning until
t = T .
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4. Simulation Result

The proposed algorithm is evaluated through simulation.
The simulation is performed via MATLAB 2023b and runs
over a ThinkStation P520 with Intel Core i7-6900KCPU and
48GB random access memory (RAM). A PLC network with
a topology structure comprising 26 nodes distributed across
four levels is employed. Specifically, the network consists of
3 first-level nodes, 5 second-level nodes, 7 third-level nodes,
and 11 fourth-level nodes. The first-level nodes possess the
highest level of data importance, whereas the fourth-level
nodes have the lowest. Distribution network topology has
obvious multi-level characteristics, and common topologies
are bus, star, tree, etc. Each node decides the grouping level
based on the shortest distance to the aggregation gateway.
The higher the networking level of the node, the greater
the danger of its failure for the safe operation of the distri-
bution network. Therefore, we set the minimum tolerance
reliability thresholds as [0.9, 0.8, 0.7, 0.6], respectively. Dif-
ferent power service data have different importance levels,
and the backlog of high-importance data has a worse impact.
Therefore, we design different data importance levels for dif-
ferent importance levels of power service data to prioritize
the transmission of data with high importance levels. The
data importance values for the nodes at different levels are
set as [1.0, 0.8, 0.6, 0.4]. Additional simulation parameters
are shown in Table 1 [32].

Two advanced networking algorithms are set for com-
parison. The first algorithm is the self-organizing network
routing algorithmbased onQ-learning (SRQ) [33]. It utilizes
Q-learning to optimize PLCnetworking decisions. However,
it overlooks the significance of differentiated data impor-
tance and fails to address the long-term data transmission
reliability constraint. The second one is the particle swarm
optimization-based PLC networking (PSO-PLC) algorithm
[34]. This algorithm employs the particle swarm optimiza-
tion technique to search for an optimal PLC networking strat-
egy. It also neglects the differentiated data importance and
the long-term data transmission reliability constraint. The
optimization objective in both algorithms is defined as the
weighted sum of node data backlogs, without considering
the problem transformation based on the backpressure algo-
rithm.

Figure 3 shows the weighted sum of the node data
backlog versus time slot. The proposed algorithm exhibits

Table 1 Simulation parameters.

the most rapid convergence in comparison to the SRQ and
PSO-PLC algorithms. Specifically, when t = 500, the pro-
posed algorithm surpasses SRQ and PSO-PLC by 13.44%
and 19.19%, respectively. This significant performance im-
provement stems from the fact that the proposed algorithm
transforms the minimization of node data backlog into the
maximization of node data backlog differences. Therefore,
network congestion is effectively circumvented, enabling
continuous learning of the relationship between network
state and networking decisions based on backpressure aware-
ness. Furthermore, the proposed algorithm considers the
optimization of node data backlog with differentiated data
importance, thereby further enhancing theweighted sumper-
formance. Conversely, SRQ and PSO-PLC algorithms dis-
regard the optimization of node data backlog differences in
relation to differentiated data importance, resulting in poorer
convergence and node data backlog performance.

The average queue backlogs of different-level nodes
are shown in Fig. 4. The proposed algorithm reduces the
average queue backlogs of first-level nodes by 51.46% and
55.36% compared with SRQ and PSO-PLC, respectively.
By taking into account the differentiated data importance,
the proposed algorithm optimizes the networking decision
and allows the nodes with higher data importance to reduce
their data backlogs preferentially, thus alleviating the data

Fig. 3 The weighted sum of the node data backlog versus time slot.

Fig. 4 Average queue backlogs of different-level nodes.
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Fig. 5 The average amount of transmitted data versus time slot.

Fig. 6 Average transmission reliability of different-level nodes.

load on the PLC network. SRQ and PSO-PLC have similar
average queue backlogs for different-level nodes since they
neglect the differentiated data importance.

Figure 5 shows the average amount of transmitted data
versus time slot. When the time slot reaches 500, the pro-
posed algorithm achieves a 41.19% increase in average trans-
mitted data amount compared to SRQ, and an even more
significant enhancement of 73.37% compared to PSO-PLC.
This notable performance gain is attributed to the optimiza-
tion of networking decisions introduced by the proposed
algorithm, which includes the incorporation of node back-
log differences into the penalty function, so as to effectively
promote the transmission of a greater quantity of data. Con-
versely, the SRQ and PSO-PLC algorithms do not introduce
networked decision optimization and neglect the differenti-
ated data importance.

Figure 6 shows the average transmission reliability of
different-level nodes. The result conclusively demonstrates
that the proposed algorithm effectively meets the long-term
transmission reliability constraints for nodes at different lev-
els. Conversely, the SRQ and PSO-PLC algorithms only par-
tially satisfy these constraints. This superior performance of
the proposed algorithm is attributed to its unique approach

Fig. 7 The box plots of transmission reliability deficit.

of transforming the long-term transmission reliability con-
straint into the optimization of virtual queue stability. Ad-
ditionally, the proposed algorithm keenly senses and adapts
to dynamic changes in virtual queues while considering the
differentiated data importance. In contrast, SRQ and PSO-
PLC algorithms overlook the importance of the long-term
transmission reliability constraint, thereby failing to ensure
reliable data transmission for nodes at different levels.

Figure 7 shows the box plots of transmission reliability
deficit. The result reveals that the proposed algorithm effec-
tively mitigates the fluctuations in transmission reliability
deficit. Specifically, the proposed algorithm achieves reduc-
tions of 65.14% and 75.39% in the transmission reliability
deficit fluctuation compared to SRQ and PSO-PLC, respec-
tively. This performance improvement is attributed to the
proposed algorithm’s emphasis on optimizing the stability
of the transmission reliability virtual queue. By constantly
learning and adapting the networking strategy, the proposed
algorithm effectively minimizes penalties and improves the
virtual queue deficit. In contrast, SRQ and PSO-PLC algo-
rithms do not incorporate transmission reliability awareness
into their decision-making process, resulting in the deterio-
rating performance of the virtual queue.

5. Conclusion

This paper introduced a backpressure learning-based data
transmission reliability-aware self-organizing networking al-
gorithm. The algorithm aims to minimize the weighted
sum of node data backlogs. The proposed algorithm
first leverages the Lyapunov optimization to transform
the optimization problem. Secondly, a backpressure and
data transmission reliability-aware state-action-reward-state-
action (SARSA)-based self-organizing networking strategy
is proposed to realize the PLC networking optimization.
Simulation results demonstrate that the proposed algorithm
outperforms both the SRQ algorithm and PSO-PLC algo-
rithm in terms of the weighted sum of delay and reliability,
achieving reductions of 13.44% and 19.19% respectively.
Furthermore, the proposed algorithm not only enhances the
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least transmission reliability deficit but also mitigates net-
work congestion by incorporating transmission reliability
and backpressure awareness. In future research, we plan to
investigate the joint optimization of self-organizing network-
ing and power control to further enhance data transmission
reliability.
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