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PAPER
New Infinite Classes of 0-APN Power Functions over F2n

∗

Huijuan ZHOU†, Student Member, Zepeng ZHUO†a), and Guolong CHEN††, Nonmembers

SUMMARY Constructing new families of APN functions is an impor-
tant and challenging topic. Up to now, only six infinite families of APN
monomials have been found on finite fields of even characteristic. To study
APN functions, partiallyAPN functions have attracted plenty of researchers’
particular interests recently. In this paper, we propose several new infinite
classes of 0-APNpower functions overF2n by using themultivariatemethod
and resultant elimination. Furthermore, we use Magma soft to show that
these 0-APN power functions are CCZ-inequivalent to the known 0-APN
power functions.
key words: APN function, 0-APN power function, multivariate method,
resultant

1. Introduction

Differential uniformity is an important concept that quanti-
fies the security of highly nonlinear functions used in many
block ciphers. The definitions of differential uniformity and
APN (Almost Perfect Nonlinear) functions were introduced
by Nyberg [14]. Cryptographic functions over F2n with
low differential uniformity and high nonlinearity are widely
used in symmetric cipher design, allowing to resist known
attacks (such as resisting differential cryptanalysis in block
ciphers [8]). Throughout this paper, let F2n be the finite
field consisting with 2n elements and F∗2n = F2n\{0}. For a
function f : F2n → F2n , the derivative of f (x) is defined by
Da f (x) = f (x + a) + f (x), where x ∈ F2n and a ∈ F∗2n . For
any b ∈ F2n , we define

δf (a, b) = |{x ∈ F2n | f (x + a) + f (x) = b}| ,

where | S | denotes the cardinality of a set S, and define
4 f = max{δf (a, b) : a ∈ F∗2n , b ∈ F2n }, which is called the
differential uniformity of f . A function f over F2n is called
APN function if its differential uniformity 4 f = 2. APN
functions (differentially 2-uniform functions) have optimal
differential uniformity over F2n , and they are often used
in block ciphers and coding theory [1], [12], [19]. In the
last three decades, one of the most important topics in the
study of APN functions is constructing new families of APN
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functions. For instance, Yu et al. constructed more quadratic
APN functions with the QAM method in [21], Beierle et al.
presented new instances of quadratic APN functions in [3],
and Zheng et al. constructed new APN functions by relative
trace functions in [22]. However, it has been difficult to
summarize these known constructions in a general form.
The reader may refer to [4], [7], [18] for more results of
APN functions.

Since it is difficult to construct APN functions directly,
some researchers propose to modify the definition of APN
functions, that is, to construct APN-like functions with some
properties of APN functions by changing the determined
points. Blondeau et al. proposed the concept of locally-APN
to study the differential properties of the functions x → x2t−1

and obtained an infinite class of locally-APN but not APN
functions in [2]. Budaghyan et al. in [6] proposed the concept
of the partially APN as follows.

Definition 1: ([6]) Let x0 ∈ F2n . We call an (n,n)-function
F a (partial) x0-APN function, or simply x0-APN function,
if all the points u, v satisfying F(x0)+ F(u)+ F(v)+ F(x0 +
u + v) = 0, belong to the curve (x0 + u)(x0 + v)(u + v) = 0.

We usually refer to the partial APN function simply as x0-
APN or pAPN. If F is an APN function, then F is a x0-APN
function for any x0 ∈ F2n . This is a sufficient and unneces-
sary condition since there are many examples that they are
x0-APN functions for some x0 ∈ F2n but not APN functions.
Hence, the x0-APN function is an interesting research object,
and one of its important directions is to construct more infi-
nite classes of x0-APN functions. Furthermore, F is a 0-APN
function if and only if the equation F(x+1)+F(x)+1 = 0 has
no solution in F2n\F2. In [5], [6] Budaghyan et al. explicitly
constructed some 0-APN power functions f (x) = xd over
F2n , and they further gave the exponents of all power func-
tions over F2n for 1 ≤ n ≤ 11 that are 0-APN but not APN
functions. Moreover, Pott proved that for any n ≥ 3, there
are partial 0-APN permutations on F2n in [16]. In [17], Qu
and Li got seven classes of 0-APN power functions over F2n

and gave that two of them are locally-APN. In [20], Wang
and Zha proposed several new infinite classes of 0-APN
power functions using the multivariate method and resultant
elimination. Very recently, some infinite classes of 0-APN
power functions over F2n were constructed in [10], [13]. To
further investigate the new 0-APN functions, we list some
pairs of (d,n) that are not yet “explained” in [5], seeing Ta-
ble 1. In this paper, we give new infinite classes of 0-APN
functions using the multivariate method and resultant elim-
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Table 1 Power functions F(x) = xi over F2n for 1 ≤ n ≤ 11 which are
not yet “explained”.

ination. Moreover, the 0-APN power functions obtained in
this paper are CCZ-inequivalent to the known ones.

The rest of this paper is organized as follows. Section 2
gives some necessary definitions and results. Section 3
presents some infinite classes of 0-APN power functions
over F2n . Section 4 verifies the inequality of our constructed
functions with the existing 0-APN functions. Section 5 sum-
marizes the work of this paper.

2. Preliminaries

In this section, we provide some known results which will
be used in this paper. We first recall the conditions for the
CCZ equivalence of power functions on Fpn .

Lemma 1: ([9]) The power functions pk(x) = xk and
pl(x) = xl on GF(pn) are CCZ equivalent, if and only if
there exists a number 0 ≤ a < n, such that l ≡ pak (mod
pn − 1) or kl ≡ pa (mod pn − 1).

Remark 1: To demonstrate the inequality between two
power functions, it suffices to verify whether their exponents
satisfy the aforementioned equation. However, confirming
the equivalence among multiple power functions poses a
difficult work. Therefore, we adopt a novel approach to con-
firm the inequality between the 0-APN functions. In [5],
Budaghyan et al. proposed the size of the pAPN spectrum
is preserved under CCZ-equivalence. So if two pAPN func-
tions are equivalent, then their corresponding spectrums are
also equal. Conversely, if two pAPN functions have differ-
ent spectrums, then they must be not equivalent. If the two
functions belong to different finite fields, then their spec-
trums must be different.

Lemma 2: ([11]) Let q be a prime power and let f be an
irreducible polynomial over Fqn of degree n. Then f (x) = 0
has n distinct roots x in Fqn .

Next, we give the resultant of two polynomials to solve
the solutions of a system of polynomial equations.

Definition 2: ([11]) Let q be a prime power, and Fq[x] be
the polynomial ring overFq . Let f (x) = a0xn+a1xn−1+· · ·+
an ∈ Fq[x] and g(x) = b0xm + b1xm−1 + · · · + bm ∈ Fq[x]
be two polynomials of degree n and m respectively, where n,
m ∈ N. Then the resultant R( f , g) of f and g is defined by
the determinant

R( f , g) =

������������������

a0 a1 · · · an 0 · · · 0
0 a0 a1 · · · an 0 · · · 0
...

...
0 · · · 0 a0 a1 · · · an
b0 b1 · · · bm 0 · · · 0
0 b0 b1 · · · bm · · · 0
...

...
0 · · · 0 b0 b1 · · · bm

������������������
of order m + n.

If the degree of f is deg( f ) = n (i.e.,a0 , 0) and
f (x) = a0(x − α1)(x − α2) · · · (x − αn) in splitting field of f
over Fq , then R( f , g) is also given by the formula

R( f , g) = am
0

n∏
i=1

g(αi).

In this paper, we have R( f , g) = 0 if and only if f and
g have a common root, which means that f and g have
a common divisor in Fq[x] of positive degree. For two
polynomials F(x, y), G(x, y) ∈ Fq[x, y] of positive degree in
y, the resultant R(F,G, y) of F and G with respect to y is the
resultant of F and G when considered as polynomials in the
single variable y. In this case, R(F,G, y) ∈ Fq[x] ∩ 〈F,G〉,
where 〈F,G〉 is the ideal generated by F andG. Thus any pair
(a, b) with F(a, b) = G(a, b) = 0 is such that R(F,G, y)(a) =
0.

3. Some New Classes of 0-APN Power Functions over
F2n

In this section, we show several new classes of 0-APN power
functions over F2n using the multivariate method and resul-
tant elimination.

Theorem 1: Let n and k be positive integers with n = 2k +
1. Then f (x) = x5·2k+1+2k−1 is a 0-APN function over F2n .

Proof 1: To show f is 0-APN, it suffices to prove that the
equation

(x + 1)5·2
k+1+2k−1 + x5·2k+1+2k−1 + 1 = 0 (1)

has no solution in F2n\F2. Assume that x ∈ F2n\F2 is a
solution of Eq. (1). Multiplying x(x + 1) on both sides of
Eq. (1). We have

x4·2k+1+2k+1 + x2·2k+1+2k+1 + x2k+1 + x5·2k+1+1

+ x4·2k+1+1 + x2k+1+1 + x5·2k+1+2k + x2 = 0.
(2)

Let y = x2k , then y2k+1
= x. Eq. (2) can be written as

y9x + y3x + yx + y10x + y8x + y2x + y11 + x2 = 0. (3)

Raising the 2k+1-th power on both sides of Eq. (3), we get

x9y2+x3y2+xy2+x10y2+x8y2+x2y2+x11+y4 = 0. (4)

Computing the resultant of Eq. (3) and Eq. (4) with respect
to y, and then decomposing it into the product of irreducible
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factors as

x7(x + 1)7(x18 + x15 + x14 + x10 + x9 + x8

+ x4 + x3 + 1)(x18 + x16 + x15 + x13 + x11

+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1)(x18

+ x17 + x16 + x13 + x11 + x10 + x9 + x7 + x5

+ x4 + x2 + x + 1)(x18 + x17 + x16 + x13 + x12

+ x11 + x9 + x7 + x6 + x5 + x2 + x + 1)(x18

+ x17 + x16 + x14 + x13 + x11 + x9 + x8 + x7

+ x5 + x2 + x + 1)(x18 + x17 + x16 + x14 + x13

+ x11 + x10 + x8 + x7 + x5 + x3 + x2 + 1).

(5)

Note that x < F2, we assert that x ∈ F218 ∩ F2n = F2gcd(18,n) ,
i.e., x ∈ F23 or F29 .

(1) Assume x ∈ F23 . If k . 1 (mod 3), then x ∈
F23 ∩ F2n = F2, which is a contradiction. If k ≡ 1 (mod 3),
then x ∈ F23 ∩ F2n = F23 . This means that the solutions of
Eq. (5) belong into F23 and k + 2 ≡ 0 (mod 3). We raising
the 22-th power to Eq. (2) gives

x13 + x7 + x5 + x14 + x12 + x6 + x11 + x8 = 0. (6)

Which can be simplified as

x5(x + 1)5(x2 + x + 1)2 = 0. (7)

The solutions of Eq. (7) are in F22 . Notice that F23∩F22 = F2,
which contradicts with x ∈ F2.

(2) Assume x ∈ F29 . If k . 4 (mod 9) and k . 1 (mod
3), then x ∈ F29 ∩ F2n = F2, which is a contradiction. If
k . 4 (mod 9) and k ≡ 1 (mod 3), then F29 ∩ F2n = F23 .
From the results of the above discussion, it can be seen that
it is contradictory. If k ≡ 4 (mod 9), then F29 ∩ F2n = F29 .
This means that the solutions of Eq. (5) belong into F29 .
Furthermore, k + 5 ≡ 0 (mod 9). We raising the 25-th power
to Eq. (2) gives, which can be simplified as

x11(x + 1)11(x6 + x3 + 1)(x6 + x4 + x3 + x + 1)
(x6 + x5 + x3 + x2 + 1)(x8 + x6 + x5 + x4 + x3

+ x + 1)(x8 + x7 + x5 + x4 + x3 + x2 + 1)(x8

+ x7 + x6 + x4 + x2 + x + 1) = 0.

Then x ∈ F26 or F28 . When x ∈ F26 ∩ F29 = F23 , which is
a contradiction. If x ∈ F28 ∩ F29 = F2, it is a contradiction.
Hence, Eq. (2) has no solution in F2n\F2. �

Theorem 2: Let n and k be positive integers with n = 3k,
2 - k and k . 2 (mod 3). Then f (x) = x3·22k−5 is a 0-APN
function over F2n .

Proof 2: To show f is 0-APN, we need to prove that the
equation

(x + 1)3·2
2k−5 + x3·22k−5 + 1 = 0 (8)

has no solution in F2n\F2. Assume x ∈ F2n\F2 is a solution

of Eq. (8). Multiplying x5(x + 1)5 on both sides of Eq. (8).
And let y = x2k , z = y2k then z2k = x. Raising the 2k-th
power and 22k-th power to Eq. (8) respectively obtains

z3x4 + z3x+ z3+ z2x5+ zx5+ x10+ x9+ x6= 0, (9a)
x3y4+ x3y+ x3+ x2y5+ xy5+ y10+ y9+ y6= 0, (9b)
y3z4+ y3z+ y3+ y2z5+ yz5+ z10+ z9+ z6= 0. (9c)

With the help of Magma, computing the resultant of
Eq. (9a) and Eq. (9c) with respect to z, and then we get
R(x, y) Then we continue to compute the resultant of R(x, y)
and Eq. (9b) with respect to y, by Magma computation and
then decompose it into the product of irreducible factors as

x27(x + 1)27(x2 + x + 1)20(x3 + x + 1)(x3 + x2

+ 1)(x8 + x5 + x3 + x2 + 1)3(x8 + x5 + x4 + x3

+ 1)3(x8 + x6 + x5 + x3 + 1)3(x8 + x6 + x5 + x4

+ x3 + x + 1)3(x8 + x7 + x5 + x4 + x3 + x2 + 1)3

(x8 + x7 + x6 + x4 + x2 + x + 1)3(x12 + x7 + x5

+ x2 + 1)(x12 + x8 + x7 + x6 + x4 + x3 + 1)(x12

+ x9 + x5 + x4 + x2 + x + 1)3(x12 + x9 + x6 + x5

+ x2 + x + 1)(x12 + x9 + x6 + x5 + x4 + x + 1)
(x12 + x9 + x8 + x5 + x4 + x + 1)3(x12 + x9 + x8

+ x6 + x5 + x2 + 1)(x12 + x9 + x8 + x6 + x5 + x4

+ 1)(x12 + x10 + x7 + x5 + 1)(x12 + x10 + x7 + x6

+ x4 + x3 + 1)(x12 + x11 + x8 + x6 + x4 + x3 + x2

+ x + 1)3(x12 + x11 + x8 + x7 + x4 + x3 + 1)3(x12

+ x11 + x8 + x7 + x6 + x3 + 1)(x12 + x11 + x9 + x6

+ x5 + x4 + x3 + x + 1)(x12 + x11 + x9 + x7 + x6

+ x5 + x3 + x + 1)3(x12 + x11 + x9 + x8 + x7

+ x5 + x2 + x + 1)(x12 + x11 + x9 + x8 + x7

+ x5 + x4 + x3 + x2 + x + 1)(x12 + x11 + x9

+ x8 + x7 + x6 + x3 + x + 1)(x12 + x11 + x10

+ x7 + x5 + x4 + x3 + x + 1)(x12 + x11 + x10

+ x7 + x6 + x3 + 1)(x12 + x11 + x10 + x7 + x6

+ x4 + x2 + x + 1)(x12 + x11 + x10 + x8 + x6

+ x5 + x2 + x + 1)(x12 + x11 + x10 + x8 + x7

+ x3 + 1)3(x12 + x11 + x10 + x9 + x8 + x6 + x4

+ x + 1)3(x12 + x11 + x10 + x9 + x8 + x7 + x5

+ x4 + x3 + x + 1)(x12 + x11 + x10 + x9 + x8

+ x7 + x6 + x5 + x4 + x3 + x2 + x + 1)3(x18

+ x13 + x10 + x8 + x6 + x5 + x4 + x + 1)(x18

+ x16 + x13 + x12 + x10 + x9 + x8 + x6 + x2

+ x + 1)(x18 + x17 + x14 + x13 + x12 + x9 + x8

+ x6 + x2 + x + 1)(x18 + x17 + x14 + x13 + x12
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+ x10 + x8 + x5 + 1)(x18 + x17 + x16 + x12 + x10

+ x9 + x6 + x5 + x4 + x + 1)(x18 + x17 + x16

+ x12 + x10 + x9 + x8 + x6 + x5 + x2 + 1)(x24

+ x21 + x19 + x17 + x12 + x7 + x6 + x5 + x4

+ x3 + 1)(x24 + x21 + x20 + x19 + x18 + x17

+ x12 + x7 + x5 + x3 + 1)(x24 + x23 + x17 + x8

+ x6 + x5 + x4 + x3 + x2 + x + 1)(x24 + x23

+ x20 + x18 + x17 + x8 + x5 + x3 + x2 + x + 1)
(x24 + x23 + x22 + x21 + x19 + x16 + x7 + x6 + x4

+ x + 1)(x24 + x23 + x22 + x21 + x20 + x19 + x18

+ x16 + x7 + x + 1).

Observe that x < F2, thus the solutions of Eq. (9) are in F22 ,
F23 , F212 , F218 or F224 .

(1) Assume x ∈ F22 . Since 2 - k and n = 3k, then n is
an odd number, we have F22 ∩ F2n = F2, which contradicts
with x , 0,1.

(2) Assume x ∈ F23 . When k ≡ 0 (mod 3), we obtain
x2k = x, x22k

= x. Hence, it follows from Eq. (9) that

x10 + x9 + x4 + x3 = x3(x + 1)3(x2 + x + 1)2 = 0,

it is impossible since x < F2 and F22 . When k ≡ 1 (mod 3),
at this point, we have x22k

= x4, x2k = x2. We conclude
from Eq. (9) that

x16 + x12 + x10 + x6 = x6(x + 1)6(x2 + x + 1)2 = 0.

Notice that x2 + x + 1 is an irreducible polynomial in F2. It
leads to x ∈ F22 ∩ F23 = F2, which contradicts with x < 0,1.

(3) x ∈ F212 . When k ≡ 1 (mod 4) or k ≡ 3 (mod 4),
we get F212 ∩ F2n = F23 , which contradicts with the above
discussion. When k ≡ 2 (mod 4) or k ≡ 0 (mod 4), we
obtain k is even. Therefore, this situation is not discussed.

(4) x ∈ F218 . When k ≡ 1 (mod 4) or k ≡ 3 (mod 4),
we get F218 ∩F2n = F23 , it means that the solutions of Eq. (9)
are in F23 which is impossible. When k ≡ 2 (mod 4) or
k ≡ 0 (mod 4), we obtain k is even. This is contrary to the
conditions of Theorem 2.

(5) Assume x ∈ F224 . When k ≡ 1 (mod 4) or k ≡ 3
(mod 4), we getF224∩F2n = F23 , this is impossible to achieve.
When k ≡ 2 (mod 4) or k ≡ 0 (mod 4), we derive k is even
contradicting with 2 - k. Hence, Eq. (9) has no solution in
F2n\F2. �

Theorem 3: Let n and k be positive integers with n = 3k +
1. Then f (x) = x22k+1−2k+1−1 is a 0-APN function over F2n .

Proof 3: It suffices to show that the equation

(x + 1)2
2k+1−2k+1−1 + x22k+1−2k+1−1 + 1 = 0 (10)

has no solution in F2n\F2. Assume that x ∈ F2n\F2 is a
solution of Eq. (10). Multiplying x2k+1+1(x + 1)2k+1+1 on
both sides of Eq. (10). And let y = x2k , z = y2k then

z2k+1
= x and we raise the 2k+1-th power and 22k+1-th power

to Eq. (10) respectively obtains
z2y2+ z2x+ z2+ y4x2+ y4x+ y2x2= 0, (11a)
x2z4+ x2y2+ x2+ z8y4+ z8y2+ z4y4= 0, (11b)
y2x2+ y2z2+ y2+ x4z4+ x4z2+ x2z4= 0. (11c)

Computing the resultant of (11a) and (11b), (11a) and (11c)
with respect to z respectively. We have R1(x, y) and R2(x, y).
Next we compute the resultant of R1(x, y) and R2(x, y) with
respect to y, with the help of Magma, the resultant can be
decomposed into the following product of irreducible factors
as

x128(x + 1)128(x2 + x + 1)184(x8 + x5 + x3 + x2

+ 1)8(x8 + x5 + x4 + x3 + 1)8(x8 + x6 + x5 + x3

+ 1)8 = 0.

Observe that x < F2, thus the solutions of Eq. (10) are in F22

or F28 .
(1) Assume x ∈ F22 . When k is even, we have F22 ∩

F2n = F2, which is a contradiction. However, when k is odd,
in other words, k ≡ 1 (mod 2), then we get F22 ∩ F2n = F22 ,
the solutions of Eq. (10) belong intoF22 . Notice that k+1 ≡ 0
(mod 2). Raising the square to Eq. (10) derives

x22(k+1)+2(k+1)+1
+ x22(k+1)+2 + x22(k+1)

+ x2(k+1)+1+2(k+1)+1+4 + x2(k+1)+1+2(k+1)+1+2

+ x2(k+1)+1+4 = 0.

Since x ∈ F22 , the equation can be written as

x + x8 = x(1 + x7) = 0.

The solutions of Eq. (10) are in F27 . But we know F22∩F27 =

F27 ∩ F2n = F2, which contradicts with x < F2.
(2) Assume x ∈ F28 . When k is even, we have F28 ∩

F2n = F2, we derive a contradiction. When k is odd, as
discussed above, we also get a contradiction. Hence, the
proof is completed. �

Theorem 4: Let n and k be positive integers with n = 3k +
1. Then f (x) = x22k+2k+1+2k−1 is a 0-APN function over F2n .

Proof 4: We need to show that the equation

(x + 1)2
2k+2k+1+2k−1 + x22k+2k+1+2k−1 + 1 = 0 (12)

has no solution in F2n\F2. Assume that x ∈ F2n\F2 is a
solution of Eq. (12). Multiplying x(x + 1) on both sides of
Eq. (12). We have

x22k+2k+1 + x2k+1+2k+1 + x2k+1 + x22k+2k+1+1

+ x22k+2k+1+2k + x22k+1
+ x2k+1+1 + x2 = 0.

(13)

And let y = x2k , z = y2k and x = z2k+1 , and raising the
2k+1-th power, 22k+2-th power to Eq. (13) respectively gives



ZHOU et al.: NEW INFINITE CLASSES OF 0-APN POWER FUNCTIONS OVER F2N
1599



zyx+ y3x+ yx+ zy2x+ zx+ y2x+ zy3+ x2

= 0, (14a)
xz2y2+ z6y2+ z2y2+ xz4y2+ xy2+ z4y2

+xz6+ y4= 0, (14b)
y2x2z4+ x6z4+ x2z4+ y2x4z4+ y2z4+ x4z4

+y2x6+ z8= 0. (14c)

With the help ofMagma, computing the resultant of Eq. (14a)
and Eq. (14b), Eq. (14b) and Eq. (14c) with respect to z,
we can get R1(x, y) and R2(x, y). We continue to compute
the resultant of R1(x, y) and R2(x, y) with respect to y, and
then the resultant can be decomposed into the product of
irreducible factors as

x284(x + 1)284(x2 + x + 1)8(x3 + x + 1)16(x3 + x2

+ 1)16(x5 + x2 + 1)4(x5 + x3 + 1)4(x5 + x3 + x2

+ x + 1)4(x5 + x4 + x2 + x + 1)4(x5 + x4 + x3

+ x + 1)4(x5 + x4 + x3 + x2 + 1)4(x8 + x5 + x3

+ x2 + 1)4(x8 + x5 + x4 + x3 + 1)4(x8 + x6 + x5

+ x3 + 1)4(x10 + x3 + 1)4(x10 + x7 + 1)4(x10 + x8

+ x3 + x + 1)4(x10 + x8 + x7 + x6 + x5 + x4 + x3

+ x + 1)4(x10 + x9 + x7 + x2 + 1)4(x10 + x9 + x7

+ x6 + x5 + x4 + x3 + x2 + 1)4(x10 + x9 + x8 + x3

+ x2 + x + 1)4(x10 + x9 + x8 + x7 + x2 + x + 1)4

(x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x

+ 1)4.

Observe that x < F2, thus the solutions of Eq. (12) are in F22 ,
F23 , F25 , F210 .

(1) Assume x ∈ F22 , when k is even, then n = 3k + 1
is odd, F22 ∩ F2n = F2, which is a contradiction. When k is
odd, then n = 3k + 1 is even, F22 ∩ F2n = F22 , then we can
derive from Eq. (13) that

x4 + x3 + x6 + x5 = x3(x + 1)3 = 0,

since x22k
= x and x2k = x2. At this moment, x ∈ F2, it is

inconsistent.
(2) Assume x ∈ F23 , F23 ∩ F2n = F2 since n is not

divisible by 3, which is a contradiction.
(3) Assume x ∈ F25 , when k . 3 (mod 5), we get

F25 ∩ F2n = F2, which contradicts with x < {0,1}. When
k ≡ 3 (mod 5), we know F25 ∩F2n = F25 . Thereby x22k

= x2

and x2k = x8. It follows from Eq. (13) that

x11 + x25 + x9 + x19 + x26 + x4 + x17 + x2

= x2(x + 1)(x23 + x16 + x15 + x8 + x7 + x + 1).

It can be checked that the polynomial x23 + x16 + x15 + x8 +
x7+ x+1 is irreducible in F2. Thus the solutions of the above
equation are in F223 , which implies that x ∈ F223 ∩ F25 = F2,
it is unsuitable.

(4) Assume x ∈ F210 , we can infer that x ∈ F22 , F25 or

F210 . Aiming at the former two cases, we have already dis-
cussed it above. When x ∈ F210 , we can get contradictions.
We complete the proof. �

Theorem 5: Let n and k be positive integers with n = 4k −
1, and n . 0 (mod 3), n . 0 (mod 47). Then f (x) =
x22k+2k+1+2k−1 is a 0-APN function over F2n .

Proof 5: We will certify that the equation

(x + 1)2
2k+2k+1+2k−1 + x22k+2k+1+2k−1 + 1 = 0 (15)

has no solution in F2n\F2. Assume that x ∈ F2n\F2 is a
solution of Eq. (15). Multiplying x(x + 1) on both sides of
Eq. (15). We have

x22k+2k+1 + x2k+1+2k+1 + x2k+1 + x22k+2k+1+1

+ x22k+1 + x2k+1+1 + x22k+2k+1+2k + x2 = 0.
(16)

And let y = x2k , z = y2k and u = z2k , and raising the
2k-th power, 22k-th power and 23k-th power to equation (16)
respectively gives

zyx + y3x + yx + zy2x + zx + y2x + zy3

+x2 = 0, (17a)
uzy + z3y + zy + uz2y + uy + z2y + uz3

+y2 = 0, (17b)
x2uz + u3z + uz + x2u2z + x2z + u2z + x2u3

+z2 = 0, (17c)
y2x2u + x6u + x2u + y2x4u + y2u + x4u + y2x6

+u2 = 0. (17d)

With the help of Magma, computing the resultant of
Eq. (17b) and Eq. (17c), Eq. (17b) and Eq. (17d) with respect
to u, and we get two formulas R1(x, y, z) and R2(x, y, z). And
then continue to compute the resultant of R1(x, y, z) and
Eq. (17a), R2(x, y, z) and Eq. (16a) with respect to z, we ob-
tain two formulas R3(x, y) and R4(x, y). Finally, we compute
the resultant of R3(x, y) and R4(x, y) with respect to y, and
decompose it into the product of irreducible factors as

x329(x + 1)329(x3 + x + 1)(x47 + x43 + x42 + x41

+ x40 + x38 + x37 + x36 + x32 + x30 + x29 + x28

+ x26 + x24 + x22 + x21 + x20 + x18 + x17 + x14

+ x11 + x10 + x9 + x6 + x4 + x + 1)(x47 + x44

+ x43 + x40 + x36 + x35 + x33 + x32 + x30 + x23

+ x22 + x19 + x18 + x17 + x15 + x8 + x7 + x6

+ x5 + x3 + x2 + x + 1)(x47 + x45 + x42 + x41

+ x39 + x38 + x36 + x33 + x30 + x29 + x27 + x26

+ x25 + x24 + x23 + x21 + x19 + x17 + x13 + x12

+ x11 + x10 + x9 + x8 + x2 + x + 1)(x47 + x46

+ x43 + x41 + x38 + x37 + x36 + x33 + x30 + x29
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Table 2 All known CCZ-inequivalent 0-APN power functions F(x) = xd over F2n .

+ x27 + x26 + x25 + x23 + x21 + x19 + x18 + x17

+ x15 + x11 + x10 + x9 + x7 + x6 + x5 + x4 + 1)
(x47 + x46 + x45 + x39 + x38 + x37 + x36 + x35

+ x34 + x30 + x28 + x26 + x24 + x23 + x22 + x21

+ x20 + x18 + x17 + x14 + x11 + x9 + x8 + x6

+ x5 + x2 + 1)(x47 + x46 + x45 + x44 + x42 + x41

+ x40 + x39 + x32 + x30 + x29 + x28 + x25 + x24

+ x17 + x15 + x14 + x12 + x11 + x7 + x4 + x3 + 1).
Observe that x < F2, thus the solutions of Eq. (15) are in F23

or F247 .
(1) Assume x ∈ F23 . Since 4k − 1 . 0 (mod 3), we
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Table 3 Differential spectrum of xd over F2n for n = 9.

Table 4 Differential spectrum of xd over F2n for n = 13.

have F23 ∩ F2n = F2, it’s a paradox.
(2) Assume x ∈ F247 . Since 4k − 1 . 0 (mod 47), we

have F247 ∩ F2n = F2, we derive a contradiction. Hence, the
proof is completed. �

Theorem 6: Let n and k be positive integers with n = 4k +
1. Then f (x) = x3·22k+1−5 is a 0-APN function over F2n .

Proof 6: To illustrate f is 0-APN, it suffices to prove that
the equation

(x + 1)3·2
2k+1−5 + x3·22k+1−5 + 1 = 0 (18)

has no solution in F2n\F2. Assume that x ∈ F2n\F2 is a
solution of Eq. (18). Multiplying x5(x + 1)5 on both sides of
Eq. (18). We have

x2·22k+1+5 + x22k+1+5 + x3·22k+1+4

+ x3·22k+1+1 + x3·22k+1
+ x10 + x9 + x6 = 0.

(19)

Let y = x2k , and raising the 22k+1-th power to equation (19)
gives

y4x5 + y2x5 + y6x4 + y6x + y6 + x10 + x9

+x6 = 0, (20a)
x4y10 + x2y10 + x6y8 + x6y2 + x6 + y20

+y18 + y12 = 0. (20b)

With the help ofMagma, computing the resultant of Eq. (20a)
and Eq. (20b), and then the resultant can be decomposed into
the product of irreducible factors in F2 as

x36(x + 1)36(x2 + x + 1)16(x8 + x5 + x3 + x2 + 1)2

(x8 + x5 + x4 + x3 + 1)2(x8 + x6 + x5 + x3 + 1)2

(x8 + x6 + x5 + x4 + x3 + x + 1)2(x8 + x7 + x5

+ x4 + x3 + x2 + 1)2(x8 + x7 + x6 + x4 + x2

+ x + 1)2.

Observe that x < F2, thus the solutions of Eq. (18) are in

F22 or F28 . We know that n = 4k + 1, this means n is odd,
however, multiples of 2 or 8 are even. Hence, F22 ∩ F2n =
F28 ∩ F2n = F2, we derive a contradiction. This completes
the proof. �

4. An Analysis of the Inequivalence between Con-
structed Functions and Existing 0-APN Power Func-
tions

We enumerate all existing 0-APN power functions in Table 2.
The differential spectrums of power functions in distinct fi-
nite fields must be distinct, thus they are not equivalent.
Therefore, Theorems 3.2, 3.5, and 3.6 are not equivalent to
the enumerated 0-APN functions. By screening, we catego-
rize the functions with the same finite field in the Table 2 into
two groups: n = 2k + 1 and n = 3k + 1. Using the Magma
software, we compute that their differential spectrums are
different in a same finite field, as presented in Tables 3 and
4. Hence, Theorems 3.1, 3.3, and 3.4 are also not equivalent
to other functions.

5. Conclusion

This paper has provided several new infinite classes of 0-
APN power functions over F2n by using the multivariate
method and resultant elimination. Based on Remark 1 and
Magma experiments, our results also indicated 0-APN power
functions over F2n in this paper are not CCZ-equivalent to
the known 0-APN power functions.
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