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PAPER
Memetic Gravitational Search Algorithm with Hierarchical
Population Structure

Shibo DONG†, Haotian LI†, Yifei YANG††, Jiatianyi YU†, Zhenyu LEI†, Nonmembers,
and Shangce GAO†a), Member

SUMMARY The multiple chaos embedded gravitational search algo-
rithm (CGSA-M) is an optimization algorithm that utilizes chaotic graphs
and local search methods to find optimal solutions. Despite the enhance-
ments introduced in the CGSA-M algorithm compared to the original GSA,
it exhibits a pronounced vulnerability to local optima, impeding its capacity
to converge to a globally optimal solution. To alleviate the susceptibility of
the algorithm to local optima and achieve a more balanced integration of
local and global search strategies, we introduce a novel algorithm derived
from CGSA-M, denoted as CGSA-H. The algorithm alters the original pop-
ulation structure by introducing a multi-level information exchange mech-
anism. This modification aims to mitigate the algorithm’s sensitivity to
local optima, consequently enhancing the overall stability of the algorithm.
The effectiveness of the proposed CGSA-H algorithm is validated using
the IEEE CEC2017 benchmark test set, consisting of 29 functions. The
results demonstrate that CGSA-H outperforms other algorithms in terms of
its capability to search for global optimal solutions.
key words: hierarchical, population structure, memetic algorithms, meta-
heuristic algorithms, gravitational search algorithm

1. Introduction

Inspired by natural and physical phenomena, evolution al-
gorithms are experiencing rapid development. These algo-
rithms prove to be highly effective during the search phase
of problem optimization, significantly enhancing their ca-
pacity to explore global optimal solutions. They emulate
biological behaviors and physical phenomena, which can be
translated into efficient search mechanisms. Through multi-
ple generations of continuous iteration and refinement, these
algorithms exhibit exceptional search processes, greatly im-
proving the performance in obtaining the best solutions.
Evolutionary algorithms have been successfully used in a
wide range of applications to solve various optimisation
problems [1–3].

Currently, the field of optimization has been dominated
by two main approaches: traditional mathematical optimiza-
tion methods and meta-heuristic algorithms [4, 5]. The lat-
ter category includes popular algorithms such as the genetic
algorithm [6], ladder sphere evolution search algorithm [7],
and ant colony optimization [8]. Recently, the focus of many
research labs has been on finding efficient solutions to com-
plex optimization problems found in real-world scenarios,
such as the dynamic location routing problem [9], wave en-
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ergy converter position optimization problem [10], and ar-
tificial neural model training problem [11]. To tackle these
challenging problems, researchers have looked to nature for
inspiration, leading to the development of various evolution
algorithms [12, 13]. These algorithms draw on the princi-
ples and behaviors observed in natural phenomena to inform
their approach to solving optimization problems.

Most evolution algorithms typically use a panmictic
population structure, where each individual has an equal
chance to interact with others [14]. However, in recent
years, a distributed population structure has become increas-
ingly popular in parallel computing [15]. This approach
employs multiple sub-populations to handle all individuals,
with a panmictic approach usually performed within each
sub-population. In contrast, a cellular structure only allows
individuals to communicate with those in their predefined
neighborhood [16, 17]. The hierarchical structure can facil-
itate information exchange among different sub-populations
more frequently, thus improving the overall search effi-
ciency of the algorithm [18–21]. Unlike homogeneous pop-
ulation structures, the small-world [22–24] and scale-free
[25] structures consider the population as non-homogeneous
networks, where some individuals have a higher probability
of interacting with others. These structures aim to accelerate
the convergence speed of the search algorithm.

The integration of population structure with meta-
heuristic optimization algorithms, incorporating mecha-
nisms such as stratification, distribution, collaboration, and
adaptive adjustment, enhances algorithmic performance by
achieving a better balance between exploration and exploita-
tion, fostering global search, and maintaining diversity. This
approach has demonstrated impressive success when com-
bined with various metaheuristic optimization algorithms,
such as DWSA (Distributional Western Chicken Swarm
Algorithm) [26] and MLSGSA (Multi-Level Gravitational
Search Algorithm) [21] . The results indicate that the popu-
lation structure mitigates issues related to local optima, sig-
nificantly improving search capabilities.

The Gravitational Search Algorithm (GSA) [27] is an
exceptionally efficient optimization algorithm that has gar-
nered considerable attention in the field [28–34]. In order to
enhance its performance and bolster stability, several new
iterations of GSA have been proposed, such as [35, 36].
CGSA-M represents a successful approach that integrates
multiple chaotic mappings into the GSA framework. The
decision to employ diverse chaotic mappings for updates
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is determined through an adaptive approach, aimed at aug-
menting the search capability across different phases. How-
ever, despite these improvements, it still encounters chal-
lenges in avoiding local optima, resulting in suboptimal so-
lutions.

However, this strategy of using chaotic mappings to
enhance the local search capability of the algorithm, while
increasing the search power, also raises the possibility of
the algorithm getting trapped in local optima. in order to
overcome the limitations of CGSA-M, we propose a novel
memetic gravitational search algorithm with a hierarchical
population structure called CGSA-H. Our algorithm intro-
duces, for the first time, the concept of a multi-level popula-
tion structure. By employing this novel design, we achieve
a balance between exploration and exploitation during the
search process. The larger subpopulations are well-suited
for exploring the global solution space, while the smaller
ones excel in the precise search of local solution spaces.
This progressive optimization approach, facilitated by the
hierarchical design, helps to prevent premature convergence
to local optima. Through the utilization of the multi-level
population structure, we are able to comprehensively ex-
plore the solution space of the problem, thereby enhancing
the algorithm’s performance and efficiency when dealing
with complex problems. The proposed hierarchical struc-
ture allows different sub-populations to exchange informa-
tion more frequently, which improves the overall search ef-
ficiency of CGSA-H.

We test CGSA-H on the IEEE CEC2017 benchmark
optimization functions, and our experimental results demon-
strate that it significantly outperforms its counterparts in
terms of solution quality and convergence speed. Addition-
ally, the search trajectories of CGSA-H on unimodal, multi-
modal, and mixed search landscapes show well-maintained
development and exploration capabilities. This study pro-
vides evidence that the incorporation of a multi-level popu-
lation structure can effectively improve the performance of
CGSA-M in solving complex optimization problems.

The main contributions of this study are as follows:
(1) To enhance the overall search efficiency of CGSA-

M, we introduce a four-level hierarchical population struc-
ture. This design is intended to boost the frequency of infor-
mation exchange among distinct subgroups, ultimately im-
proving the algorithm’s performance.

(2) CGSA-H achieves improved accuracy without the
need for parameter adjustments, showcasing its inherent ca-
pability to enhance algorithm performance.

2. A succinct overview of the conventional Gravita-
tional Search Algorithm (GSA)

The Gravitational Search Algorithm (GSA) is a population-
based metaheuristic algorithm inspired by the gravitational
law among objects. Within the GSA population, each indi-
vidual is regarded as an object and is evaluated based on its
mass as a measure of performance. The position of an indi-
vidual corresponds to a solution of the optimization problem

under consideration. Altering the position of an individual
has the potential to lead to an enhancement in the quality of
the solution.

In a formal context, each entity denoted as Xi =

(xl
i, ..., x

d
i , ..., x

D
i ), (i = 1, 2, 3, ...,N) within the system ex-

erts gravitational forces upon other such entities in a D-
dimensional exploration domain. Here, the variable xd

i sig-
nifies the positional coordinates of the i-th entity along the
d-th dimension. The velocity associated with entity Xi is
denoted as Vi = (V l

i , ...,V
d
i , ...,V

D
i ). During iteration t, the

mass of every entity, represented as Mi(t), is computed us-
ing a fitness-based mapping procedure outlined as follows:

Mi(t) =
f it(Xi(t)) − worst(t)
best(t) − worst(t)

(1)

In this context, the term denoted as f it(Xi(t)) represents
the fitness evaluation of agent Xi, which is determined by the
computation of the objective function. For a problem aiming
at minimization, we establish the definitions of best(t) and
worst(t) as provided below.

best(t) = min
j=1,2,3,...,N

f it(X j(t))

wost(t) = min
j=1,2,3,...,N

f it(X j(t))
(2)

The influence on the i-th agent by the j-th agent is de-
scribed as:

Fd
i j = G(t) Mi(t)×M j(t)

Ri j(t)+ε
(xd

j (t) − xd
i (t)) (3)

where Ri j(t) represents the Euclidean distance between the
positions of agents xi and x j at time t, computed as Ri j(t) =∥∥∥xi(t), x j (t)

∥∥∥
2. The parameter ε is a small constant in-

troduced to avoid division by zero in the denominator of
Eq. (3). Furthermore, the term G(t) denotes the gravitational
constant at time t, and it is defined by:

G(t) = G0 · e(−α t
tmax

) (4)

The initial value of the gravitational constant is repre-
sented by G0 , while α serves as a shrinking constant, and
tmax signifies the maximum number of iterations. Regarding
the i-th agent, the collective force applied to it results from
a summation of forces exerted by neighboring agents, with
random weights.

F i
d(t) =

∑
j∈Kbest, j,i

rand jFd
i j(t) (5)

where Kbest denotes the subset containing the initial K
agents with the highest fitness and greatest mass, and rand j
signifies a randomly generated number following a uniform
distribution within the range [0, 1]. Additionally,

K =
⌊(
β + (1 −

t
tmax

(1 − β)
)

N
⌋

(6)

where the initial value of K is set to N and is progressively
reduced in a linear manner, under the influence of a con-
stant parameter represented by β. The symbol ⌊.⌋ signifies
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the floor function. Adhering to the principles of motion, the
acceleration of the i-th agent is determined through the fol-
lowing equation:

ad
i (t) =

Fd
i (t)

Mi(t)
(7)

Subsequently, the subsequent velocity of an agent is
determined by adding a portion of its current velocity to the
calculated acceleration. Consequently, updates to its posi-
tion and velocity can be performed as outlined below:

vd
i (t + 1) = randivd

i (t) + ad
i (t) (8)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (9)

Here, the variable randi represents a random value sampled
from the interval [0, 1]. It’s essential to emphasize that both
randi and rand j are generated as uniformly distributed ran-
dom numbers, and they typically exhibit distinct values. In-
deed, they serve as a means to introduce randomized traits
into the search process, contributing to its exploration capa-
bilities.

3. Multiple Chaos Embedded Gravitational Search Al-
gorithm

Chaos characterizes non-linear dynamic systems, displaying
bounded dynamic instability, pseudo-randomness, thorough
exploration, and aperiodic behavior tied to initial conditions
and control parameters [37]. Chaotic systems exhibit ran-
dom changes, yet over time, they encompass all possible
states. This trait is useful for creating a search mechanism
to optimize objective functions. However, chaotic optimiza-
tion excels in smaller search spaces but becomes inefficient
for larger ones [38], resulting in lengthy optimization pe-
riods. Hence, chaotic search is often integrated into other
global optimizers like evolutionary algorithms to enhance
their search efficiency [39–49]. Chaotic local search, un-
like substituting random values with chaotic sequences for
GSA’s control parameters, significantly improves GSA per-
formance [50]. Notably, studies frequently employ chaotic
local search for this purpose [40–49]. Consequently, CGSA-
M adopts the approach of chaotic local search.

The definition of parallel chaotic local search involving
multiple chaotic elements is as follows.

X j
g′ (t) = Xg(t) + r(t)(U − L)(z j(t) − 0.5) (10)

Here, X j
g′ for j = 1, 2, ..., 12 represents a provisional can-

didate solution generated through the utilization of parallel
chaotic local search, signifying the simultaneous creation of
twelve candidate solutions through distinct chaotic maps.
Subsequently, the most optimal solution from the twelve
candidates is selected for comparison with the current global
best solution, denoted as Xg(t). If an enhancement in fitness
is observed, the original solution is substituted; otherwise, it
remains unchanged. This updating process can be precisely
articulated as follows:

Xg(t + 1) =
{

X jmin
g′ , if f it(X jmin

g′ ) ≤ f it(Xg(t))
Xg(t), otherwise

(11)

jmin = j ∈ {1, 2, ..., 12} s.t. min
j=1,2,...,12

f it(X j
g′ (t)) (12)

4. Memetic Gravitational Search Algorithm with Hier-
archical Population Structure

Due to the presence of multiple chaos factors, CGSA-M
tends to excessively emphasize exploration, often leading
to the identification of suboptimal solutions in numerous
scenarios. To achieve a more effective balance between al-
gorithmic development and exploration, a novel four-layer
hierarchical population structure, denoted as CGSA-H, has
been introduced upon the foundation of the original CGSA-
M algorithm. The incorporation of the most valuable indi-
vidual layer aims to enhance the algorithm’s convergence
speed. Furthermore, the introduction of a historical infor-
mation storage layer serves to mitigate the potential impact
of local optimality resulting from improved developmental
capabilities. The descriptions of these layers are provided
below, and the main process of the proposed CGSA-H algo-
rithm is outlined in Algorithm 1.

Within the population, the individual possessing the
most valuable information is selected and referred to as the
pivotal individual. This pivotal individual exerts influence
on the individuals within the Dielectric layer, directing them
to explore in the vicinity of the pivotal individual. This ac-
celerates the convergence of the algorithm, contributing to
the overall performance enhancement. In the most valu-
able individual layer, we conducted an effective perturba-
tion search based on the results obtained from the Dielectric
layer, which significantly enhanced the performance of the
algorithm. In the Most Valuable Individuals layer, we utilize
ys to generate ys′ based on its optimal characteristics. Here,
ys represents the best individual in the population. The for-
mulation of this process is expressed as follows:

ys′ (t) = Ys(t) + p · (Zr2(t) − Zr1(t)) · rand(0, 1) (13)

where p is a constant value. In this study, p represents a
constant value, specifically set to 1. Two individuals, de-
noted as Zr1 and Zr2 are randomly selected from the origi-
nal information layer. We illustrate that the algorithm main-
tains robust performance even when the search step size re-
mains unchanged. In many algorithms, parameter adjust-
ment is a crucial process that can impact the performance
and accuracy of the algorithm. However, parameter adjust-
ment can often be a challenging task, particularly for com-
plex algorithms. Therefore, an algorithm that performs well
without requiring parameter adjustment is highly desirable.
This means that researchers can utilize the algorithm with-
out the need to invest additional time and effort into parame-
ter tuning are randomly chosen from the historical informa-
tion layer, enabling them to focus on other essential tasks.

Historical Information Layer: While the inclusion of ys
expedites perturbation search in the proximity of the Most
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Algorithm 1: The pseudo-code of CGSA-H.
Input: Objective Function f x, search space[L,U], and

maximum number of function evaluations FES ;
Output: Final optimal entity;
Initialize:Randomly generate GSA population {X1, X2, ..., XN },

nFES = 0;
while nFES ≤ FES do

while i ≤ N do
Compute overall force Fd

i (t) according to Eqs. (1) -
(6);

Compute acceleration ad
i (t) according to Eq. (7);

Update velocity according to Eq. (8);
Update position according to Eq. (9);
Evaluate the fitness of the current entity;

end
Perform multiple parallel chaotic local searches according

to Eqs. (10) and (11);
Implement the chaotic local search approach;
Decrease the chaotic search radius;
Select the current optimal entity Ys(t) based on fitness;
Generate a new entity ys′ According to Eq. (13);
Update the optimal entity Ys(t) according to Eq. (14);
Update the historical information layer according to

Eq. (15);
end
RETURN the optimal level of fitness.

Valuable Individuals, facilitating faster algorithm conver-
gence, it also introduces the inherent risk of premature con-
vergence to a local optimum. To mitigate this risk, we intro-
duce a historical information layer capable of information
exchange with the Most Valuable Individuals layer. This es-
tablishment aims to strike a balance between exploitation
and exploration within the most valuable individual seg-
ment, thus averting premature convergence to a local op-
timum. Here, ys represents the best individual in the popu-
lation, and y′s denotes a transient individual. f represents the
fitness function. In the event that the fitness value of y′s sur-
passes that of ys, y′s supersedes ys; otherwise, ys is retained
and persists into subsequent iterations. The formulation is
expressed as follows:

ys(t) =
{

ys′ (t), if f (ys′ (t)) ≤ f (ys(t))
ys(t), otherwise (14)

Within the population set Z, assuming the individual
with the optimal fitness is denoted as Zmax. If the fitness of
the individual y′s surpasses that of Zmax, then Zmax is replaced
with y′s, thereby recording historical information. The for-
mula expressing this process is as follows:

Zmax(t) =

ys′ (t) if f (ys′ (t)) ≤ f (Zmaxθ(t)),
Zmax(t) otherwise

(15)

CGSA-H is an enhanced version of CGSA-M designed
to address the issues of low search accuracy and susceptibil-
ity to falling into local optima by incorporating a multi-level
population structure.

As depicted in Fig. 1, CGSA-H constitutes a hierarchi-
cal structure comprising four layers. The initial CGSA-M is
positioned in the first and second layers, while the top layer

Fig. 1 Illustrative concept of hierarchical multiple chaos embedded grav-
itational search algorithm.

of the most valuable individual layer and the historical in-
formation layer are situated in the third and fourth layers,
respectively. It is evident that there exists a bidirectional in-
formation flow between the historical information layer and
the top layer of the most valuable individual layer. It is cru-
cial to emphasize that, between the historical information
layer and the top layer of the most valuable individual layer,
white arrows signify the impact of optimal individual com-
ponents on the information exchange components. Specifi-
cally, if the fitness of y′s exceeds that of Zmax, y′s is employed
to replace Zmax. Blue arrows indicate the update of the best
individual component in the historical information storage
layer.

In CGSA-H, we adjust the population structure based
on the existing CGSA-M by adding two layers. The third
layer, known as the most valuable individual layer, performs
a perturbation search around the optimal solutions found in
the second layer, thereby enhancing the performance of the
algorithm. The fourth layer, the original information layer,
is introduced due to the performance improvement from the
most valuable individual layer, which inevitably increases
the risk of the algorithm prematurely converging to local
optima. To mitigate this risk, we introduce an original in-
formation layer capable of exchanging information with the
most valuable individual layer.

The multi-level population structure in CGSA-H
achieves a superior balance between exploitation and explo-
ration by enabling information exchange between the most
valuable individual layer and the original information layer.
By facilitating more frequent information exchange among
different subpopulations, the algorithm can attain higher
search accuracy and avoid premature convergence. Algo-
rithm 1 presents the pseudo-code of CGSA-H.

5. Experiment Results

We test the proposed CGSA-H on a set of benchmark prob-
lems from IEEE CEC2017 to validate its performance. The
IEEE CEC2017 problem set consists of 29 test problems,
including 24 simplex optimization problems and 5 nonlin-
ear optimization problems. Nonlinear optimization prob-
lems are those in which the objective function is nonlinear,
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Fig. 2 Box-whisker plots of algorithm performance metrics for functions F4 and F13 across multiple
trials on IEEE CEC2017 test suite.
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Fig. 4 The population diversity of CGSA-H along with the iteration.

meaning it does not have a single peak. These test problems
are designed to evaluate the performance of optimization al-
gorithms on different types of optimization problems with
different characteristics. It is worth noting that we exclude
F2 from testing due to its instability, particularly in high-
dimensional problems, and the significant differences in the
performance of the same algorithm implemented in MAT-
LAB.

The performance of CGSA-H is compared with sev-
eral optimization algorithms, including the classical sine
cosine algorithm (SCA), multiple chaos embedded gravita-

tional search algorithm (CGSA-M), whale optimization al-
gorithm (WOA), and GSA. We conduct the experiments us-
ing a problem dimension of D = 30/50/100, a population
size of 100, and a maximum number of function computa-
tions of D ∗ 104 to ensure fair comparisons. The algorithms
are run independently 51 times for each benchmark prob-
lem. The experiments are conducted on a computer with
a 3.00 GHz Intel (R) Core i7-9700 processor, 8.00 GB of
memory, and a 64-bit operating system.

In this study, we employ the Wilcoxon rank-sum test,
a non-parametric statistical method, to compare the median
differences between two independent samples. This test is
particularly suitable for sample data that do not follow a
normal distribution. We use this test to compare the per-
formance of our proposed algorithm with existing methods
on the CEC2017 problem set and 13 practical problems. To
quantitatively assess the performance of the algorithms, we
record the number of wins/ties/losses (W/T/L) on the spec-
ified problem set. A “win” indicates the number of prob-
lems where our proposed algorithm statistically outperforms
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Fig. 5 Convergence graphs for functions F4 and F13 on IEEE CEC2017 test suite.

Table 1 Experimental results of CEC2017 on 30 dimensions.
CGSA-H CGSA-M GSA WOA SCA GA

mean std mean std mean std mean std mean std mean std
F1 1.934E+03 8.465E+02 1.790E+03 8.070E+02 2.037E+03 1.169E+03 3.669E+10 3.432E+09 1.234E+10 1.886E+09 1.083E+10 1.314E+09
F3 4.718E+04 1.095E+04 8.330E+04 5.770E+03 8.330E+04 5.395E+03 8.097E+04 4.197E+03 3.524E+04 6.480E+03 3.334E+04 3.576E+03
F4 1.273E+02 1.124E+01 1.420E+02 1.470E+01 1.351E+02 1.346E+01 8.553E+03 7.919E+02 9.429E+02 2.408E+02 2.230E+03 2.661E+02
F5 2.230E+02 1.735E+01 2.240E+02 1.930E+01 2.324E+02 1.613E+01 3.992E+02 1.649E+01 2.781E+02 2.057E+01 2.070E+02 2.160E+01
F6 4.948E+01 3.018E+00 5.010E+01 3.090E+00 5.038E+01 3.395E+00 7.865E+01 3.498E+00 4.956E+01 5.783E+00 5.681E+01 5.067E+00
F7 8.906E+01 1.017E+01 8.790E+01 1.160E+01 8.725E+01 1.123E+01 5.901E+02 2.891E+01 4.235E+02 3.849E+01 3.609E+02 5.452E+01
F8 1.529E+02 1.389E+01 1.520E+02 1.460E+01 1.540E+02 1.377E+01 3.229E+02 1.307E+01 2.501E+02 1.856E+01 1.420E+02 2.280E+01
F9 2.048E+03 2.696E+02 2.110E+03 4.140E+02 1.986E+03 3.064E+02 9.602E+03 8.083E+02 4.322E+03 9.179E+02 3.416E+03 4.639E+02
F10 3.739E+03 4.558E+02 3.720E+03 4.350E+02 3.918E+03 3.664E+02 7.134E+03 3.124E+02 7.216E+03 2.893E+02 5.140E+03 1.032E+03
F11 1.769E+02 5.566E+01 3.440E+02 9.780E+01 3.482E+02 8.194E+01 7.343E+03 1.436E+03 1.034E+03 4.362E+02 7.041E+02 7.847E+01
F12 3.762E+06 6.269E+06 1.530E+07 2.870E+07 9.261E+06 2.256E+07 7.402E+09 1.394E+09 1.040E+09 2.393E+08 1.593E+09 2.770E+08
F13 2.094E+04 5.095E+03 2.790E+04 5.450E+03 2.781E+04 4.890E+03 3.414E+09 1.225E+09 4.171E+08 1.851E+08 2.085E+08 1.136E+08
F14 1.360E+03 2.440E+03 4.340E+05 1.370E+05 4.758E+05 1.116E+05 3.438E+06 1.515E+06 1.374E+05 7.293E+04 1.620E+05 7.924E+04
F15 3.785E+03 1.513E+03 1.070E+04 2.010E+03 1.022E+04 1.873E+03 1.182E+08 5.077E+07 1.202E+07 9.820E+06 1.372E+04 5.093E+03
F16 1.432E+03 3.097E+02 1.560E+03 3.040E+02 1.610E+03 2.960E+02 3.847E+03 3.075E+02 2.001E+03 2.166E+02 2.376E+03 3.144E+02
F17 1.009E+03 2.781E+02 1.100E+03 2.230E+02 1.149E+03 1.885E+02 1.807E+03 2.202E+02 6.989E+02 1.654E+02 7.327E+02 1.907E+02
F18 3.912E+04 1.297E+04 3.290E+05 1.740E+05 3.346E+05 1.757E+05 1.965E+07 9.463E+06 3.332E+06 1.539E+06 5.081E+05 2.608E+05
F19 4.019E+03 1.977E+03 1.180E+04 5.100E+03 1.187E+04 4.158E+03 1.835E+08 5.326E+07 2.467E+07 1.334E+07 1.401E+06 8.631E+05
F20 8.776E+02 2.417E+02 1.030E+03 1.720E+02 1.005E+03 1.579E+02 9.791E+02 9.947E+01 6.324E+02 1.278E+02 5.104E+02 1.273E+02
F21 4.492E+02 2.216E+01 4.520E+02 2.130E+01 4.536E+02 1.685E+01 6.290E+02 2.466E+01 4.563E+02 1.681E+01 4.496E+02 2.848E+01
F22 3.880E+03 1.968E+03 3.680E+03 2.130E+03 3.922E+03 1.864E+03 5.607E+03 5.037E+02 5.876E+03 2.511E+03 2.656E+03 6.246E+02
F23 9.310E+02 1.727E+02 1.160E+03 1.360E+02 1.295E+03 1.224E+02 1.242E+03 6.722E+01 6.845E+02 2.393E+01 9.362E+02 6.880E+01
F24 8.380E+02 7.133E+01 8.600E+02 5.940E+01 8.676E+02 4.748E+01 1.311E+03 6.622E+01 7.641E+02 2.414E+01 1.068E+03 6.533E+01
F25 4.253E+02 1.248E+01 4.300E+02 1.360E+01 4.335E+02 1.024E+01 1.767E+03 1.340E+02 7.053E+02 7.408E+01 6.718E+02 1.879E+01
F26 3.712E+03 1.486E+03 3.560E+03 1.490E+03 4.076E+03 9.225E+02 7.079E+03 5.483E+02 4.333E+03 3.172E+02 5.238E+03 8.234E+02
F27 1.184E+03 3.236E+02 1.650E+03 3.950E+02 1.824E+03 2.493E+02 5.000E+02 7.668E-05 7.051E+02 4.123E+01 1.188E+03 1.040E+02
F28 4.918E+02 3.556E+01 5.220E+02 5.750E+01 5.312E+02 8.182E+01 5.000E+02 2.108E-02 1.019E+03 1.150E+02 1.228E+03 6.816E+01
F29 1.731E+03 1.933E+02 1.800E+03 2.160E+02 1.799E+03 2.336E+02 3.025E+03 3.176E+02 1.753E+03 2.522E+02 2.225E+03 3.241E+02
F30 4.784E+04 8.603E+03 2.000E+05 1.460E+05 1.600E+05 1.279E+05 5.286E+08 2.093E+08 6.672E+07 2.421E+07 1.393E+07 5.163E+06
W/T/L -/-/- 16/13/0 15/14/0 26/2/1 19/4/6 20/3/6

the comparison algorithm, a “tie” denotes the number of
problems where there is no significant difference in perfor-
mance between the two algorithms, and a “loss” refers to
the number of problems where the proposed algorithm un-
derperforms compared to the comparison algorithm. This
method allow us to determine the relative efficacy of our
proposed algorithm against competitive algorithms across
multiple performance metrics. The results of the test re-
veal that our algorithm demonstrates superior performance
on most of the problems, as reflected by the number of wins.

This statistical comparison provides a solid foundation for
the performance evaluation of our research.

The results of the experiments are summarized in Ta-
bles 1, 2, and 3, which demonstrate that the proposed
CGSA-H significantly outperforms its peers in terms of so-
lution quality. It is also found to be more suitable for dealing
with high-dimensional optimization problems. The conver-
gence diagrams and box-whisker diagrams shown in Figs. 2
and 5 further demonstrate the algorithm’s fast convergence
and search capabilities.
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Table 2 Experimental results of CEC2017 on 50 dimensions.
CGSA-H CGSA-M GSA WOA SCA GA

mean std mean std mean std mean std mean std mean std
F1 5.958E+02 9.928E+02 5.386E+02 9.972E+02 8.815E+02 1.162E+03 7.772E+10 4.570E+09 3.844E+10 5.663E+09 3.397E+10 2.001E+09
F3 1.120E+05 1.625E+04 1.701E+05 9.531E+03 1.682E+05 1.057E+04 1.847E+05 1.096E+04 1.006E+05 1.573E+04 9.136E+04 5.706E+03
F4 1.874E+02 6.095E+01 2.049E+02 7.095E+01 2.194E+02 7.399E+01 2.284E+04 2.788E+03 5.661E+03 1.354E+03 6.714E+03 4.266E+02
F5 3.244E+02 2.151E+01 3.311E+02 2.037E+01 3.259E+02 1.921E+01 6.599E+02 2.025E+01 5.511E+02 2.920E+01 3.462E+02 3.507E+01
F6 5.682E+01 2.655E+00 5.611E+01 2.452E+00 5.680E+01 2.968E+00 9.548E+01 2.817E+00 6.866E+01 4.962E+00 7.026E+01 5.403E+00
F7 2.275E+02 2.789E+01 2.218E+02 2.451E+01 2.225E+02 2.667E+01 1.098E+03 4.251E+01 9.066E+02 6.448E+01 7.761E+02 5.836E+01
F8 3.542E+02 2.009E+01 3.528E+02 2.332E+01 3.497E+02 2.121E+01 6.449E+02 1.958E+01 5.512E+02 3.043E+01 3.670E+02 3.806E+01
F9 8.350E+03 5.141E+02 8.288E+03 5.758E+02 8.331E+03 6.923E+02 3.471E+04 1.868E+03 2.079E+04 3.709E+03 1.294E+04 1.661E+03
F10 6.872E+03 5.844E+02 6.873E+03 5.905E+02 6.823E+03 5.875E+02 1.349E+04 3.817E+02 1.334E+04 4.102E+02 9.409E+03 1.527E+03
F11 5.617E+02 1.993E+02 1.246E+03 2.816E+02 1.238E+03 2.332E+02 1.865E+04 1.609E+03 4.802E+03 1.210E+03 4.666E+03 4.321E+02
F12 1.082E+06 3.274E+05 1.884E+06 4.695E+05 1.998E+06 5.520E+05 5.481E+10 6.137E+09 1.149E+10 2.630E+09 1.587E+10 2.002E+09
F13 1.461E+04 1.832E+03 2.551E+04 3.866E+03 2.673E+04 3.587E+03 2.747E+10 4.359E+09 2.661E+09 8.451E+08 4.050E+09 8.205E+08
F14 3.076E+04 4.463E+04 2.819E+05 9.584E+04 3.366E+05 2.260E+05 3.415E+07 1.241E+07 1.936E+06 9.174E+05 2.898E+06 1.210E+06
F15 1.272E+04 3.324E+03 1.578E+04 4.073E+03 1.525E+04 3.252E+03 3.081E+09 8.099E+08 3.400E+08 1.462E+08 2.440E+07 1.126E+07
F16 2.027E+03 2.768E+02 1.980E+03 3.725E+02 2.014E+03 3.121E+02 6.770E+03 6.058E+02 3.789E+03 3.437E+02 4.246E+03 5.540E+02
F17 1.857E+03 3.274E+02 1.896E+03 2.437E+02 1.840E+03 3.268E+02 4.597E+03 4.833E+02 2.575E+03 2.438E+02 1.993E+03 3.228E+02
F18 3.104E+05 2.523E+05 1.316E+06 7.176E+05 1.386E+06 9.503E+05 8.301E+07 3.040E+07 1.422E+07 6.718E+06 1.135E+07 1.804E+06
F19 1.555E+04 2.914E+03 2.439E+04 7.368E+03 2.491E+04 5.392E+03 1.161E+09 2.489E+08 2.199E+08 1.058E+08 4.261E+06 2.205E+06
F20 1.562E+03 2.510E+02 1.608E+03 2.763E+02 1.557E+03 2.900E+02 1.843E+03 1.427E+02 1.773E+03 1.885E+02 1.135E+03 2.394E+02
F21 6.332E+02 3.591E+01 6.303E+02 2.795E+01 6.362E+02 3.206E+01 1.116E+03 4.036E+01 7.620E+02 3.225E+01 7.918E+02 5.092E+01
F22 9.369E+03 5.288E+02 9.167E+03 5.935E+02 9.190E+03 5.647E+02 1.406E+04 4.111E+02 1.366E+04 3.714E+02 1.089E+04 1.156E+03
F23 1.755E+03 2.286E+02 2.039E+03 1.427E+02 2.049E+03 1.428E+02 2.054E+03 7.684E+01 1.208E+03 5.621E+01 1.731E+03 9.270E+01
F24 1.170E+03 1.422E+02 1.353E+03 5.719E+01 1.353E+03 6.518E+01 2.246E+03 8.761E+01 1.263E+03 5.272E+01 1.971E+03 1.243E+02
F25 6.761E+02 4.128E+01 7.208E+02 8.416E+01 7.376E+02 8.176E+01 8.008E+03 3.976E+02 3.426E+03 5.342E+02 3.246E+03 1.594E+02
F26 2.693E+03 2.541E+03 4.065E+03 2.455E+03 3.045E+03 2.129E+03 1.211E+04 3.100E+02 9.058E+03 6.189E+02 9.722E+03 7.148E+02
F27 2.893E+03 6.500E+02 3.704E+03 4.835E+02 3.611E+03 4.303E+02 5.000E+02 7.982E-05 1.672E+03 1.656E+02 3.035E+03 2.462E+02
F28 6.282E+02 5.471E+01 7.228E+02 1.121E+02 6.846E+02 9.777E+01 5.000E+02 4.997E-03 3.533E+03 4.530E+02 3.615E+03 1.526E+02
F29 2.465E+03 2.748E+02 2.511E+03 2.747E+02 2.651E+03 3.459E+02 1.960E+04 7.334E+03 4.261E+03 5.919E+02 5.893E+03 7.698E+02
F30 1.487E+07 3.292E+06 4.323E+07 5.363E+06 4.118E+07 5.548E+06 3.372E+09 7.337E+08 5.830E+08 1.837E+08 2.950E+08 2.790E+07
W/T/L -/-/- 15/14/0 15/14/0 27/0/2 26/0/3 24/3/2

Table 3 Experimental results of CEC2017 on 100 dimensions.
CGSA-H CGSA-M GSA WOA SCA GA

mean std mean std mean std mean std mean std mean std
F1 4.117E+03 2.341E+03 3.747E+03 2.599E+03 3.702E+03 2.589E+03 2.148E+11 5.578E+09 1.531E+11 9.584E+09 1.163E+11 3.478E+09
F3 2.711E+05 1.930E+04 3.428E+05 1.233E+04 3.409E+05 1.108E+04 3.372E+05 1.233E+04 2.861E+05 1.995E+04 2.326E+05 7.073E+03
F4 6.245E+02 1.635E+02 8.699E+02 2.918E+02 1.024E+03 6.354E+02 7.761E+04 6.263E+03 2.588E+04 3.423E+03 2.407E+04 1.028E+03
F5 8.027E+02 3.135E+01 8.115E+02 2.977E+01 8.039E+02 3.103E+01 1.555E+03 2.970E+01 1.351E+03 5.763E+01 9.552E+02 7.774E+01
F6 5.670E+01 1.325E+00 5.762E+01 1.560E+00 5.723E+01 1.642E+00 1.061E+02 2.538E+00 8.885E+01 3.950E+00 7.724E+01 5.075E+00
F7 9.256E+02 6.055E+01 8.917E+02 7.581E+01 9.156E+02 7.493E+01 2.932E+03 9.210E+01 2.687E+03 1.203E+02 2.289E+03 1.309E+02
F8 9.572E+02 3.471E+01 9.492E+02 3.998E+01 9.555E+02 4.313E+01 1.656E+03 3.318E+01 1.405E+03 5.557E+01 1.102E+03 6.846E+01
F9 1.919E+04 6.342E+02 1.910E+04 8.600E+02 1.911E+04 6.847E+02 7.229E+04 3.918E+03 6.669E+04 6.906E+03 3.097E+04 3.627E+03
F10 1.463E+04 9.354E+02 1.435E+04 7.362E+02 1.455E+04 9.180E+02 3.013E+04 4.681E+02 3.023E+04 4.870E+02 2.375E+04 3.163E+03
F11 1.806E+04 4.682E+03 3.815E+04 5.249E+03 3.742E+04 9.452E+03 2.463E+05 2.718E+04 6.980E+04 1.102E+04 6.625E+04 4.341E+03
F12 1.174E+06 1.201E+06 1.896E+07 5.244E+07 1.541E+07 4.111E+07 1.480E+11 8.740E+09 5.331E+10 7.136E+09 5.835E+10 3.939E+09
F13 1.103E+04 2.158E+03 2.038E+04 2.772E+03 2.021E+04 2.757E+03 2.765E+10 3.391E+09 8.224E+09 1.303E+09 8.830E+09 7.847E+08
F14 1.802E+05 1.021E+05 5.519E+05 8.836E+04 5.617E+05 9.870E+04 4.181E+07 8.942E+06 1.801E+07 6.980E+06 4.464E+06 3.213E+05
F15 1.951E+03 8.257E+02 6.905E+03 1.461E+03 6.743E+03 1.245E+03 1.180E+10 1.860E+09 2.566E+09 6.868E+08 2.055E+09 4.190E+08
F16 5.395E+03 4.778E+02 5.379E+03 5.745E+02 5.292E+03 5.537E+02 1.794E+04 1.035E+03 1.081E+04 6.022E+02 1.269E+04 7.150E+02
F17 3.443E+03 5.040E+02 3.471E+03 4.910E+02 3.376E+03 4.835E+02 1.643E+06 6.736E+05 9.135E+03 1.205E+03 1.441E+04 2.547E+03
F18 2.229E+05 6.615E+04 4.871E+05 1.006E+05 4.823E+05 7.493E+04 8.863E+07 2.761E+07 3.340E+07 1.146E+07 2.928E+06 2.910E+05
F19 1.833E+03 1.253E+03 5.270E+03 1.419E+03 4.843E+03 1.245E+03 1.272E+10 1.601E+09 2.111E+09 6.412E+08 2.197E+09 3.446E+08
F20 4.176E+03 4.900E+02 4.246E+03 4.954E+02 4.255E+03 4.756E+02 5.557E+03 2.399E+02 5.116E+03 2.624E+02 3.442E+03 5.150E+02
F21 1.346E+03 6.686E+01 1.381E+03 7.776E+01 1.384E+03 7.623E+01 2.725E+03 9.157E+01 1.778E+03 6.635E+01 2.164E+03 1.107E+02
F22 1.846E+04 7.223E+02 1.849E+04 9.369E+02 1.859E+04 9.135E+02 3.173E+04 5.699E+02 3.130E+04 6.217E+02 2.457E+04 2.771E+03
F23 3.479E+03 6.192E+02 4.375E+03 2.859E+02 4.326E+03 2.674E+02 3.979E+03 1.224E+02 2.468E+03 8.346E+01 3.827E+03 1.794E+02
F24 2.541E+03 2.128E+02 2.812E+03 2.652E+02 2.767E+03 1.742E+02 6.801E+03 2.334E+02 3.899E+03 1.741E+02 6.930E+03 3.172E+02
F25 1.317E+03 8.443E+01 1.629E+03 1.896E+02 1.675E+03 1.919E+02 1.829E+04 9.336E+02 1.145E+04 1.529E+03 7.812E+03 2.205E+02
F26 1.591E+04 5.838E+03 1.610E+04 4.916E+03 1.694E+04 4.268E+03 3.959E+04 1.064E+03 2.920E+04 1.471E+03 3.267E+04 1.025E+03
F27 5.481E+03 1.108E+03 7.145E+03 7.720E+02 6.765E+03 9.450E+02 5.000E+02 9.353E-05 4.022E+03 3.771E+02 7.116E+03 5.249E+02
F28 1.057E+03 1.583E+02 1.428E+03 3.439E+02 1.508E+03 3.635E+02 5.000E+02 1.377E-04 1.547E+04 1.586E+03 1.348E+04 4.216E+02
F29 5.434E+03 4.395E+02 5.777E+03 4.239E+02 5.749E+03 4.401E+02 1.441E+05 5.045E+04 1.258E+04 1.250E+03 1.555E+04 1.349E+03
F30 1.302E+05 2.547E+05 2.624E+06 9.390E+06 3.513E+06 1.555E+07 2.444E+10 3.621E+09 5.490E+09 1.001E+09 8.937E+09 9.451E+08
W/T/L -/-/- 17/11/0 18/11/0 27/0/2 27/0/2 27/0/2

In Table 4, we detail the specific content of thirteen
real-world problems. Table 5 presents the comparative re-
sults of CGSA-H against other algorithms across these thir-
teen real-world scenarios. The results clearly demonstrate
that CGSA-H exhibits excellent performance in practical ap-
plications.

Fig. 3 illustrates the search trajectory graph of CGSA-
H on F3 and F9. The individual trajectories on the function
graph as the number of iterations increases, using the IEEE
CEC2017 as the test function set, demonstrate CGSA-H’s
ability to overcome local optima. Images are recorded for
2 and 200 iterations in F3 and F9, respectively. We observe

that the populations narrowed the search range and eventu-
ally converged to the minimum range in both F3 and F9,
indicating CGSA-H’s strong exploitation potential.

Fig. 4 shows that CGSA-H displays significant popula-
tion diversity during the initial stages of the search process,
aiding the algorithm in breaking free from local optima and
averting premature convergence. From F11 and F19, it can
be seen that from the beginning of the iteration, the popula-
tion diversity decreases rapidly, and in the middle of the iter-
ation, the population diversity maintains a stable value, thus
proving that the algorithm has the ability to explore along
with the ability to exploit. From F25, it can be seen that the
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Table 4 Descriptions of 13 real-world problems.

Function Description

P1 A parameter estimation for frequency adjustment sound waves

P2 A Lennard-Jones potential energy problem

P3 − P4 Two optimization problems for the Tersoff potential function

P5 A spread spectrum radar polly phase code design problem

P6
A cost optimization problem for transmission network

expansion planning

P7 A circular shaped antenna array design problem

P8 − P12 Five static system economic dispatch problems

P13 A hydrothermal term scheduling problems

Fig. 6 The bar graph illustrates the CPU run times for a single execu-
tion in 30, 50, and 100 dimensions of all tested algorithms on the IEEE
CEC2017 functions.

population diversity has been high from the beginning to the
end of the iteration, thus proving the algorithm’s strong ex-
ploration capability.

Fig. 6 illustrates the computational time required for
running each algorithm once on 29 problems in the IEEE
CEC2017 benchmark. Overall, CGSA-H exhibits a 6.50%
reduction in computation time and a 55.17% increase in
performance compared to CGSA-M. This validates the ef-
fectiveness of our algorithmic enhancements, particularly in
higher dimensions, where CGSA-H not only performs bet-
ter but also requires less computational time in comparison
with other GSA variants.

6. Conclusions

To address the issue of CGSA-M falling into local optima,
we propose a hierarchical multi-chaotic embedded gravita-
tional search algorithm (CGSA-H). Two additional hierar-
chical components are added to the original CGSA-M, re-
sulting in a four-layer hierarchical population structure. The
most valuable individual layer improves the population’s
interaction during the search process and records the op-
timal value of the main population. Experimental results
demonstrate that the proposed hierarchical population struc-
ture significantly enhances the accuracy of CGSA-M, and
the improved CGSA-H outperforms comparable algorithms
in terms of solution quality.

To evaluate the effectiveness of CGSA-H, we compare
it with other well-known heuristics. The population diver-

sity plot of CGSA-H indicates that the algorithm possesses
exploration ability while maintaining strong exploitation
ability, demonstrating the efficacy of our modified scheme.
In conclusion, CGSA-H is an algorithm with robust perfor-
mance improvements. Future work may focus on the fol-
lowing important studies: 1) further improving the perfor-
mance of the CGSA-H algorithm, 2) applying the popula-
tion structure scheme to additional MHAs, and 3) conduct-
ing performance studies on practical applications, such as
training neural networks and solving new energy optimiza-
tion problems.
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Table 5 Experimental results on thirteen real-world problems.
CGSA-H CGSA-M GSA WOA SCA GA

mean std mean std mean std mean std mean std mean std
P1 2.290E+01 2.950E+00 2.525E+01 1.323E+00 2.583E+01 1.556E+00 1.946E+01 4.747E+00 1.617E+01 4.751E+00 2.451E+01 1.498E+00
P2 -1.847E+01 3.465E+00 -1.838E+01 3.772E+00 -1.855E+01 3.930E+00 -1.952E+01 4.859E+00 -1.192E+01 9.773E-01 -2.138E+01 2.263E+00
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