
DOI:10.1587/transfun.2023EAP1163

Publicized:2024/08/05

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 202x
1

PAPER

Accelerating CNN Inference with an Adaptive

Quantization Method Using Computational

Complexity-Aware Regularization

Kengo NAKATA†, Daisuke MIYASHITA†, Jun DEGUCHI†, Nonmembers,
and Ryuichi FUJIMOTO†, Senior Member

SUMMARY Quantization is commonly used to reduce the
inference time of convolutional neural networks (CNNs). To re-
duce the inference time without drastically reducing accuracy,
optimal bit widths need to be allocated for each layer or filter
of the CNN. In conventional methods, the optimal bit alloca-
tion is obtained by using the gradient descent algorithm while
minimizing the model size. However, the model size has little
to no correlation with the inference time. In this paper, we
present a computational-complexity metric called MAC×bit that
is strongly correlated with the inference time of quantized CNNs.
We propose a gradient descent–based regularization method that
uses this metric for optimal bit allocation of a quantized CNN to
improve the recognition accuracy and reduce the inference time.
In experiments, the proposed method reduced the inference time
of a quantized ResNet-18 model by 21.0% compared with the
conventional regularization method based on model size while
maintaining comparable recognition accuracy.
key words: deep learning, convolutional neural networks, in-
ference, quantization, mixed-precision computing

1. Introduction

Convolutional neural networks (CNNs) have achieved
high recognition accuracy in image classification and
object detection tasks [1]–[3]. However, inference
of CNNs requires millions to billions of multiply–
accumulate (MAC) operations, resulting in huge
amounts of latency and energy consumption. Quan-
tization is an effective technique for reducing computa-
tional costs and accelerating CNN inference by lower-
ing the bit precision [4]–[6]. For example, lowering the
bit precision from 8 bits to 4 bits allows MAC opera-
tions to be executed twice as fast on general-purpose
computing devices such as NVIDIA Tesla T4 [7] and
A100 [8] graphical processing units (GPUs), as well as
on dedicated accelerators [9], [10]. Recent studies [11]–
[17] have proposed layer-wise or filter-wise quantization
methods that reduce computational costs without dras-
tically reducing accuracy by allocating the optimal bit
width depending on the layer or filter.

A promising technique for determining the opti-
mal bit allocation is to employ the gradient descent
algorithm [18]–[20]. The quantization step size, which
determines the bit width of weights, is set as a learnable

†The author is with Kioxia Corporation, Yokohama,
247-8585 Japan.

parameter along with the weights and is updated by the
stochastic gradient descent (SGD) algorithm to mini-
mize the classification error. After iterative updates,
the optimal bit allocation can be derived from the op-
timized quantization step size and weight parameters.

Uhlich et al. [20] proposed a conventional gra-
dient descent–based regularization method based on
the model size and memory footprint of the quantized
CNN. They were able to optimize the quantization step
size and weight parameters to minimize the classifica-
tion error under the constraints imposed by the model
size and memory footprint. Consequently, the optimal
bit allocation is obtained for achieving a high recogni-
tion accuracy at less than the target model size and
memory footprint. However, their method focuses only
on minimizing the model size and memory footprint
and does not directly consider the processing time for
CNN inference (i.e., inference time) during optimiza-
tion. In other words, their optimal bit allocation is not
always ideal for reducing the inference time.

In this paper, we present a computational-
complexity metric that does not focus on the model size
or memory footprint but instead considers the number
of MAC operations and the bit widths of a quantized
CNN, which we show to be strongly correlated with the
inference time. We use this metric to propose a regular-
ization method and optimization flow [21] for obtain-
ing an optimal bit allocation to achieve a high recogni-
tion accuracy at less than a target computational com-
plexity or inference time. We empirically demonstrate
that models optimized by our proposed method achieve
a better recognition accuracy with a shorter inference
time than models optimized by Uhlich et al.’s conven-
tional method.

The remainder of this paper is organized as follows.
Section 2 describes related works and their issues. Sec-
tion 3 introduces the computational-complexity met-
ric. Section 4 presents the proposed regularization
method and optimization flow using the computational-
complexity metric. Section 5 presents the experimental
results, and Section 6 gives our conclusions.

Copyright© 202x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 202x

2. Related work and issues

2.1 Methods for optimal bit allocation

CNNs comprise tens or hundreds of layers with thou-
sands of filters [1], [2]. Finding the optimal bit al-
location for each layer or filter by an exhaustive
search is computationally costly∗. Many methods have
been proposed for effectively determining the opti-
mal bit allocation of quantized CNNs, for example,
the analysis-based [11], [13]–[15], [22], reinforcement
learning–based [16], [17], [23], and gradient descent–
based [18]–[20].

The analysis-based approach determines the bit al-
location by observing the distribution of weight values
at each layer or filter [11], [22] or by measuring the sen-
sitivity of the recognition accuracy to quantizing the
weight and activation values [13]–[15]. Observing the
distribution and evaluating the sensitivity do not re-
quire iterative forward and backward operations to up-
date the weight parameters. Therefore, the analysis-
based approach has a low computational cost and is
useful for determining the bit allocation immediately.
However, it is insufficient for improving the recogni-
tion accuracy at smaller bit widths or shorter inference
times compared with the other approaches, which iter-
atively update the weight parameters to determine the
optimal bit allocation.

The reinforcement learning–based approach [16],
[17], [23] repeats a series of processes that include set-
ting the bit allocation, fine-tuning weight parameters,
and evaluating the accuracy and inference time for var-
ious bit allocations. Reinforcement learning is used to
search for the optimal bit allocation based on the eval-
uation results of the accuracy and inference time. This
approach is effective when the characteristics of the op-
timization target (e.g., the hardware used for inference)
are not entirely revealed or when the objective function
is non-differentiable (i.e., loss gradients cannot be cal-
culated). However, the weight parameters need to be
fine-tuned over tens to hundreds of epochs each time
the bit allocation is changed, so the search for the op-
timal bit allocation is time-consuming.

Recent studies [24], [25] have empirically shown
that dedicated hardware for mixed-precision comput-
ing [26] can reduce the processing time in proportion
to the bit precision. In other words, when such hard-
ware is used for inference, the characteristics of the op-
timization target are already revealed. Therefore, opti-
mization does not necessarily require the reinforcement
learning–based approach but instead can be effectively

∗For example, if a CNN comprises 10000 filters and the
bit width can be set from 1 to 8 bits, then the search space
will be 810000.

achieved by the gradient descent–based approach.
In this paper, we focus on a computational-

complexity metric that can be approximately differ-
entiable, and we apply this metric to the gradient
descent–based approach.

The gradient descent–based approach [18], [19]
uses a gradient descent algorithm such as SGD to de-
termine the bit allocation. This approach sets the
quantization step size, which determines the bit width
of weights, as a learnable parameter along with the
weights. It iteratively updates the weight and step
size parameters to minimize the value of the loss func-
tion. After the updates, the bit allocation is determined
based on the optimized weight and step size parameters.

To obtain a more compact quantized CNN, Uhlich
et al. [20] proposed a regularization method that uses
the model size and memory footprint of the quantized
CNN. When the model size is used as a regularization
term, it is added to the loss L to give

L = L+ λM, (1)

where λ is a hyperparameter that adjusts the regular-
ization effect. M is the model size of the quantized
CNN, and it is calculated as

M =
∑
l

(#params)l × bl, (2)

where l is a layer index and bl is the bit width cor-
responding to the weight parameters at the l-th layer.
#params is the number of weight parameters, and it is
calculated as

#params = CoCiKhKw, (3)

where Co and Ci are the numbers of output and input
channels, respectively, and Kh and Kw are the height
and width, respectively, of kernels (i.e., filters).

Eqs. (2) and (3) do not include the size of input
images or output feature maps at each layer, nor do
they directly consider the number of iterations in which
the weight parameters are used for forward operations
during inference. Therefore, Uhlich et al.’s conven-
tional method of using the model size (or memory foot-
print) for regularization is effective at obtaining com-
pact models that achieve high accuracy with limited
memory consumption, but it is not always effective for
optimizing computational costs associated with infer-
ence, such as the inference time.

Here, we present measurement results demonstrat-
ing the lack of a correlation between the model size and
inference time. Fig. 1 shows the values of (#params)l×
bl from Eq. (2) and the processing time at each layer
when the inference of the ResNet-18 model [27] is
executed at 8 and 16 bits on an NVIDIA Tesla T4
GPU. For this measurement, images in the ImageNet
dataset [28] were used, and the batch size was set to 500.

NAKATA et al.: ACCELERATING CNN INFERENCE WITH AN ADAPTIVE QUANTIZATION METHOD
3

0.0

1.0

2.0

3.0

4.0

5.0

c
o

n
v

1
c

o
n

v
2

c
o

n
v

3
c

o
n

v
4

c
o

n
v

5
c

o
n

v
6

c
o

n
v

7
s

h
o

rt
c

u
t1

c
o

n
v

8
c

o
n

v
9

c
o

n
v

1
0

c
o

n
v

1
1

s
h

o
rt

c
u

t2
c

o
n

v
1

2
c

o
n

v
1

3
c

o
n

v
1

4
c

o
n

v
1

5
s

h
o

rt
c

u
t3

c
o

n
v

1
6

c
o

n
v

1
7

res2 res3 res4 res5

(#
p

a
ra

m
s

) l
�

b
l

[M
B

y
te

]

8 bit 16 bit

(a) Products of (#params)l and bl for each layer.

0

2

4

6

8

10

c
o

n
v

1
c

o
n

v
2

c
o

n
v

3
c

o
n

v
4

c
o

n
v

5
c

o
n

v
6

c
o

n
v

7
s

h
o

rt
c

u
t1

c
o

n
v

8
c

o
n

v
9

c
o

n
v

1
0

c
o

n
v

1
1

s
h

o
rt

c
u

t2
c

o
n

v
1

2
c

o
n

v
1

3
c

o
n

v
1

4
c

o
n

v
1

5
s

h
o

rt
c

u
t3

c
o

n
v

1
6

c
o

n
v

1
7

res2 res3 res4 res5

P
ro

c
e

s
s

in
g

 t
im

e

[m
s

]

8 bit 16 bit

(b) Processing time for each layer.

Fig. 1: (a) Product of the number of parameters
(#params)l and bit width (bl) obtained by Eq. (2), and
(b) the processing time at each layer when inference of
the ResNet-18 model is executed with 8 and 16 bits on
an NVIDIA Tesla T4 GPU. Later layers result in larger
products but not a longer processing time. (©2021
IEEE [21])

As shown in Fig. 1(a), the later the layer, the larger the
values of (#params)l × bl in the ResNet-18 model. In
contrast, as shown in Fig. 1(b), the processing time does
not increase in the later layers. Fig. 2 shows the rela-
tion between (#params)l × bl and the processing time
based on the results shown in Figs. 1(a) and 1(b). The
correlation coefficient is 0.16, which indicates that the
processing time is uncorrelated with (#params)l×bl or
the model size, which accumulates those product values
for all layers as given in Eq. (2). These results demon-
strate that the conventional method [20] of using the
model size for regularization does not optimally reduce
the inference time.

2.2 Computational complexity-aware regularization
methods

In Section 3, we introduce a computational-complexity
metric (MAC×bit) that is correlated with inference
time, and in Section 4, we propose a computational
complexity-aware regularization method and optimiza-

0

2

4

6

8

10

0 1 2 3 4 5

P
ro

c
e

s
s

in
g

 t
im

e
 [

m
s

]

8 bit 16 bit

Correlation
coefficient: 0.16

No correlation

(#params)l�bl [MByte]

Fig. 2: Relation between the processing time and prod-
uct of (#params)l and bl at each layer when inference
of the ResNet-18 model is executed with 8 and 16 bits
on an NVIDIA Tesla T4 GPU. (©2021 IEEE [21])

tion flow using this metric. Similar to our ap-
proach, previous and concurrent works have introduced
computational-complexity metrics, such as BOPs or
BitOPs (Bit Operations), which consider both bit pre-
cision and the number of MAC operations [29]–[34]. For
example, Wu et al. [29] and Cai et al. [30] have used
such a metric as a cost function in their mixed-precision
network search. Baalen et al. [31] and Yang et al. [32]
have attempted to regularize computational complex-
ity by using the metrics of BOPs and BitOPs, where
the impacts of the sizes of the output feature maps are
incorporated, similar to our introduced metric. They
have employed these metrics as a penalty term in their
computational complexity-aware regularization, which
is qualititatively the same as our approach presented in
Section 4.3. Furthermore, recent studies have explored
optimizing bit allocations based on input images [35],
[36] or improving the efficiency of searching for opti-
mal bit allocation [37] by expanding upon the idea of
computational complexity-aware regularization.

For the optimization of bit allocations in quan-
tized CNNs, it is straightforward to introduce a
computational-complexity metric that considers both
the bit precision and the number of MAC operations,
as introduced in the aforementioned works. However,
these works do not provide sufficient quantitative anal-
ysis regarding the relationship between the metric and
computational costs, such as inference time. One of the
main objectives of this paper is to reveal the limitations
of the conventional regularization method [20], which
uses model size, by conducting a quantitative analysis
based on its correlation with inference time. We also
aim to quantitatively analyze the improvement in cor-
relation achieved using our introduced computational-
complexity metric compared to the correlation with
model size. Furthermore, we empirically show the op-
timization transition towards a target by following the
optimization flow, in addition to the improvement in

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 202x

Table 1: Performance summary of hardware supporting
multibit precision computing

Computational
performance [TOPS*] 8bit 4bit 1bit

NVIDIA Tesla T4 GPU [7] 130 260 –
NVIDIA A100 GPU [8] 624 1248 4992
Dedicated accelerator [9] 0.69 1.38 7.37
Dedicated accelerator [10] 19.7 39.3 –

*Tera Operations per Second

recognition accuracy on image classification datasets as
demonstrated in the previous and concurrent works.

2.3 Hardware supporting multibit precision comput-
ing

Recently, both general-purpose and dedicated hard-
ware supporting multibit precision computing have
been widely released [7]–[10], [26], [38]. Such hardware
demonstrate linear improvement in the computational
performance with lower bit precision, as given in Ta-
ble 1. However, the advantages of such hardware can-
not be fully exploited for inference by layer-wise or
filter-wise quantized CNNs unless the optimal bit allo-
cation is found. In this paper, we focus on the hardware
characteristics that linearly decrease the computational
time with lower bit precision for determining the opti-
mal bit allocation.

3. Computational-complexity metric for quan-
tized CNNs

CNNs have a very high arithmetic intensity∗∗, so the
computational time is often the bottleneck rather than
the memory access time [40], [41]. Thus, the inference
time is mainly determined by the computational com-
plexity of the inference and computational performance
of the hardware. For CNNs, the computational com-
plexity is typically evaluated by the number of MAC
operations or floating-point operations (FLOPs) [42]–
[44]. However, such metrics do not properly reflect the
effect of bit precision on the computational cost for in-
ference by a quantized CNN with weights represented
by various bit widths.

For hardware supporting multibit precision com-
puting [7]–[10], [26], [38], lowering the bit precision lin-
early increases the computational speed, as summarized
in Table 1. In other words, the computational time is
linearly proportional to the bit precision on such hard-
ware. Among the hardware options for multibit pre-
cision computing, our primary focus in this paper is
the dedicated accelerator proposed by Maki et al. [26].
Based on the characteristics of this hardware, we can
define a metric for estimating the computational cost of

∗∗For instance, this metric is measured by the number
of MAC operations per byte of data transferred from mem-
ory [39].

inference by a quantized CNN as the sum of the prod-
ucts of the number of MAC operations (#MAC) and
bit precision, which we call MAC×bit:

MAC×bit =
∑
l

(#MAC)l × bl, (4)

where l is a layer index and bl represents the bit width
for weight parameters at the l-th layer, which is the
same as in Eq. (2). For the MAC operations of a typical
CNN, weight parameters are repeatedly used Oh ×Ow

times, where Oh and Ow are the height and width, re-
spectively, of the output feature maps. Then, #MAC in
Eq. (4) can be calculated and transformed with Eq. (3)
to give

#MAC = OhOwCoCiKhKw (5)

= OhOw(#params). (6)

Here, we show the correlation between the infer-
ence time and MAC×bit with measurement results us-
ing the ResNet-18 model. Fig. 3 shows the values of

0

200

400

600

800

1000

1200

c
o

n
v

1
c

o
n

v
2

c
o

n
v

3
c

o
n

v
4

c
o

n
v

5
c

o
n

v
6

c
o

n
v

7
s

h
o

rt
c

u
t1

c
o

n
v

8
c

o
n

v
9

c
o

n
v

1
0

c
o

n
v

1
1

s
h

o
rt

c
u

t2
c

o
n

v
1

2
c

o
n

v
1

3
c

o
n

v
1

4
c

o
n

v
1

5
s

h
o

rt
c

u
t3

c
o

n
v

1
6

c
o

n
v

1
7

res2 res3 res4 res5

(#
M

A
C

) l
�

b
l

[x
1

0
9
]

8 bit 16 bit

Fig. 3: Product of the number of MAC opera-
tions (#MAC)l and bit width (bl) obtained by Eq. 4
at each layer when inference of the ResNet-18 model is
executed with 8 and 16 bits on an NVIDIA Tesla T4
GPU.

0

2

4

6

8

10

0 200 400 600 800 1000

P
ro

c
e

s
s

in
g

 t
im

e
 [

m
s

]

Correlation
coefficient: 0.95

Strong correlation

8 bit 16 bit

(#MAC)l�bl [x109]

Fig. 4: Relation between the processing time and prod-
uct of the number of MAC operations (#MAC)l and bit
width (bl) at each layer when inference of the ResNet-
18 model is executed with 8 and 16 bits on an NVIDIA
Tesla T4 GPU. (©2021 IEEE [21])

NAKATA et al.: ACCELERATING CNN INFERENCE WITH AN ADAPTIVE QUANTIZATION METHOD
5

(#MAC)l × bl obtained from Eq. (4) at each layer,
and Fig. 4 shows the relation between the processing
time and those values based on the results shown in
Figs. 1(b) and 3. The measurement conditions were
the same as in Figs. 1 and 2. The correlation coeffi-
cient was 0.95, indicating a strong correlation between
the processing time and (#MAC)l × bl or MAC×bit,
which accumulates those products for all layers as given
in Eq. (4).

Metrics such as MAC×bit that considers both
the computational complexity and bit precision have
previously been used to evaluate the performance of
quantized CNNs or dedicated accelerators for mixed-
precision computing [11], [24], [25], [33], [34], [45]. In
this paper, we use MAC×bit not only to simply evalu-
ate the computational cost but also as a regularization
method. We propose an optimization flow for bit allo-
cation to obtain a quantized CNN with high accuracy
and a short inference time.

The metric of MAC×bit incorporates the impact
of the number of weight parameters, as indicated in
Eqs. (4) and (6). Although the proposed method could
be integrated with pruning techniques [46]–[48], which
accelerate CNN inference by reducing the number of
weight parameters, our main focus in this paper is on
quantization techniques themselves. Therefore, in this
paper, we primarily evaluate the effectiveness of the
proposed method without including pruning techniques
on quantized CNNs using the metric of MAC×bit.

4. Proposed method

Our proposed method for obtaining the optimal bit al-
location involves three steps. First, we evaluate the
hardware characteristics in terms of the MAC×bit val-
ues and inference times of various quantized CNNs.
Based on the characteristics, we can estimate a tar-
get value of MAC×bit to obtain the target inference
time. Second, a CNN is fully pre-trained at full preci-
sion (i.e., floating-point 32 bits) without quantization.
Third, the pre-trained model is optimized to improve
the recognition accuracy within the target MAC×bit
and inference time. Each step is described in detail
below.

4.1 Evaluation of MAC×bit characteristics

We evaluate the hardware characteristics in terms of
the MAC×bit values and inference time for various
quantized CNNs with different numbers of layers, chan-
nels, and bit widths. We use the dedicated accelera-
tor for mixed-precision computing proposed by Maki
et al. [26] and evaluate its characteristics.

Fig. 5 shows the relation between MAC×bit values
and the simulated inference time for various quantized
CNNs, executed with a range of bit widths (1–8 bits) on
the dedicated accelerator. We used ResNet-18, ResNet-

0

50

100

150

200

0 5 10 15

S
im

u
la

te
d

 i
n

fe
re

n
c

e
 t

im
e

 [
m

s
]

Target inference time

e.g., 150ms

Target

MAC bit

e.g., 11x109

MAC bit [x109]

Fig. 5: Relation between MAC×bit and the simu-
lated inference time on a dedicated accelerator [26] for
CNNs with various #MAC and bit widths. The tar-
get MAC×bit value can be estimated from the target
inference time.

50, and MobileNetV2 [49] as CNNs and images in the
ImageNet dataset for inference. The inference time is
strongly correlated with MAC×bit with a correlation
coefficient of 0.99, and the relationship is approximately
linear. Then, we can estimate a target MAC×bit value
from the target inference time. For example, in Fig. 5,
if the inference time is less than 150 ms, the target
MAC×bit value should be less than 11 × 109. We can
then use this estimated target MAC×bit value for the
optimization flow described in Section 4.3. In addition,
prior to optimization, the CNN architecture to be used
for inference is determined based on the target inference
time.

4.2 Pre-training

For the gradient descent–based approach to optimal bit
allocation (described in Section 2.1), weights can be ini-
tialized with random values [4], [5] or pre-trained at full
precision [14], [15], [18], [19]. Uhlich et al. [20] empiri-
cally demonstrated that quantized CNNs achieve better
accuracy when they use pre-trained weights at full pre-
cision rather than randomly initialized values. Thus,
our proposed method requires the CNN to be fully pre-
trained before optimization.

4.3 Optimization

4.3.1 Quantization procedures and calculations

When the weight W is quantized with the quantization
step size s, the quantized weight Wq is expressed as

Wq = ⌊W/s⌉, (7)

where ⌊·⌉ is a rounding function that rounds the argu-
ment to the nearest integer, and the division operator
(/) represents an element-wise operation that performs

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 202x

division on each element of a matrix or tensor. The de-
quantized weight Wdq is applied to forward and back-
ward operations, and it is calculated and transformed
with Eq. (7) as

Wdq = Wq × s (8)

= ⌊W/s⌉ × s, (9)

where the multiplication operator (×) represents an
element-wise operation that performs multiplication on
each element of a matrix or tensor.

Here, we consider the bit width required to rep-
resent the quantized weight Wq that is used to calcu-
late MAC×bit in Eq. (4). The granularity for the re-
quired bit width depends on the quantization method
and the hardware specifications used for inference. For
example, if we employ layer-wise/filter-wise quantiza-
tion with dedicated hardware [9], [26], the weights in
each layer/filter are quantized with the same bit pre-
cision. Then, the required bit width differs for each
layer/filter and needs to be calculated for each. Here,
we describe the required bit width for filter-wise quan-
tization, which is more granular than layer-wise quan-
tization.

The required bit width is mainly determined by
the range of quantized weight values (i.e., the maxi-
mum and minimum values). For simplicity, if we con-
sider the weight distribution to be approximately sym-
metrical across the positive and negative ranges, the
approximate range can be obtained by taking the max-
imum of the absolute values of the quantized weights.
By doubling the maximum value and taking the binary
logarithm, the bit width (bf) required to represent the
quantized weights in the f -th filter (Wq,f) can be cal-
culated and transformed with Eq. (7) as follows:

bf (Wf , sf) = ⌈log2(max
f

(abs(Wq,f))× 2)⌉ (10)

= ⌈log2(max
f

(abs(⌊Wf/sf⌉))) + 1⌉, (11)

where ⌈·⌉, max (·), and abs (·) are the ceiling, max,
and absolute value functions, respectively. To calcu-
late MAC×bit using Eq. (4), bl is determined by av-
eraging the bit widths (bf,l) at the l-th layer using
bl = 1/Nl

∑
f bf,l, where Nl is the total number of fil-

ters in the l-th layer.
In the gradient descent–based approach [18]–[20],

W and s are set as learnable parameters and are itera-
tively updated by the SGD algorithm to minimize the
loss L. The optimized W and s can then be used in
Eq. (11) to derive the optimal bit allocation. To up-
date W and s, we need to calculate gradients such as
∂L/∂W and ∂L/∂s. WithWdq used for forward opera-
tions, ∂L/∂Wdq can be obtained directly by backprop-
agation. With the backpropagated ∂L/∂Wdq, we can
then approximate ∂L/∂W based on a straight-through
estimator (STE) [50]:

∂L
∂W

≈ ∂L
∂Wdq

. (12)

Additionally, we can use the chain rule to obtain ∂L/∂s:

∂L
∂s

=
∂L

∂Wdq
· ∂Wdq

∂s
. (13)

Esser et al. [18] proposed approximating ∂Wdq/∂s by
using an STE-based approximation for the rounding
function ⌊·⌉ in Eq. (9) with the product rule:

∂Wdq

∂s
=

∂

∂s
(⌊W/s⌉ × s) (14)

=
∂

∂s
⌊W/s⌉ × s+ ⌊W/s⌉ × ∂s

∂s
(15)

≈ ∂

∂s
(W/s)× s+ ⌊W/s⌉ (16)

= −W/s+ ⌊W/s⌉. (17)

Using the backpropagated gradient ∂L/∂Wdq with
Eqs. (13) and (17), ∂L/∂s can be calculated.

For the regularization of MAC×bit, we need to cal-
culate the gradients of MAC×bit with respect to W
and s. In Eq. (4), MAC×bit is expressed as the sum
of the products of #MAC (constant) and the bit width
b(W, s). Thus, we focus on the gradients of b(W, s).
Here, we consider the gradient of bf with respect toWf

(i.e., ∂bf/∂Wf) and apply the STE-based approxima-
tion to the ceiling and rounding functions in Eq. (11),
which gives

∂bf
∂Wf

=
∂

∂Wf
⌈log2(max

f
(abs(⌊Wf/sf⌉))) + 1⌉ (18)

≈ ∂

∂Wf
(log2(max

f
(abs((Wf/sf)))) + 1). (19)

By using the automatic differentiation included in the
PyTorch library [51], we can execute the backward op-
erations for standard functions such as log2(·),max(·),
and abs(·), and we can obtain ∂bf/∂Wf from Eq. (19).
∂bf/∂sf can also be calculated by using the same ap-
proximation as in Eq. (19). With the PyTorch li-
brary, we can define custom backward operations re-
lated to the STE-based approximations in Eqs. (12),
(17), and (19). Then, Eqs. (7)–(19) can be used to ex-
ecute the processes from quantization to updating W
and s.

4.3.2 Optimization flow

Our proposed regularization method includes an opti-
mization flow for the weight W and quantization step
size s so that MAC×bit and the inference time are less
than the specified target values. To impose a constraint
related to the computational cost of inference, we add
the MAC×bit value calculated by Eq. (4) as a penalty
term to the loss L to give

NAKATA et al.: ACCELERATING CNN INFERENCE WITH AN ADAPTIVE QUANTIZATION METHOD
7

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180

T
ra

in
 lo

s
s

EpochEpoch

(a)

T
ra

in
in

g
 l
o

s
s
ℒ

Pre-training

Optimization

0

10

20

30

40

50

60

70

0 20 40 60 80 100120140160180

0

Epoch

Optimization

Epoch

(b)

Target

�

Pre-training

6.5�109

M
A

C
�

b
it

 [
x
1
0

9
]

5

6

7

8

9

10

105 115 125

0

EpochEpoch

Target

�

M
A

C
�

b
it

 [
x
1
0

9
]

(c)

Optimization

6.5�109

Fig. 6: Transition curves for (a) the training loss L and (b) MAC×bit during pre-training (blue plots) and opti-
mization (red plots); (c) an enlarged graph of the MAC×bit curve from 105 to 130 epochs. The ResNet-18 model
and ImageNet dataset were used to obtain these results. As shown in (c), MAC×bit decreased to the target value
(6.5×109 indicated by the orange line) with optimization.

L = L+ λ(MAC×bit), (20)

where λ is a hyperparameter that determines the regu-
larization effect, which is the same as the conventional
regularization based on model size in Eq. (1). We can
adjust λ so that the penalty term is approximately the
same magnitude as the initial loss value before opti-
mization. For instance, if L ≈ 1 and MAC×bit ≈ 109

before optimization, then λ can be set to 1× 10−9.
Algorithm 1 shows the optimization flow with the

regularization in Eq. (20). As described in Sections 4.1
and 4.2, the relation between MAC×bit and the in-
ference time is used to estimate the target MAC×bit
value from the target inference time. The pre-trained
weights at full precision are used as the initial values
for optimization.

The initial value for the quantization step size
(sinit) is determined by using the distribution of pre-
trained weights:

sinit = 2mean(abs(W))/
√

Qp, (21)

where mean(·) returns the mean value of the arguments
and Qp denotes the number of quantization bins in the
positive region of the weight values. Qp is given by

Qp = 2binit−1 − 1, (22)

where binit is the initial bit width before optimization
(e.g., 8 bits). This initialization for the quantization
step size, as given by Eqs. (21) and (22), was introduced
heuristically by Esser et al. [18]. Larger values of binit
produce larger Qp, smaller sinit, and smaller differences
between the de-quantized and original weights (i.e., a
smaller initial quantization error).

In forward operations, the convolutional layers are
executed with de-quantized weights while other layers
such as the batch normalization, ReLU, and fully con-
nected layers are executed at full precision, as described
in lines 6–13 of Algorithm 1. To precisely update W

Algorithm 1 Optimization with computational-
complexity-aware regularization

Input: Initial W and b, target MAC×bit value, and training
dataset (input images and labels)

Output: Optimized W, s, and b
1: // Description for variables
2: // I is the number of optimization iterations.
3: // L is the number of layers.
4: Initialize s with initial W and b ▷ Eqs. (21) & (22)
5: for i = 1 to I do
6: for l = 1 to L do
7: if Function of the l-th layer is convolution then
8: Quantize Wf,l by sf,l ▷ Eqs. (7)–(9)
9: Compute output values with de-quantized values
10: else
11: Compute output values with full-precision values
12: end if
13: end for
14: Compute loss L
15: Compute MAC×bit ▷ Eqs. (4), (5) & (11)
16: if MAC×bit is larger than the target value then
17: Add λMAC×bit to L ▷ Eq. (20)
18: end if
19: Backward L and calculate gradients
20: Update W and s
21: end for
22: Compute b with optimized W and s ▷ Eq. (11)

and s, W and s are stored at full precision during opti-
mization. The optimization iteratively updates W and
s so that MAC×bit becomes less than the target value,
as described in lines 16–20 of Algorithm 1. The optimal
bit allocation is obtained from the optimized W and s
by using Eq. (11).

As an example, Fig. 6 shows transition curves for
the training loss L and MAC×bit during pre-training
and optimization using the ResNet-18 model and Im-
ageNet dataset. The model was pre-trained for 110
epochs and optimized for 80 epochs. The blue plots in-
dicate the curves for pre-training with floating-point 32
bits, and the red plots indicate those for optimization.
The orange line shows the target MAC×bit value (i.e.,

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 202x

6.5×109 here). Fig. 6(c) shows an enlarged graph of the
MAC×bit curve from 105 to 130 epochs in Fig. 6(b).
MAC×bit decreased to the target value of 6.5 × 109

with our proposed optimization.

5. Experiments

5.1 Experimental setting

We conducted experiments to evaluate the performance
of our proposed method. We employed the PyTorch li-
brary to implement our proposed method. We used
VGG7 [1], ResNet-18, ResNet-50, and MobileNetV2 as
CNNs and evaluated their performance on the STL-
10 [52] and ImageNet datasets. To evaluate the infer-
ence time, we used the dedicated accelerator for mixed-
precision computing proposed by Maki et al. [26]. For
comparison, we also evaluated the performance of mod-
els optimized by Uhlich et al.’s conventional regulariza-
tion method based on model size [20].

The bit width for weights was set to be variable
from 1 to 8. Based on the hardware specifications [26],
the bit width for activation was fixed at 8. We referred
to Sasaki et al. [11] and discretized the activations into
256 (= 28) values by fixing the quantization step size
for activation (sa) at

sa = (Vmax − Vmin)/2
8, (23)

where Vmax and Vmin are the maximum and mini-
mum values, respectively, of activation in the first mini-
batch.

The CNNs were pre-trained in 32 bits by using
SGD with momentum. Using the pre-trained models,
we set binit = 8 and initialized the quantization step
size for weights with Eqs. (21) and (22). We used the
target MAC×bit value estimated from the target in-
ference time to determine the optimal bit allocation as
given in Algorithm 1. Table 2 summarizes the hyperpa-
rameter settings for the pre-training and optimization.
The hyperparameters were set to typical values in the
literature.

5.2 Experimental results

Fig. 7 shows the relation between the top-1 accuracy
for the ImageNet dataset and the simulated inference
time of the ResNet-18 and ResNet-50 models optimized
by both the proposed and conventional methods. We
evaluated the simulated inference time when inference
of the optimized models was executed on the dedicated
accelerator [26]. Models optimized by the proposed
method achieved a shorter inference time with the same
level of top-1 accuracy as models optimized by the con-
ventional method (e.g., 21.0% reduction of inference
time at a top-1 accuracy of 70%, as shown in Fig. 7(a))
and a better top-1 accuracy at the same level of in-
ference time (e.g., 0.77-point improvement in accuracy

Table 2: Summary of pre-training and optimization set-
tings (©2021 IEEE [21])

Pre-training

Dataset STL-10 ImageNet

Network
VGG7

ResNet ResNet MobileNet
Architecture -18 -50 V2

Optimizer
Momentum SGD Momentum SGD
(momentum: 0.9) (momentum: 0.9)

Initial LR∗1 0.1 0.1

LR Schedule
Divided by 10 at Decayed with cosine annealing
200, 300th epoch without restart[53]

Weight decay 5× 10−4 1× 10−4

Batch size 128 256 64 256

Epoch 400 110

*1 LR: Learning Rate

Optimization

λ 1× 10−10 1× 10−10

Optimizer
Momentum SGD Momentum SGD
(momentum: 0.9) (momentum: 0.9)

Initial LR∗2 0.001 2× 10−5

LR Schedule
Divided by 10 at Divided by 10 at
100, 150th epoch 40, 60th epoch

Weight decay 5× 10−4 1× 10−4

Batch size 128 256 64 256

Epoch 200 80

*2 equivalent to the final LR value during the pre-training

at an inference time of less than 350 ms, as shown in
Fig. 7(b)).

We compared the average bit allocations of the

68

68.5

69

69.5

70

70.5

71

100 150 200 250 300

T
o

p
-1

 a
c
c

u
ra

c
y

 [%
]

Simulated inference time [ms]

MACxbit-based
(proposed)

Model size–based
(conventional)

35.7ms
(21.0%)

(a) ResNet-18

74.8

75.2

75.6

76

76.4

76.8

250 350 450 550 650 750

T
o

p
-1

 a
c
c

u
ra

c
y

 [%
]

Simulated inference time [ms]

MACxbit-based
(proposed)

Model size–based
(conventional)

0.77pt

(b) ResNet-50

Fig. 7: Top-1 accuracy plotted against the simulated
inference time for (a) ResNet-18 and (b) ResNet-50
models optimized by the proposed method based on
MAC×bit and conventional method based on model
size. (©2021 IEEE [21])

NAKATA et al.: ACCELERATING CNN INFERENCE WITH AN ADAPTIVE QUANTIZATION METHOD
9

1k

10k

100k

1M

10M

100M

1

2

3

4

5

6
c

o
n

v
1

c
o

n
v

2
c

o
n

v
3

c
o

n
v

4
c

o
n

v
5

c
o

n
v

6
c

o
n

v
7

s
h

o
rt

c
u

t1
c

o
n

v
8

c
o

n
v

9
c

o
n

v
1

0
c

o
n

v
1

1
s

h
o

rt
c

u
t2

c
o

n
v

1
2

c
o

n
v

1
3

c
o

n
v

1
4

c
o

n
v

1
5

s
h

o
rt

c
u

t3
c

o
n

v
1

6
c

o
n

v
1

7

res2 res3 res4 res5

#
p

a
ra

m
s

A
v

e
ra

g
e

 b
it

 w
id

th Average bit width #params

Average for whole layers: 3.6 bit

(a) Average bit widths and #params for each layer.

100K

1M

10M

100M

1G

10G

1

2

3

4

5

6

c
o

n
v

1
c

o
n

v
2

c
o

n
v

3
c

o
n

v
4

c
o

n
v

5
c

o
n

v
6

c
o

n
v

7
s

h
o

rt
c

u
t1

c
o

n
v

8
c

o
n

v
9

c
o

n
v

1
0

c
o

n
v

1
1

s
h

o
rt

c
u

t2
c

o
n

v
1

2
c

o
n

v
1

3
c

o
n

v
1

4
c

o
n

v
1

5
s

h
o

rt
c

u
t3

c
o

n
v

1
6

c
o

n
v

1
7

res2 res3 res4 res5

#
M

A
C

A
v

e
ra

g
e

 b
it

 w
id

th Average bit width #MAC

Average for whole layers: 3.6 bit

(b) Average bit widths and #MAC for each layer.

Fig. 8: Relation between the average bit width of
weights and (a) #params and (b) #MAC for each
layer of the optimized ResNet-18 models. The inference
times were reduced to 135 ms by (a) the conventional
optimization method based on model size and (b) the
proposed optimization method based on MAC×bit.

models optimized by the proposed and conventional
methods at the same level of inference time. Fig. 8
shows the average bit widths of weights for each layer
of the optimized ResNet-18 models for which the infer-
ence time was reduced to 135 ms. Figs. 8(a) and 8(b)
show #params and #MAC, respectively, for each layer.
Although the inference times of both models were al-
most identical at 135 ms, the bit allocations differed
depending on the optimization method.

The conventional optimization method (Eq. (1))
reduced the bit width for layers with larger #params to
reduce the model size, as given in Eq. (2). As a result,
smaller bit widths (close to 2 bits) were allocated to the
later layers with large #params, except for the shortcut
layers for the residual paths of the ResNet-18 model.

On the other hand, our proposed optimization
method (Eq. (20)) reduced the bit width for layers with
larger #MAC to reduce MAC×bit, as given in Eq. (4).
In the ResNet-18 architecture, because #MAC was al-
most uniform except for the shortcut layers, as shown
in Fig. 8(b), the resultant bit allocations were almost
uniform (3–4 bits).

Table 3: Performance comparison (©2021 IEEE [21])
STL-10 Test Average MAC×bit Simulated

VGG7 accuracy [%] bit width [×109] inference time [ms]

Baseline 84.2 8.0 11.0 114.9

Model size–based [20] 83.6 2.5 3.5 46.0

MAC×bit-based (ours) 83.8 2.2 3.0 41.7

ImageNet Top-1 Average MAC×bit Simulated
ResNet-18 accuracy [%] bit width [×109] inference time [ms]

Baseline 70.5 8.0 14.5 261.9

Model size–based [20] 70.1 5.0 9.0 169.9

MAC×bit-based (ours) 70.0 3.6 6.5 134.2

ImageNet Top-1 Average MAC×bit Simulated
ResNet-50 accuracy [%] bit width [×109] inference time [ms]

Baseline 76.5 8.0 32.7 679.7

Model size–based [20] 75.6 4.3 17.5 385.5

MAC×bit-based (ours) 75.8 3.6 14.8 325.9

ImageNet Top-1 Average MAC×bit Simulated
MobileNetV2 accuracy [%] bit width [×109] inference time [ms]

Baseline 70.8 8.0 2.13 50.2

Model size–based [20] 69.5 4.5 1.20 35.1

MAC×bit-based (ours) 70.0 4.3 1.14 33.9

Baseline indicates the performance of models without the optimizations.

Table 3 summarizes the performances of the opti-
mized models, including test/top-1 accuracy, average
bit width, MAC×bit, and simulated inference time.
Models optimized by the proposed method achieved
the same level of accuracy as models optimized by the
conventional method with shorter inference times and
achieved better accuracy at the same level of inference
time. For example, the ResNet-50 model optimized
by the proposed method achieved a better accuracy
of 75.8% with a 15.5% reduction in inference time of
325.9 ms compared to when it was optimized by the
conventional method.

6. Conclusion

The conventional gradient descent–based method for
the optimization of quantized CNNs focuses on the
model size, but it does not directly consider compu-
tational costs such as the inference time. In this pa-
per, we demonstrated that the conventional method
is not always ideal for reducing inference time, based
on the measurement results showing no correlation be-
tween model size and inference time. We presented the
computational-complexity metric MAC×bit, which is
strongly correlated with inference time. We used this
metric to propose a regularization method for optimiz-
ing the bit allocation of quantized CNNs considering
both the inference time and recognition accuracy. We
empirically showed that models optimized by the pro-
posed method achieved better accuracy with a shorter
inference time than those optimized by the conventional
method based on model size.

Acknowledgment

The authors thank Asuka Maki, Shinichi Sasaki, Radu
Berdan, and Yasuto Hoshi for their support.

10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 202x

References

[1] K. Simonyan and A. Zisserman, “Very Deep Convolu-
tional Networks for Large-Scale Image Recognition,” Inter-
national Conference on Learning Representations (ICLR),
2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual
Learning for Image Recognition,” IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pp.770–778, 2016.

[3] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-
CNN,” IEEE/CVF International Conference on Computer
Vision (ICCV), pp.2980–2988, 2017.

[4] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Binarized Neural Networks: Training Deep
Neural Networks with Weights and Activations Constrained
to +1 or -1,” arXiv:1602.02830, 2016.

[5] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-Nets: Learned
Quantization for Highly Accurate and Compact Deep Neu-
ral Networks,” European Conference on Computer Vision
(ECCV), pp.373–390, 2018.

[6] Y. Zhou, S. Moosavi-Dezfooli, N. Cheung, and P. Frossard,
“Adaptive quantization for deep neural network,” AAAI
Conference on Artificial Intelligence, pp.4596–4604, 2018.

[7] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius,
“Integer Quantization for Deep Learning Inference: Princi-
ples and Empirical Evaluation,” arXiv:2004.09602, 2020.

[8] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and
R. Krashinsky, “NVIDIA A100 Tensor Core GPU: Perfor-
mance and Innovation,” IEEE Micro, vol.41, no.2, pp.29–
35, 2021.

[9] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo,
“UNPU: An Energy-Efficient Deep Neural Network Accel-
erator With Fully Variable Weight Bit Precision,” IEEE
Journal of Solid-State Circuits, vol.54, no.1, pp.173–185,
2019.

[10] J.S. Park, C. Park, S. Kwon, H.S. Kim, T. Jeon, Y. Kang,
H. Lee, D. Lee, J. Kim, Y. Lee, S. Park, J.W. Jang,
S. Ha, M. Kim, J. Bang, S.H. Lim, and I. Kang, “A Multi-
Mode 8K-MAC HW-Utilization-Aware Neural Processing
Unit with a Unified Multi-Precision Datapath in 4nm Flag-
ship Mobile SoC,” IEEE International Solid- State Circuits
Conference (ISSCC), pp.246–248, 2022.

[11] S. Sasaki, A. Maki, D. Miyashita, and J. Deguchi,
“Post Training Weight Compression with Distribution-
based Filter-wise Quantization Step,” IEEE Symposium in
Low-Power and High-Speed Chips (COOL CHIPS), pp.1–3,
2019.

[12] L. Zeng, Z. Wang, and X. Tian, “KCNN: Kernel-wise Quan-
tization to Remarkably Decrease Multiplications in Convo-
lutional Neural Network,” International Joint Conference
on Artificial Intelligence (IJCAI), pp.4234–4242, 2019.

[13] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M.W. Mahoney,
and K. Keutzer, “ZeroQ: A Novel Zero Shot Quantization
Framework,” IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp.13166–13175, 2020.

[14] Z. Dong, Z. Yao, A. Gholami, M.W. Mahoney, and
K. Keutzer, “HAWQ: Hessian AWare Quantization of Neu-
ral Networks With Mixed-Precision,” IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp.293–302,
2019.

[15] Z. Dong, Z. Yao, D. Arfeen, A. Gholami, M.W. Ma-
honey, and K. Keutzer, “HAWQ-V2: Hessian Aware trace-
Weighted Quantization of Neural Networks,” Advances
in Neural Information Processing Systems (NeurIPS),
pp.18518–18529, 2020.

[16] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ:
Hardware-Aware Automated Quantization With Mixed
Precision,” IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp.8604–8612, 2019.

[17] Q. Lou, F. Guo, M. Kim, L. Liu, and L. Jiang., “AutoQ: Au-
tomated Kernel-Wise Neural Network Quantization,” Inter-
national Conference on Learning Representations (ICLR),
2020.

[18] S.K. Esser, J.L. McKinstry, D. Bablani, R. Appuswamy,
and D.S. Modha, “Learned Step Size Quantization,” Inter-
national Conference on Learning Representations (ICLR),
2020.

[19] S. Jain, A. Gural, M. Wu, and C. Dick, “Trained Quan-
tization Thresholds for Accurate and Efficient Fixed-Point
Inference of Deep Neural Networks,” in Proceedings of Ma-
chine Learning and Systems (MLSys), pp.112–128, 2020.

[20] S. Uhlich, L. Mauch, F. Cardinaux, K. Yoshiyama, J.A.
Garcia, S. Tiedemann, T. Kemp, and A. Nakamura, “Mixed
Precision DNNs: All you need is a good parametriza-
tion,” International Conference on Learning Representa-
tions (ICLR), 2020.

[21] K. Nakata, D. Miyashita, J. Deguchi, and R. Fuji-
moto, “Adaptive Quantization Method for CNN with
Computational-Complexity-Aware Regularization,” IEEE
International Symposium on Circuits and Systems (IS-
CAS), pp.1–5, 2021.

[22] R. Banner, Y. Nahshan, and D. Soudry, “Post train-
ing 4-bit quantization of convolutional networks for rapid-
deployment,” in Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[23] A.T. Elthakeb, P. Pilligundla, F. Mireshghallah, A. Yaz-
danbakhsh, and H. Esmaeilzadeh, “ReLeQ : A Reinforce-
ment Learning Approach for Automatic Deep Quantization
of Neural Networks,” IEEE Micro, vol.40, no.5, pp.37–45,
2020.

[24] Asuka Maki and Daisuke Miyashita and Shinichi Sasaki
and Kengo Nakata and Fumihiko Tachibana and Tomoya
Suzuki and Jun Deguchi and Ryuichi Fujimoto, “Weight
compression mac accelerator for effective inference of deep
learning,” IEICE Transactions on Electronics, vol.E103-C,
no.10, pp.514–523, 2020.

[25] K. Nakata, D. Miyashita, A. Maki, F. Tachibana, S. Sasaki,
J. Deguchi, and R. Fujimoto, “Quantization Strategy for
Pareto-optimally Low-cost and Accurate CNN,” IEEE In-
ternational Conference on Artificial Intelligence Circuits
and Systems (AICAS), pp.1–4, 2021.

[26] A. Maki, D. Miyashita, K. Nakata, F. Tachibana, T. Suzuki,
and J. Deguchi, “FPGA-based CNN Processor with Filter-
Wise-Optimized Bit Precision,” IEEE Asian Solid-State
Circuits Conference (A-SSCC), pp.47–50, 2018.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings
in Deep Residual Networks,” arXiv:1603.05027, 2016.

[28] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,”
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp.248–255, 2009.

[29] B. Wu, Y. Wang, P. Zhang, Y. Tian, P. Va-
jda, and K. Keutzer, “Mixed precision quantization of
convnets via differentiable neural architecture search,”
arXiv:1812.00090, 2018.

[30] Z. Cai and N. Vasconcelos, “Rethinking differentiable
search for mixed-precision neural networks,” Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp.2346–2355, 2020.

[31] M. van Baalen, C. Louizos, M. Nagel, R.A. Amjad,
Y. Wang, T. Blankevoort, and M. Welling, “Bayesian bits:
Unifying quantization and pruning,” Advances in Neural

NAKATA et al.: ACCELERATING CNN INFERENCE WITH AN ADAPTIVE QUANTIZATION METHOD
11

Information Processing Systems (NeurIPS), pp.5741–5752,
2020.

[32] L. Yang and Q. Jin, “Fracbits: Mixed precision quantiza-
tion via fractional bit-widths,” AAAI Conference on Arti-
ficial Intelligence, pp.10612–10620, 2021.

[33] C. Baskin, N. Liss, E. Schwartz, E. Zheltonozhskii,
R. Giryes, A.M. Bronstein, and A. Mendelson, “Uniq: Uni-
form noise injection for non-uniform quantization of neu-
ral networks,” ACM Trans. Comput. Syst., vol.37, no.1–4,
2021.

[34] B. Hawks, J. Duarte, N.J. Fraser, A. Pappalardo, N. Tran,
and Y. Umuroglu, “Ps and qs: Quantization-aware pruning
for efficient low latency neural network inference,” Frontiers
in Artificial Intelligence, vol.4, 2021.

[35] Z. Liu, Y. Wang, K. Han, S. Ma, and W. Gao, “Instance-
aware dynamic neural network quantization,” Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp.12434–12443, 2022.

[36] C. Hong, S. Baik, H. Kim, S. Nah, and K.M. Lee,
“Cadyq: Content-aware dynamic quantization for image
super-resolution,” European Conference on Computer Vi-
sion (ECCV), pp.367–383, 2022.

[37] C. Tang, K. Ouyang, Z. Chai, Y. Bai, Y. Meng, Z. Wang,
and W. Zhu, “Seam: Searching transferable mixed-
precision quantization policy through large margin regu-
larization,” ACM International Conference on Multimedia,
p.7971–7980, 2023.

[38] Y. Umuroglu, L. Rasnayake, and M. Sjalander, “BISMO:
A Scalable Bit-Serial Matrix Multiplication Overlay for
Reconfigurable Computing,” International Conference on
Field Programmable Logic and Applications (FPL),
pp.307–3077, 2018.

[39] Y. Wang, G. Wei, and D. Brooks, “Benchmarking
TPU, GPU, and CPU Platforms for Deep Learning,”
arXiv:1907.10701, 2019.

[40] N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al.,
“In-datacenter performance analysis of a tensor processing
unit,” ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), p.1–12, 2017.

[41] A. Castello, M.F. Dolz, E.S. Quintana-Orti, and J. Duato,
“Theoretical Scalability Analysis of Distributed Deep Con-
volutional Neural Networks,” IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), pp.534–541, 2019.

[42] A. Canziani, A. Paszke, and E. Culurciello, “An Analysis of
Deep Neural Network Models for Practical Applications,”
arXiv:1605.07678, 2016.

[43] S. Bianco, R. Cadene, L. Celona, and P. Napoletano,
“Benchmark Analysis of Representative Deep Neural Net-
work Architectures,” IEEE Access, vol.6, pp.64270–64277,
2018.

[44] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once
for All: Train One Network and Specialize it for Efficient
Deployment,” International Conference on Learning Repre-
sentations (ICLR), 2020.

[45] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and
J. Sun, “Single path one-shot neural architecture search
with uniform sampling,” European Conference on Com-
puter Vision (ECCV), pp.544–560, 2020.

[46] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang,
“Learning efficient convolutional networks through network
slimming,” IEEE International Conference on Computer
Vision (ICCV), pp.2755–2763, 2017.

[47] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H.P.
Graf, “Pruning Filters for Efficient ConvNets,” Interna-
tional Conference on Learning Representations (ICLR),

2017.
[48] A. Renda, J. Frankle, and M. Carbin, “Comparing rewind-

ing and fine-tuning in neural network pruning,” Interna-
tional Conference on Learning Representations (ICLR),
2020.

[49] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L. Chen, “MobileNetV2: Inverted Residuals and Linear
Bottlenecks,” IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp.4510–4520, 2018.

[50] Y. Bengio, N. Léonard, and A.C. Courville, “Estimating
or Propagating Gradients Through Stochastic Neurons for
Conditional Computation,” arXiv:1308.3432, 2013.

[51] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer,
“Automatic Differentiation in PyTorch,” NIPS 2017 Work-
shop on Autodiff, 2017.

[52] A. Coates, A. Ng, and H. Lee, “An Analysis of Single-Layer
Networks in Unsupervised Feature Learning,” International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), pp.215–223, 2011.

[53] I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradient
Descent with Restarts,” arXiv:1608.03983, 2016.

Kengo Nakata received the B.E. de-
gree in electrical and electronic engineer-
ing and the M.E. degree in physical elec-
tronics from the Tokyo Institute of Tech-
nology, Tokyo, Japan, in 2014 and 2016,
respectively. In 2016, he joined the Center
for Semiconductor Research and Devel-
opment, Toshiba Corporation, Kawasaki,
Japan, where he was involved in the de-
sign of analog circuits for wireless com-
munications. In 2017, he joined Kioxia

Corporation, Yokohama, Japan. His current research interest in-
cludes efficient hardware architecture and algorithm for machine
learning applications.

Daisuke Miyashita received the B.S.
and M.S. degrees in electronic engineer-
ing from the University of Tokyo, Tokyo,
Japan, in 2001 and 2003, respectively. In
2003, he joined Center for Semiconductor
Research and Development, Toshiba Cor-
poration, Kawasaki, Japan, where he was
engaged in the design of RF and analog
circuits for wireless communications. He
is now with System Technology Research
& Development Center, Kioxia Corpora-

tion, Yokohama, Japan. His research interests include efficient
mixed-signal/digital hardware and system for AI applications
and algorithms designed for such hardware and system. From
2015 to 2016, he was a visiting scholar at Stanford University,
Stanford, CA, USA, where he has engaged in the research on the
efficient implementation of deep learning algorithms on hardware.

12
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 202x

Jun Deguchi received the B.E. and
M.E. degrees in machine intelligence and
systems engineering and the Ph.D. degree
in bioengineering and robotics from To-
hoku University, Sendai, Japan, in 2001,
2003, and 2006, respectively. In 2004, he
was a Visiting Scholar at the University
of California, Santa Cruz, CA, USA. In
2006, he joined Toshiba Corporation, and
was involved in design of analog/RF cir-
cuits for wireless communications, CMOS

image sensors, high-speed I/O, and accelerators for deep learn-
ing. From 2014 to 2015, he was a Visiting Scientist at the MIT
Media Lab, Cambridge, MA, USA, and was involved in research
on brain/neuro science. In 2017, he moved to Kioxia Corporation
(formerly Toshiba Memory Corporation), and is serving as the
group manager of two research teams: one is working on circuit
designs of high-speed I/O for Flash Memory and SSD, and the
other is working on technology for AI from algorithms to circuit
designs. Dr. Deguchi has served as a member of the international
technical program committee (TPC) of IEEE Asian Solid-State
Circuits Conference (A-SSCC) since 2017. He has also served as
a TPC member of IEEE International Solid-State Circuits Con-
ference (ISSCC) from 2016 to 2023, a Far-East chair of IEEE
ISSCC 2023, a TPC vice-chair of IEEE A-SSCC 2019, a guest
editor of IEEE Journal of Solid-State Circuits (JSSC) for the spe-
cial issues on IEEE A-SSCC 2020, IEEE ISSCC 2020 and IEEE
ISSCC 2021. He has also been a review committee member of
IEEE International Conference on Artificial Intelligence Circuits
and Systems (AICAS) 2020.

Ryuichi Fujimoto (Senior Member)
received his B.E., M.E., and Dr. Eng.
Degrees from Waseda University, Tokyo,
Japan, in 1988, 1990, and 2003, respec-
tively. He joined the Mobile Commu-
nication Laboratory, Corporate Research
and Development Center, Toshiba Corpo-
ration, Kawasaki, Japan, in 1991. Since
then, he has been engaged in the research
and development of analog integrated cir-
cuits and device models for wireless com-

munication systems. In 2005, he was transferred to Wireless &
Multimedia LSI Development Department, Toshiba Corp. Semi-
conductor Company. From 2009 to 2011, he was on loan to Semi-
conductor Technology Academic Research Center (STARC). Cur-
rently, he is with System Technology Research & Development
Center, Kioxia Corporation. Dr. Fujimoto was an Associate Ed-
itor of IEICE Transactions on Electronics from 2001 to 2004, IE-
ICE Electronics Express (ELEX) from 2003 to 2008, and IEICE
Transactions on Fundamentals of Electronics, Communications
and Computer Sciences from 2005 to 2009. He was the secretary
of the Japan Chapter of IEEE Circuits and Systems Society from
2008 to 2009 and the chair of Japan Chapter of IEEE Solid-State
Circuit Society from 2019 to 2020. He is an organizing committee
co-chair of A-SSCC 2024. He is a member of the IEEE, IEEJ,
JIEP and JAAS.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

