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New infinite classes of 0-APN power functions over F2n
∗

Huijuan ZHOU†, Student Member, Zepeng ZHUO†a), and Guolong CHEN††, Nonmembers

SUMMARY Constructing new families of APN functions is
an important and challenging topic. Up to now, only six infi-
nite families of APN monomials have been found on finite fields
of even characteristic. To study APN functions, partially AP-
N functions have attracted plenty of researchers’ particular in-
terests recently. In this paper, we propose several new infinite
classes of 0-APN power functions over F2n by using the multi-
variate method and resultant elimination. Furthermore, we use
Magma soft to show that these 0-APN power functions are CCZ-
inequivalent to the known 0-APN power functions.
key words: APN function, 0-APN power function, multivariate
method, resultant

1. Introduction

Differential uniformity is an important concept that
quantifies the security of highly nonlinear functions
used in many block ciphers. The definitions of dif-
ferential uniformity and APN (Almost Perfect Nonlin-
ear) functions were introduced by Nyberg [14]. Cryp-
tographic functions over F2n with low differential uni-
formity and high nonlinearity are widely used in sym-
metric cipher design, allowing to resist known attacks
(such as resisting differential cryptanalysis in block ci-
phers [8]). Throughout this paper, let F2n be the finite
field consisting with 2n elements and F∗2n = F2n\{0}.
For a function f : F2n → F2n , the derivative of f(x) is
defined by Daf(x) = f(x + a) + f(x), where x ∈ F2n

and a ∈ F∗2n . For any b ∈ F2n , we define

δf (a, b) = |{x ∈ F2n | f(x+ a) + f(x) = b}| ,

where | S | denotes the cardinality of a set S, and
define 4f = max{δf (a, b) : a ∈ F∗2n , b ∈ F2n}, which is
called the differential uniformity of f . A function f
over F2n is called APN function if its differential u-
niformity 4f = 2. APN functions (differentially 2-
uniform functions) have optimal differential uniformity
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over F2n , and they are often used in block ciphers and
coding theory [1], [12], [19]. In the last three decades,
one of the most important topics in the study of APN
functions is constructing new families of APN function-
s. For instance, Yu et al. constructed more quadratic
APN functions with the QAM method in [21], Beierle et
al. presented new instances of quadratic APN functions
in [3], and Zheng et al. constructed new APN functions
by relative trace functions in [22]. However, it has been
difficult to summarize these known constructions in a
general form. The reader may refer to [4], [7], [18] for
more results of APN functions.

Since it is difficult to construct APN functions di-
rectly, some researchers propose to modify the defini-
tion of APN functions, that is, to construct APN-like
functions with some properties of APN functions by
changing the determined points. Blondeau et al. pro-
posed the concept of locally-APN to study the differen-
tial properties of the functions x→ x2

t−1 and obtained
an infinite class of locally-APN but not APN functions
in [2]. Budaghyan et al. in [6] proposed the concept of
the partially APN as follows.

Definition 1: ([6]) Let x0 ∈ F2n . We call an (n, n)-
function F a (partial) x0-APN function, or simply x0-
APN function, if all the points u, v satisfying F (x0) +
F (u) + F (v) + F (x0 + u+ v) = 0, belong to the curve
(x0 + u)(x0 + v)(u+ v) = 0.

We usually refer to the partial APN function simply as
x0-APN or pAPN. If F is an APN function, then F is a
x0-APN function for any x0 ∈ F2n . This is a sufficient
and unnecessary condition since there are many exam-
ples that they are x0-APN functions for some x0 ∈ F2n

but not APN functions. Hence, the x0-APN function is
an interesting research object, and one of its important
directions is to construct more infinite classes of x0-
APN functions. Furthermore, F is a 0-APN function if
and only if the equation F (x+1)+F (x)+1 = 0 has no
solution in F2n\F2. In [5], [6] Budaghyan et al. explicit-
ly constructed some 0-APN power functions f(x) = xd

over F2n , and they further gave the exponents of all
power functions over F2n for 1 ≤ n ≤ 11 that are 0-
APN but not APN functions. Moreover, Pott proved
that for any n ≥ 3, there are partial 0-APN permuta-
tions on F2n in [16]. In [17], Qu and Li got seven class-
es of 0-APN power functions over F2n and gave that
two of them are locally-APN. In [20], Wang and Zha
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proposed several new infinite classes of 0-APN power
functions using the multivariate method and resultan-
t elimination. Very recently, some infinite classes of
0-APN power functions over F2n were constructed in
[10], [13]. To further investigate the new 0-APN func-
tions, we list some pairs of (d, n) that are not yet “ex-
plained” in [5], seeing Table 1. In this paper, we give
new infinite classes of 0-APN functions using the mul-
tivariate method and resultant elimination. Moreover,
the 0-APN power functions obtained in this paper are
CCZ-inequivalent to the known ones.

The rest of this paper is organized as follows. Sec-
tion 2 gives some necessary definitions and results. Sec-
tion 3 presents some infinite classes of 0-APN power
functions over F2n . Section 4 verifies the inequality
of our constructed functions with the existing 0-APN
functions. Section 5 summarizes the work of this paper.

Table 1 Power functions F (x) = xi over F2n for 1 ≤ n ≤ 11
which are not yet “explained”.

n d

9 61, 91, 175, 187

10 111, 117, 147, 87, 237, 375

79, 109, 183, 251, 367, 695, 29, 51, 53, 55, 75, 83, 101
111, 113, 125, 139, 149, 155, 157, 167, 173, 179, 181
185, 187, 201, 203, 213, 215, 217, 219, 223, 229, 247
295, 309, 311, 317, 331, 333, 335, 339, 347, 351, 359

11 371, 373, 375,379, 427, 469, 471, 475, 477, 491, 493
727, 735, 751, 763, 61, 77, 87, 91, 105, 119, 123, 141
147, 165, 175, 211, 233, 237, 239, 349, 363, 415, 431
439, 501, 503, 699, 509, 115, 207, 253, 299, 437, 759
103

2. Preliminaries

In this section, we provide some known results which
will be used in this paper. We first recall the conditions
for the CCZ equivalence of power functions on Fpn .

Lemma 1: ([9]) The power functions pk(x) = xk and
pl(x) = xl on GF (pn) are CCZ equivalent, if and only
if there exists a number 0 ≤ a < n, such that l ≡ pak
(mod pn − 1) or kl ≡ pa (mod pn − 1).

Remark 1: To demonstrate the inequality between t-
wo power functions, it suffices to verify whether their
exponents satisfy the aforementioned equation. How-
ever, confirming the equivalence among multiple power
functions poses a difficult work. Therefore, we adop-
t a novel approach to confirm the inequality between
the 0-APN functions. In [5], Budaghyan et al. pro-
posed the size of the pAPN spectrum is preserved un-
der CCZ-equivalence. So if two pAPN functions are e-
quivalent, then their corresponding spectrums are also
equal. Conversely, if two pAPN functions have differ-
ent spectrums, then they must be not equivalent. If the
two functions belong to different finite fields, then their
spectrums must be different.

Lemma 2: ([11]) Let q be a prime power and let f be
an irreducible polynomial over Fqn of degree n. Then
f(x) = 0 has n distinct roots x in Fqn .

Next, we give the resultant of two polynomials to
solve the solutions of a system of polynomial equations.

Definition 2: ([11]) Let q be a prime power, and
Fq[x] be the polynomial ring over Fq. Let f(x) =
a0x

n + a1x
n−1 + · · · + an ∈ Fq[x] and g(x) = b0x

m +
b1x

m−1 + · · ·+bm ∈ Fq[x] be two polynomials of degree
n and m respectively, where n, m ∈ N. Then the resul-
tant R(f, g) of f and g is defined by the determinant

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an 0 · · · 0
0 a0 a1 · · · an 0 · · · 0
...

...
0 · · · 0 a0 a1 · · · an
b0 b1 · · · bm 0 · · · 0
0 b0 b1 · · · bm · · · 0
...

...
0 · · · 0 b0 b1 · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
of order m+ n.

If the degree of f is deg(f) = n (i.e., a0 6= 0) and
f(x) = a0(x−α1)(x−α2) · · · (x−αn) in splitting field
of f over Fq, then R(f, g) is also given by the formula

R(f, g) = am0

n∏
i=1

g(αi).

In this paper, we have R(f, g) = 0 if and only if f and
g have a common root, which means that f and g have
a common divisor in Fq[x] of positive degree. For t-
wo polynomials F (x, y), G(x, y) ∈ Fq[x, y] of positive
degree in y, the resultant R(F,G, y) of F and G with
respect to y is the resultant of F and G when consid-
ered as polynomials in the single variable y. In this
case, R(F,G, y) ∈ Fq[x] ∩ 〈F,G〉, where 〈F,G〉 is the
ideal generated by F and G. Thus any pair (a, b) with
F (a, b) = G(a, b) = 0 is such that R(F,G, y)(a) = 0.

3. Some new classes of 0-APN power functions
over F2n

In this section, we show several new classes of 0-APN
power functions over F2n using the multivariate method
and resultant elimination.

Theorem 1: Let n and k be positive integers with

n = 2k + 1. Then f(x) = x5·2
k+1+2k−1 is a 0-APN

function over F2n .

Proof 1: To show f is 0-APN, it suffices to prove that
the equation

(x+ 1)5·2
k+1+2k−1 + x5·2

k+1+2k−1 + 1 = 0 (1)
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has no solution in F2n\F2. Assume that x ∈ F2n\F2

is a solution of Eq. (1). Multiplying x(x + 1) on both
sides of Eq. (1). We have

x4·2
k+1+2k+1 + x2·2

k+1+2k+1 + x2
k+1 + x5·2

k+1+1

+ x4·2
k+1+1 + x2

k+1+1 + x5·2
k+1+2k + x2 = 0.

(2)

Let y = x2
k

, then y2
k+1

= x. Eq. (2) can be written as

y9x+y3x+yx+y10x+y8x+y2x+y11+x2 = 0. (3)

Raising the 2k+1-th power on both sides of Eq. (3), we
get

x9y2+x3y2+xy2+x10y2+x8y2+x2y2+x11+y4 = 0.

(4)

Computing the resultant of Eq. (3) and Eq. (4) with
respect to y, and then decomposing it into the product
of irreducible factors as

x7(x+ 1)7(x18 + x15 + x14 + x10 + x9 + x8

+ x4 + x3 + 1)(x18 + x16 + x15 + x13 + x11

+ x10 + x8 + x7 + x5 + x4 + x2 + x+ 1)(x18

+ x17 + x16 + x13 + x11 + x10 + x9 + x7 + x5

+ x4 + x2 + x+ 1)(x18 + x17 + x16 + x13 + x12

+ x11 + x9 + x7 + x6 + x5 + x2 + x+ 1)(x18

+ x17 + x16 + x14 + x13 + x11 + x9 + x8 + x7

+ x5 + x2 + x+ 1)(x18 + x17 + x16 + x14 + x13

+ x11 + x10 + x8 + x7 + x5 + x3 + x2 + 1).

(5)

Note that x /∈ F2, we assert that x ∈ F218 ∩ F2n =
F2gcd(18,n) , i.e., x ∈ F23 or F29 .

(1) Assume x ∈ F23 . If k 6≡ 1 (mod 3), then x ∈
F23 ∩ F2n = F2, which is a contradiction. If k ≡ 1
(mod 3), then x ∈ F23 ∩ F2n = F23 . This means that
the solutions of Eq. (5) belong into F23 and k + 2 ≡ 0
(mod 3). We raising the 22-th power to Eq. (2) gives

x13 + x7 + x5 + x14 + x12 + x6 + x11 + x8 = 0. (6)

Which can be simplified as

x5(x+ 1)5(x2 + x+ 1)2 = 0. (7)

The solutions of Eq. (7) are in F22 . Notice that F23 ∩
F22 = F2, which contradicts with x ∈ F2.

(2) Assume x ∈ F29 . If k 6≡ 4 (mod 9) and k 6≡ 1
(mod 3), then x ∈ F29 ∩ F2n = F2, which is a con-
tradiction. If k 6≡ 4 (mod 9) and k ≡ 1 (mod 3),
then F29 ∩ F2n = F23 . From the results of the above
discussion, it can be seen that it is contradictory. If
k ≡ 4 (mod 9), then F29 ∩ F2n = F29 . This means that

the solutions of Eq. (5) belong into F29 . Furthermore,
k + 5 ≡ 0 (mod 9). We raising the 25-th power to Eq.
(2) gives, which can be simplified as

x11(x+ 1)11(x6 + x3 + 1)(x6 + x4 + x3 + x+ 1)

(x6 + x5 + x3 + x2 + 1)(x8 + x6 + x5 + x4 + x3

+ x+ 1)(x8 + x7 + x5 + x4 + x3 + x2 + 1)(x8

+ x7 + x6 + x4 + x2 + x+ 1) = 0.

Then x ∈ F26 or F28 . When x ∈ F26 ∩ F29 = F23 ,
which is a contradiction. If x ∈ F28 ∩ F29 = F2, it
is a contradiction. Hence, Eq. (2) has no solution in
F2n\F2. �

Theorem 2: Let n and k be positive integers with

n = 3k, 2 - k and k 6≡ 2 (mod 3). Then f(x) = x3·2
2k−5

is a 0-APN function over F2n .

Proof 2: To show f is 0-APN, we need to prove that
the equation

(x+ 1)3·2
2k−5 + x3·2

2k−5 + 1 = 0 (8)

has no solution in F2n\F2. Assume x ∈ F2n\F2 is a
solution of Eq. (8). Multiplying x5(x + 1)5 on both

sides of Eq. (8). And let y = x2
k

, z = y2
k

then z2
k

= x.
Raising the 2k-th power and 22k-th power to Eq. (8)
respectively obtains

z3x4 + z3x+ z3+ z2x5+ zx5+ x10+ x9+ x6 = 0,(9a)

x3y4+ x3y+ x3+ x2y5+ xy5+ y10+ y9+ y6 = 0,(9b)

y3z4+ y3z+ y3+ y2z5+ yz5+ z10+ z9+ z6 = 0. (9c)

With the help of Magma, computing the resultant
of Eq. (9a) and Eq. (9c) with respect to z, and then we
get R(x, y) Then we continue to compute the resultant
of R(x, y) and Eq. (9b) with respect to y, by Magma
computation and then decompose it into the product
of irreducible factors as

x27(x+ 1)27(x2 + x+ 1)20(x3 + x+ 1)(x3 + x2

+ 1)(x8 + x5 + x3 + x2 + 1)3(x8 + x5 + x4 + x3

+ 1)3(x8 + x6 + x5 + x3 + 1)3(x8 + x6 + x5 + x4

+ x3 + x+ 1)3(x8 + x7 + x5 + x4 + x3 + x2 + 1)3

(x8 + x7 + x6 + x4 + x2 + x+ 1)3(x12 + x7 + x5

+ x2 + 1)(x12 + x8 + x7 + x6 + x4 + x3 + 1)(x12

+ x9 + x5 + x4 + x2 + x+ 1)3(x12 + x9 + x6 + x5

+ x2 + x+ 1)(x12 + x9 + x6 + x5 + x4 + x+ 1)

(x12 + x9 + x8 + x5 + x4 + x+ 1)3(x12 + x9 + x8

+ x6 + x5 + x2 + 1)(x12 + x9 + x8 + x6 + x5 + x4

+ 1)(x12 + x10 + x7 + x5 + 1)(x12 + x10 + x7 + x6

+ x4 + x3 + 1)(x12 + x11 + x8 + x6 + x4 + x3 + x2

+ x+ 1)3(x12 + x11 + x8 + x7 + x4 + x3 + 1)3(x12
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+ x11 + x8 + x7 + x6 + x3 + 1)(x12 + x11 + x9 + x6

+ x5 + x4 + x3 + x+ 1)(x12 + x11 + x9 + x7 + x6

+ x5 + x3 + x+ 1)3(x12 + x11 + x9 + x8 + x7

+ x5 + x2 + x+ 1)(x12 + x11 + x9 + x8 + x7

+ x5 + x4 + x3 + x2 + x+ 1)(x12 + x11 + x9

+ x8 + x7 + x6 + x3 + x+ 1)(x12 + x11 + x10

+ x7 + x5 + x4 + x3 + x+ 1)(x12 + x11 + x10

+ x7 + x6 + x3 + 1)(x12 + x11 + x10 + x7 + x6

+ x4 + x2 + x+ 1)(x12 + x11 + x10 + x8 + x6

+ x5 + x2 + x+ 1)(x12 + x11 + x10 + x8 + x7

+ x3 + 1)3(x12 + x11 + x10 + x9 + x8 + x6 + x4

+ x+ 1)3(x12 + x11 + x10 + x9 + x8 + x7 + x5

+ x4 + x3 + x+ 1)(x12 + x11 + x10 + x9 + x8

+ x7 + x6 + x5 + x4 + x3 + x2 + x+ 1)3(x18

+ x13 + x10 + x8 + x6 + x5 + x4 + x+ 1)(x18

+ x16 + x13 + x12 + x10 + x9 + x8 + x6 + x2

+ x+ 1)(x18 + x17 + x14 + x13 + x12 + x9 + x8

+ x6 + x2 + x+ 1)(x18 + x17 + x14 + x13 + x12

+ x10 + x8 + x5 + 1)(x18 + x17 + x16 + x12 + x10

+ x9 + x6 + x5 + x4 + x+ 1)(x18 + x17 + x16

+ x12 + x10 + x9 + x8 + x6 + x5 + x2 + 1)(x24

+ x21 + x19 + x17 + x12 + x7 + x6 + x5 + x4

+ x3 + 1)(x24 + x21 + x20 + x19 + x18 + x17

+ x12 + x7 + x5 + x3 + 1)(x24 + x23 + x17 + x8

+ x6 + x5 + x4 + x3 + x2 + x+ 1)(x24 + x23

+ x20 + x18 + x17 + x8 + x5 + x3 + x2 + x+ 1)

(x24 + x23 + x22 + x21 + x19 + x16 + x7 + x6 + x4

+ x+ 1)(x24 + x23 + x22 + x21 + x20 + x19 + x18

+ x16 + x7 + x+ 1).

Observe that x /∈ F2, thus the solutions of Eq. (9) are
in F22 , F23 , F212 , F218 or F224 .

(1) Assume x ∈ F22 . Since 2 - k and n = 3k, then
n is an odd number, we have F22 ∩ F2n = F2, which
contradicts with x 6= 0, 1.

(2) Assume x ∈ F23 . When k ≡ 0 (mod 3), we

obtain x2
k

= x, x2
2k

= x. Hence, it follows from Eq.
(9) that

x10 + x9 + x4 + x3 = x3(x+ 1)3(x2 + x+ 1)2 = 0,

it is impossible since x /∈ F2 and F22 . When k ≡ 1

(mod 3), at this point, we have x2
2k

= x4, x2
k

= x2.
We conclude from Eq. (9) that

x16 +x12 +x10 +x6 = x6(x+ 1)6(x2 +x+ 1)2 = 0.

Notice that x2 + x + 1 is an irreducible polynomial in

F2. It leads to x ∈ F22 ∩ F23 = F2, which contradicts
with x /∈ 0, 1.

(3) x ∈ F212 . When k ≡ 1 (mod 4) or k ≡ 3 (mod
4), we get F212 ∩F2n = F23 , which contradicts with the
above discussion. When k ≡ 2 (mod 4) or k ≡ 0 (mod
4) , we obtain k is even. Therefore, this situation is not
discussed.

(4) x ∈ F218 . When k ≡ 1 (mod 4) or k ≡ 3 (mod
4), we get F218 ∩F2n = F23 , it means that the solutions
of Eq. (9) are in F23 which is impossible. When k ≡ 2
(mod 4) or k ≡ 0 (mod 4) , we obtain k is even. This
is contrary to the conditions of Theorem 2.

(5) Assume x ∈ F224 . When k ≡ 1 (mod 4) or k ≡
3 (mod 4), we get F224 ∩ F2n = F23 , this is impossible
to achieve. When k ≡ 2 (mod 4) or k ≡ 0 (mod 4), we
derive k is even contradicting with 2 - k. Hence, Eq.
(9) has no solution in F2n\F2. �

Theorem 3: Let n and k be positive integers with

n = 3k + 1. Then f(x) = x2
2k+1−2k+1−1 is a 0-APN

function over F2n .

Proof 3: It suffices to show that the equation

(x+ 1)2
2k+1−2k+1−1 + x2

2k+1−2k+1−1 + 1 = 0 (10)

has no solution in F2n\F2. Assume that x ∈ F2n\F2 is a

solution of Eq. (10). Multiplying x2
k+1+1(x+ 1)2

k+1+1

on both sides of Eq. (10). And let y = x2
k

, z = y2
k

then z2
k+1

= x and we raise the 2k+1-th power and
22k+1-th power to Eq. (10) respectively obtains

z2y2+ z2x+ z2+ y4x2+ y4x+ y2x2 = 0, (11a)

x2z4+ x2y2+ x2+ z8y4+ z8y2+ z4y4 = 0,(11b)

y2x2+ y2z2+ y2+ x4z4+ x4z2+ x2z4 = 0. (11c)

Computing the resultant of (11a) and (11b) , (11a)
and (11c) with respect to z respectively. We have
R1(x, y) and R2(x, y). Next we compute the resultan-
t of R1(x, y) and R2(x, y) with respect to y, with the
help of Magma, the resultant can be decomposed into
the following product of irreducible factors as

x128(x+ 1)128(x2 + x+ 1)184(x8 + x5 + x3 + x2

+ 1)8(x8 + x5 + x4 + x3 + 1)8(x8 + x6 + x5 + x3

+ 1)8 = 0.

Observe that x /∈ F2, thus the solutions of Eq. (10) are
in F22 or F28 .

(1) Assume x ∈ F22 . When k is even, we have
F22 ∩ F2n = F2, which is a contradiction. However,
when k is odd, in other words, k ≡ 1 (mod 2), then we
get F22 ∩ F2n = F22 , the solutions of Eq. (10) belong
into F22 . Notice that k + 1 ≡ 0 (mod 2). Raising the
square to Eq. (10) derives

x2
2(k+1)+2(k+1)+1

+ x2
2(k+1)+2 + x2

2(k+1)

+ x2
(k+1)+1+2(k+1)+1+4 + x2

(k+1)+1+2(k+1)+1+2

+ x2
(k+1)+1+4 = 0.
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Since x ∈ F22 , the equation can be written as

x+ x8 = x(1 + x7) = 0.

The solutions of Eq. (10) are in F27 . But we know
F22 ∩ F27 = F27 ∩ F2n = F2, which contradicts with
x /∈ F2.

(2) Assume x ∈ F28 . When k is even, we have
F28 ∩ F2n = F2, we derive a contradiction. When k is
odd, as discussed above, we also get a contradiction.
Hence, the proof is completed. �

Theorem 4: Let n and k be positive integers with

n = 3k + 1. Then f(x) = x2
2k+2k+1+2k−1 is a 0-APN

function over F2n .

Proof 4: We need to show that the equation

(x+1)2
2k+2k+1+2k−1+x2

2k+2k+1+2k−1+1 = 0 (12)

has no solution in F2n\F2. Assume that x ∈ F2n\F2 is
a solution of Eq. (12). Multiplying x(x + 1) on both
sides of Eq. (12). We have

x2
2k+2k+1 + x2

k+1+2k+1 + x2
k+1 + x2

2k+2k+1+1

+ x2
2k+2k+1+2k + x2

2k+1

+ x2
k+1+1 + x2 = 0.

(13)

And let y = x2
k

, z = y2
k

and x = z2
k+1

, and rais-
ing the 2k+1-th power, 22k+2-th power to equation (13)
respectively gives

zyx+ y3x+ yx+ zy2x+ zx+ y2x+ zy3+ x2

= 0, (14a)

xz2y2+ z6y2+ z2y2+ xz4y2+ xy2+ z4y2

+xz6+ y4 = 0, (14b)

y2x2z4+ x6z4+ x2z4+ y2x4z4+ y2z4+ x4z4

+y2x6+ z8 = 0. (14c)

With the help of Magma, computing the resultant of
Eq. (14a) and Eq. (14b), Eq. (14b) and Eq. (14c)
with respect to z, we can get R1(x, y) and R2(x, y).
We continue to compute the resultant of R1(x, y) and
R2(x, y) with respect to y, and then the resultant can
be decomposed into the product of irreducible factors
as

x284(x+ 1)284(x2 + x+ 1)8(x3 + x+ 1)16(x3 + x2

+ 1)16(x5 + x2 + 1)4(x5 + x3 + 1)4(x5 + x3 + x2

+ x+ 1)4(x5 + x4 + x2 + x+ 1)4(x5 + x4 + x3

+ x+ 1)4(x5 + x4 + x3 + x2 + 1)4(x8 + x5 + x3

+ x2 + 1)4(x8 + x5 + x4 + x3 + 1)4(x8 + x6 + x5

+ x3 + 1)4(x10 + x3 + 1)4(x10 + x7 + 1)4(x10 + x8

+ x3 + x+ 1)4(x10 + x8 + x7 + x6 + x5 + x4 + x3

+ x+ 1)4(x10 + x9 + x7 + x2 + 1)4(x10 + x9 + x7

+ x6 + x5 + x4 + x3 + x2 + 1)4(x10 + x9 + x8 + x3

+ x2 + x+ 1)4(x10 + x9 + x8 + x7 + x2 + x+ 1)4

(x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x

+ 1)4.

Observe that x /∈ F2, thus the solutions of Eq. (12) are
in F22 , F23 , F25 , F210 .

(1) Assume x ∈ F22 , when k is even, then n =
3k+ 1 is odd, F22 ∩F2n = F2, which is a contradiction.
When k is odd, then n = 3k+1 is even, F22∩F2n = F22 ,
then we can derive from Eq. (13) that

x4 + x3 + x6 + x5 = x3(x+ 1)3 = 0,

since x2
2k

= x and x2
k

= x2. At this moment, x ∈ F2,
it is inconsistent.

(2) Assume x ∈ F23 , F23 ∩ F2n = F2 since n is not
divisible by 3, which is a contradiction.

(3) Assume x ∈ F25 , when k 6≡ 3 (mod 5), we
get F25 ∩ F2n = F2, which contradicts with x /∈ {0, 1}.
When k ≡ 3 (mod 5), we know F25 ∩F2n = F25 . There-

by x2
2k

= x2 and x2
k

= x8. It follows from Eq. (13)
that

x11 + x25 + x9 + x19 + x26 + x4 + x17 + x2

= x2(x+ 1)(x23 + x16 + x15 + x8 + x7 + x+ 1).

It can be checked that the polynomial x23 +x16 +x15 +
x8 + x7 + x+ 1 is irreducible in F2. Thus the solutions
of the above equation are in F223 , which implies that
x ∈ F223 ∩ F25 = F2, it is unsuitable.

(4) Assume x ∈ F210 , we can infer that x ∈ F22 ,
F25 or F210 . Aiming at the former two cases, we have
already discussed it above. When x ∈ F210 , we can get
contradictions. We complete the proof. �

Theorem 5: Let n and k be positive integers with
n = 4k − 1, and n 6≡ 0 (mod 3), n 6≡ 0 (mod 47). Then

f(x) = x2
2k+2k+1+2k−1 is a 0-APN function over F2n .

Proof 5: We will certify that the equation

(x+1)2
2k+2k+1+2k−1+x2

2k+2k+1+2k−1+1 = 0 (15)

has no solution in F2n\F2. Assume that x ∈ F2n\F2 is
a solution of Eq. (15). Multiplying x(x + 1) on both
sides of Eq. (15). We have

x2
2k+2k+1 + x2

k+1+2k+1 + x2
k+1 + x2

2k+2k+1+1

+ x2
2k+1 + x2

k+1+1 + x2
2k+2k+1+2k + x2 = 0.

(16)

And let y = x2
k

, z = y2
k

and u = z2
k

, and raising the
2k-th power, 22k-th power and 23k-th power to equation
(16) respectively gives
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zyx+ y3x+ yx+ zy2x+ zx+ y2x+ zy3

+x2 = 0, (17a)

uzy + z3y + zy + uz2y + uy + z2y + uz3

+y2 = 0, (17b)

x2uz + u3z + uz + x2u2z + x2z + u2z + x2u3

+z2 = 0, (17c)

y2x2u+ x6u+ x2u+ y2x4u+ y2u+ x4u+ y2x6

+u2 = 0. (17d)

With the help of Magma, computing the resultant of
Eq. (17b) and Eq. (17c), Eq. (17b) and Eq. (17d) with
respect to u, and we get two formulas R1(x, y, z) and
R2(x, y, z). And then continue to compute the resultant
of R1(x, y, z) and Eq. (17a), R2(x, y, z) and Eq. (16a)
with respect to z, we obtain two formulas R3(x, y) and
R4(x, y). Finally, we compute the resultant of R3(x, y)
and R4(x, y) with respect to y, and decompose it into
the product of irreducible factors as

x329(x+ 1)329(x3 + x+ 1)(x47 + x43 + x42 + x41

+ x40 + x38 + x37 + x36 + x32 + x30 + x29 + x28

+ x26 + x24 + x22 + x21 + x20 + x18 + x17 + x14

+ x11 + x10 + x9 + x6 + x4 + x+ 1)(x47 + x44

+ x43 + x40 + x36 + x35 + x33 + x32 + x30 + x23

+ x22 + x19 + x18 + x17 + x15 + x8 + x7 + x6

+ x5 + x3 + x2 + x+ 1)(x47 + x45 + x42 + x41

+ x39 + x38 + x36 + x33 + x30 + x29 + x27 + x26

+ x25 + x24 + x23 + x21 + x19 + x17 + x13 + x12

+ x11 + x10 + x9 + x8 + x2 + x+ 1)(x47 + x46

+ x43 + x41 + x38 + x37 + x36 + x33 + x30 + x29

+ x27 + x26 + x25 + x23 + x21 + x19 + x18 + x17

+ x15 + x11 + x10 + x9 + x7 + x6 + x5 + x4 + 1)

(x47 + x46 + x45 + x39 + x38 + x37 + x36 + x35

+ x34 + x30 + x28 + x26 + x24 + x23 + x22 + x21

+ x20 + x18 + x17 + x14 + x11 + x9 + x8 + x6

+ x5 + x2 + 1)(x47 + x46 + x45 + x44 + x42 + x41

+ x40 + x39 + x32 + x30 + x29 + x28 + x25 + x24

+ x17 + x15 + x14 + x12 + x11 + x7 + x4 + x3 + 1).

Observe that x /∈ F2, thus the solutions of Eq. (15) are
in F23 or F247 .

(1) Assume x ∈ F23 . Since 4k− 1 6≡ 0 (mod 3), we
have F23 ∩ F2n = F2, it’s a paradox.

(2) Assume x ∈ F247 . Since 4k − 1 6≡ 0 (mod 47),
we have F247 ∩ F2n = F2, we derive a contradiction.
Hence, the proof is completed. �

Theorem 6: Let n and k be positive integers with

n = 4k+1. Then f(x) = x3·2
2k+1−5 is a 0-APN function

over F2n .

Proof 6: To illustrate f is 0-APN, it suffices to prove
that the equation

(x+ 1)3·2
2k+1−5 + x3·2

2k+1−5 + 1 = 0 (18)

has no solution in F2n\F2. Assume that x ∈ F2n\F2 is
a solution of Eq. (18). Multiplying x5(x+ 1)5 on both
sides of Eq. (18). We have

x2·2
2k+1+5 + x2

2k+1+5 + x3·2
2k+1+4

+ x3·2
2k+1+1 + x3·2

2k+1

+ x10 + x9 + x6 = 0.
(19)

Let y = x2
k

, and raising the 22k+1-th power to equation
(19) gives

y4x5 + y2x5 + y6x4 + y6x+ y6 + x10 + x9

+x6 = 0, (20a)

x4y10 + x2y10 + x6y8 + x6y2 + x6 + y20

+y18 + y12 = 0. (20b)

With the help of Magma, computing the resultant of
Eq. (20a) and Eq. (20b), and then the resultant can
be decomposed into the product of irreducible factors
in F2 as

x36(x+ 1)36(x2 + x+ 1)16(x8 + x5 + x3 + x2 + 1)2

(x8 + x5 + x4 + x3 + 1)2(x8 + x6 + x5 + x3 + 1)2

(x8 + x6 + x5 + x4 + x3 + x+ 1)2(x8 + x7 + x5

+ x4 + x3 + x2 + 1)2(x8 + x7 + x6 + x4 + x2

+ x+ 1)2.

Observe that x /∈ F2, thus the solutions of Eq. (18) are
in F22 or F28 . We know that n = 4k + 1, this means
n is odd, however, multiples of 2 or 8 are even. Hence,
F22 ∩ F2n = F28 ∩ F2n = F2, we derive a contradiction.
This completes the proof. �

4. An Analysis of the Inequivalence between
Constructed Functions and Existing 0-APN
power Functions

We enumerate all existing 0-APN power functions in
Table 2. The differential spectrums of power functions
in distinct finite fields must be distinct, thus they are
not equivalent. Therefore, Theorems 3.2, 3.5, and 3.6
are not equivalent to the enumerated 0-APN functions.
By screening, we categorize the functions with the same
finite field in the Table 2 into two groups: n = 2k + 1
and n = 3k+1. Using the Magma software, we compute
that their differential spectrums are different in a same
finite field, as presented in Tables 3 and 4. Hence, The-
orems 3.1, 3.3, and 3.4 are also not equivalent to other
functions.
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Table 2 All known CCZ-inequivalent 0-APN power functions F (x) = xd over F2n .

number d conditions Reference

1 21 n 6≡ 0 (mod 6) [5]

2 2r + 2t − 1 gcd(r, n) = gcd(t, n) = 1 [5]

3 22k + 2k + 1 n = 4k, k is even [5]

4 2n − 2s gcd(n, s + 1) = 1 [5]

5 2i − 1 gcd(i− 1, n) = 1 [6]

6 3 · 2k − 7 n = 2k + 1 [10]

7 22k+1 − 2k+1 − 2k + 1 n = 3k + 1 [10]

8 3(2k − 1 n = 2k, 3 - k [10]

9 5(2k+1 + 2k + 1) n = 2k + 1, m 6≡ 2 (mod 5) [10]

10 3(2k − 1) n = 2k + 1, k 6≡ 13 (mod 27) [10]

11 3(2k+1 + 1) n = 3k + 1, k 6≡ 9 (mod 14) [10]

12 −9 9 - n [10]

13 2k+1 + 3 n = 2k + 1 [13]

14 5 · 2k + 3 n = 2k + 1 [13]

15 3(2k − 1) n = 3k − 1 [13]

16 5 · 2k−1 + 1 n = 3k − 1, k 6≡ 5 (mod 14) [13]

17 22k+1 − 3 · 2k−1 + 1 n = 3k, k 6≡ 2 (mod 3) [13]

18 22k + 2k−1 + 1 n = 3k + 1 [13]

19 22k + 3 · 2k−1 − 1 n = 3k + 1 [13]

20 22k−1 + 2k + 1 n = 4k − 1 [13]

21 3 · 2k + 1 n = 4k − 1, n = 4k − 1 [13]

22 22k−1 − 2k−1 − 1 n = 4k − 1 [13]

23 3(22k+1 − 1) n = 4k − 1 [13]

24 22k+1 + 2k−1 + 1 n = 4k + 1,k6≡ 13 (mod 53) [13]

25 23k + 2k + 1) n = 5k [13]

26 22k+1 − 2k − 1 n = 5k, k 6≡ 0 (mod 3) [13]

27 22k−1 − 2k − 1 n = 2k, k is even, k - 3 [17]

28 22k−1 − 2k−1 − 1 n = 2k, k is odd [17]

29 23k − 22k + 2k − 1 n = 2m, m = 2k, k is even [17]

30 22k − 2k − 1 n = 2k + 1, k 6≡ 1 (mod 3) [17]

31 22k−1 − 2k−1 − 1 n = 2k + 1 [17]

32 22k−1 − 2k − 1 n = 2k + 1 [17]

33 22k−1 − 2k−1 − 1 n = 4k, k is odd [20]

34 22k−1 + 2k + 1 n = 2k + 1 [20]

35 22k + 2k+1 + 1 n = 2k + 1,k 6≡ 1 (mod 3) [20]

36 2k+1 − 2k−1 − 1 n = 2k + 1,k 6≡ 1 (mod 3) [20]

37 22k − 2k+1 − 1 n = 2k + 1,k 6≡ 4 (mod 9) [20]

38 22k + 2k+1 + 1 n = 3k − 1 [20]

39 22k+1 + 2k+1 + 1 n = 3k − 1, k is even [20]

40 22k+1 + 2k + 1 n = 3k − 1, k is even [20]

41 3·22k + 1 n = 3k − 1, k is even [20]

42 22k−1 − 2k − 1 n = 3k − 1, k 6≡ 4 (mod 9) [20]

43 22k−1 + 2k + 1 n = 3k, k is odd [20]

44 22k − 2k+1 − 1 n = 3k, k is odd [20]

45 22k+1 − 2k − 1 n = 3k [20]

46 3 · (2k+1 − 1) n = 3k + 1 k 6≡ 11 (mod 34) [20]

47 22k + 2k + 1 gcd(3k, n) = gcd(2k, n) = 1 [15]

48 5 · 2k+1 + 2k − 1 n = 2k + 1 Theorem 3.1

49 3 · 22k − 5 n = 3k, 2 - k, k 6≡ 2 (mod 3) Theorem 3.2

50 22k+1 − 2k+1 − 1 n = 3k + 1 Theorem 3.3

51 22k + 2k+1 + 2k − 1 n = 3k + 1 Theorem 3.4

52 22k + 2k+1 + 2k − 1 n = 4k − 1, n 6≡ 0 (mod 3), k 6≡ 0 (mod 47) Theorem 3.5

53 3 · 22k+1 − 5 n = 4k + 1 Theorem 3.6
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Table 3 Differential spectrum of xd over F2n for n = 9.

number d conditions Differential spectrum Reference

48 5 · 2k+1 + 2k − 1 n = 2k + 1 2127, 463, 6 Theorem 3.1

6 3 · 2k − 7 n = 2k + 1 2103, 445, 69, 89 [10]

13 2k+1 + 3 n = 2k + 1 2154, 436, 610 [13]

14 5 · 2k + 3 n = 2k + 1 2121, 454, 69 [13]

31 22k−1 − 2k−1 − 1 n = 2k + 1 2145, 427, 619 [17]

32 22k−1 − 2k − 1 n = 2k + 1 2112, 445, 618 [17]

34 22k−1 + 2k + 1 n = 2k + 1 2103, 445, 69, 89 [20]

Table 4 Differential spectrum of xd over F2n for n = 13.

number d conditions Differential spectrum Reference

50 22k+1 − 2k+1 − 1 n = 3k + 1 22484, 4624, 6104, 813 Theorem 3.3

51 22k + 2k+1 + 2k − 1 n = 3k + 1 23082, 4507 Theorem 3.4

7 22k+1 − 2k+1 − 2k + 1 n = 3k + 1 22575, 4663, 665 [10]

18 22k + 2k−1 + 1 n = 3k + 1 22484, 4611, 691, 813, 1013 [13]

19 22k + 3 · 2k−1 − 1 n = 3k + 1 22562, 4624, 678, 813 [13]

5. Conclusion

This paper has provided several new infinite classes of
0-APN power functions over F2n by using the multi-
variate method and resultant elimination. Based on
Remark 1 and Magma experiments, our results also
indicated 0-APN power functions over F2n in this pa-
per are not CCZ-equivalent to the known 0-APN power
functions.
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