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PAPER
Reducing T-Count in Quantum Circuits Using Alternate Forms of
the Relative Phase Toffoli Gate

David CLARINO†a), Shohei KURODA†b), Nonmembers, and Shigeru YAMASHITA†c), Senior Member

SUMMARY Toffoli gates are an important primitive in reversible
Boolean logic. In quantum computation, these Toffoli gates are composed
using other elementary gates, most notably the Clifford+T basis. However,
in fault-tolerant implementations of quantum circuits, the T-gate incurs extra
cost relative to Clifford gates like the S-gate and CNOT gate. Relative-phase
Toffoli Gates (RTOFs) have been proposed as a way to reduce this T-count
at the cost of incurring a relative phase that could skew the final quantum
states. In this paper, we utilize an observation that the relative phase which
RTOFs introduce can be canceled by the appropriate application of less
expensive S-gates instead of T-gates. It leverages alternate forms of the
RTOF including incorporating S-gates into it or moving around its input
bits in order to simplify the logic to erase the relative phase. We find exper-
imentally that our method has a clear advantage in most cases, and identify
several types of circuits that it could be synergistic with.
key words: relative-phase Toffoli gates (RTOF), S gate, circuit optimization

1. Introduction

Boolean functions are often used as essential components in
quantum algorithms. These are calculated using the circuit
model called quantum Boolean circuits [1], which are quan-
tum circuits that realize Boolean functions. To realize such
quantum Boolean circuits, a Toffoli gate is often used as a
logic primitive. However, as three-qubit operations do not
occur naturally in the two-level systems that enable modern
quantum computers, these Toffoli gates have to be in turn,
composed of physically realizable gates, such as the S-gate,
CNOT gate, and T-gate. (e.g., the Clifford + T [2] basis gate
set).

As qubits are famously prone to error and perturbation,
it is often useful to consider a fault-tolerant implementation
of quantum computation, one which could detect and correct
errors [3]. Unfortunately, in the fault-tolerant paradigm, T-
gates and their inverse the T†-gates incur much higher cost
than other gate types. Therefore, decreasing the number of
T-gates is a major design consideration when implementing
physically realizable quantum computing. The number of
these T-gates, in addition to the number of their inverse the
T†-gates, is called the T-count.

Relative-phase Toffoli gates (RTOF) [4] have been pro-
posed as an alternative implementation of a Toffoli gate in the
decomposition of a Toffoli gate. An RTOF can calculate the
same logic function as a Toffoli gate but with a lower T-count
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by three. However, it introduces a relative phase among its
output quantum states, which means that the phase intro-
duced is dependent on the component of the quantum state
on which it acts. Because of the relative phase, we cannot
simply replace a Toffoli gate with an RTOF in general. In [4],
we see an application of this principle in the decomposition
of multiple control Toffoli gates using pairs of RTOFs that
are inverses of each other.

In this work†, we observe that because RTOFs introduce
phases of { 𝜋2 , 𝜋,

3𝜋
2 }, their phases can be erased by applying

𝑆-gates and 𝑆†-gates appropriately. These can drive phases
without increasing the T-count. We propose a post-synthesis
step that replaces all Toffoli gates in a quantum Boolean
circuit with RTOFs, and then try to erase the added relative
phases by adding logic to drive the appropriate 𝑆-gates and
𝑆†-gates. We identify several cases where Toffoli gates can
be replaced by RTOFs without increasing T-count in this
manner. We list the main contributions of the paper below.
Our Contribution.

• A post-synthesis framework to replace Toffoli gates
with RTOF gates in quantum Boolean circuits and gen-
erate logic to correct their phase

• Introduction of a variant of the RTOF, which introduces
only a relative phase of 𝜋 on the |101⟩ state. This
simplifies the procedures to correct the phase.

• Introduction of a heuristic method of assigning inputs
to the RTOF in order to simplify the phase function

The paper is structured as follows. Section 2 provides
the necessary information to understand this paper. Then,
Section 3 explains our idea on how to utilize RTOFs to re-
duce the T-count of quantum Boolean circuits [5] and subse-
quently correct the phase. Section 4 proposes our enhance-
ments, including a new variant of the RTOF as well as an
algorithm to reduce the T-count of quantum Boolean circuits
by simplifying the phase correction logic. We explain our
experimental methodology and detail our experimental re-
sults in Section 5. Finally, Section 6 concludes the paper
with our future work.

2. Preliminary

2.1 Quantum Gates and Quantum Circuits

Quantum computers internally represent data as qubits,
†Previous versions of this paper were presented at ISMVL 2023

and RC 2022
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Fig. 1: The H, CNOT, T , S (Clifford+T) basis gate set

which are quantum systems that can take on the states |0⟩
and |1⟩. We can combine these qubits into bit strings to
create multi-qubit states. In particular, there exists a spe-
cific set of these called computational basis states which
are of the form |𝑥0⟩ ⊗ |𝑥1⟩ ⊗ · · · ⊗ |𝑥𝑛−1⟩ = |x⟩ where
𝑥0𝑥1 · · · 𝑥𝑛−1 = x, for x ∈ {0, 1}𝑛, where 𝑛 is the number
of qubits in the system, and ⊗ is tensor multiplication be-
tween quantum states [3]. These computational basis states
can in turn be used in linear combination to express a gener-
alized quantum state |𝜓⟩ = ∑

𝑘∈[0,1]𝑛 𝑒
𝑖 𝜃 (k) |k⟩ , k ∈ {0, 1}𝑛,

where 𝜃 (k) ∈ [−𝜋, 𝜋] is an arbitrary phase that is a function
of 𝑘 .

Quantum gates map quantum states |𝜓⟩ =∑
𝑘∈[0,1]𝑛 𝑒

𝑖 𝜃 (𝑘 ) |𝑘⟩ to other quantum states |𝜙⟩ =∑
𝑗∈[0,1]𝑛 𝑒

𝑖 𝜃 ( 𝑗 ) | 𝑗⟩.
In this paper, we consider the elementary gate set con-

sisting of the 𝐻-gate, CNOT , 𝑇-gate, 𝑇†-gate (the inverse of
the 𝑇-gate), 𝑆-gate, and 𝑆†-gate (the inverse of the 𝑆-gate),
known as the Clifford+T basis gate set. We describe their
behavior in Fig. 1. In the fault-tolerant paradigm, 𝑇-gates
and 𝑇†-gates are much more expensive to implement than
𝐻-gate, 𝐶𝑁𝑂𝑇 , 𝑆-gate, and 𝑆†-gates. This means that the
number of T-gates is key to lowering the cost of the imple-
mentation. Hereafter, we will refer to the set of the T-gate
and the T†-gate as “T-gates”, and the set of the S-gate and
the S†-gate “S-gates”, unless otherwise noted.

When this set of gates is assembled into a network, we
call the result a quantum circuit. In a quantum circuit, inputs
come in from the left, gates are applied in order from left to
right, and outputs go out from the right. Quantum circuits
also have output qubits, which are the qubits that output
quantum states to be measured or used by other quantum
circuits.

|𝑥0 ⟩ • • • • T • |𝑥0 ⟩
|𝑥1 ⟩ • = • • T T† |𝑥1 ⟩
|𝑥2 ⟩ H T† T T† T H | (𝑥0 · 𝑥1 ) ⊕ 𝑥2 ⟩

Fig. 2: A Toffoli gate in Clifford+T basis gate set

|𝑥0 ⟩ • |𝑥0 ⟩
|𝑥1 ⟩ • = • • |𝑥1 ⟩
|𝑥2 ⟩ ⊕ H 𝑇 T† T T† H |𝐹 ⟩

|𝐹 ⟩ = 𝑒𝑖𝜃 (x) | (𝑥0 · 𝑥1 ) ⊕ 𝑥2 ⟩
𝜃 (x) = 𝜋

2 (𝑥0𝑥1𝑥2 ) + 𝜋 (𝑥0𝑥1𝑥2 ) + 3𝜋
2 (𝑥0𝑥1𝑥2 )

Fig. 3: An 𝑅𝑇𝑂𝐹 gate in Clifford+T basis gate set

x 𝜃 (x)
000 0
001 0
010 0
011 0
100 0
101 +𝜋
110 +𝜋/2
111 −𝜋/2

Table 1: Added phases by an 𝑅𝑇𝑂𝐹.

2.2 Quantum Boolean Circuits

In this paper, we consider quantum Boolean circuits [1].
These are a special class of quantum circuits that map com-
putational basis states to other computational basis states.
These are equivalent to classical Boolean functions since
manipulating the computational basis states is equivalent to
manipulating bit-strings.

Recall that to implement arbitrary Boolean functions,
we need both a NOT and either an OR or an AND op-
eration. The sequence of H-gate, S-gate, S-gate, H-gate,
gives us the mapping |0⟩ → |1⟩ , |1⟩ → |0⟩. This thus
gives us a way to realize the NOT operation. The Toffoli
gate, depicted in Fig. 2, provides a way to realize the AND
operation by implementing the mapping |𝑥0⟩ |𝑥1⟩ |𝑥2⟩ →
|𝑥0⟩ |𝑥1⟩ |(𝑥0 · 𝑥1) ⊕ 𝑥2⟩. If we set the third qubit to 𝑥2 = 0,
then the third qubit realizes 𝑥0 · 𝑥1, which is the AND op-
eration. As we can see from Fig. 2, Toffoli gates can also
be implemented using the Clifford+T gate set. Given these
sets of gates, we can therefore realize Boolean operations
using the quantum gate set described in Sec. 2.1. We will
call Boolean operations that use the Toffoli gate depicted in
Fig. 2 the All-Toffoli case.

Finally, when quantum Boolean circuits use qubits to
store values temporarily during the computation, these val-
ues can provide undesirable effects on the rest of the compu-
tation due to quantum entanglement. There is thus a need to
restore these qubits to their original values in order to use the
output qubits as input to other quantum circuit elements. We
call the action of restoring these non-output qubits to their
original states uncomputation.
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𝑚𝑎𝑡ℎ𝑏 𝑓 𝑥 𝐹𝜋/2 𝐹𝜋 𝐹3𝜋/2
000 0 0 0
001 0 0 0
010 0 0 0
011 0 0 0
100 0 0 0
101 0 1 0
110 1 0 0
111 0 0 1

Table 2: An example of phase functions.

2.3 Relative-Phase Toffoli Gates (𝑅𝑇𝑂𝐹𝑠)

The Relative-Phase Toffoli gate (𝑅𝑇𝑂𝐹) [4] is a relative
phase version of the Toffoli gate, depicted in Fig. 3. Just
like the Toffoli gate, it also realizes the Boolean func-
tion (𝑥0 · 𝑥1) ⊕ 𝑥2. However, it does this at the ex-
pense of a relative phase, such that the whole map is
|𝑥0⟩ |𝑥1⟩ |𝑥2⟩ → 𝑒𝑖 𝜃 (𝑥0 ,𝑥1 ,𝑥2 ) |𝑥0⟩ |𝑥1⟩ |(𝑥0 · 𝑥1) ⊕ 𝑥2⟩ where
𝜃 (𝑥0, 𝑥1, 𝑥2) = 𝜋

2 (𝑥0𝑥1𝑥2) + 𝜋(𝑥0𝑥1𝑥2) + 3𝜋
2 (𝑥0𝑥1𝑥2). We

express 𝜃 (𝑥0, 𝑥1, 𝑥2) as a truth table in Fig. 1. In exchange
for this relative phase, the same Boolean mapping that cost
7 T-gates in Fig. 3 can now be implemented using 4 T-gates
in Fig. 3. The 𝑅𝑇𝑂𝐹’s inverse, the 𝑅𝑇𝑂𝐹†, implements the
same Boolean mapping, but with a relative phase with the
opposite sign. It can be easily checked that the 𝑅𝑇𝑂𝐹† may
be implemented using the inverse of the gates in Fig. 3, ap-
plied in reverse order. Throughout this work, when we talk
about 𝑅𝑇𝑂𝐹s, we also include 𝑅𝑇𝑂𝐹†s, unless otherwise
noted. Note the double circle control on the input |𝑥0⟩. This
denotes which input is connected to the center CNOT gate.
We will come back to this in Section 4 later.

Because of this added phase, 𝑅𝑇𝑂𝐹s cannot be used
naively in place of Toffoli gates. In the next section, we
propose a method to erase the relative phase that accumulates
from using these gates.

3. Reducing T-Count by Replacing with the 𝑹𝑻𝑶𝑭

To explain our method, first we need to introduce some ter-
minology to analyze the added phases by T- and S- gates.

3.1 Phase Functions

Definition 1: For an 𝑛-input quantum Boolean circuit, an
added phase function is defined as a mapping from one
specific pattern of 𝑛 inputs, x, to the resulting phase to the
input state corresponding to x by the circuit. In the following,
we use the following notation 𝑃(x) to denote an added phase
function:

𝑃(x) = 𝜃 (0 ≤ 𝜃 < 2𝜋). (1)

For example, recall again the function for the relative
phase for the 𝑅𝑇𝑂𝐹, which is 𝜃 (x), illustrated in Table 1.
This is the phase as a function of its inputs, and so we can
consider this the added phase function of the 𝑅𝑇𝑂𝐹. We can
also express it as 𝜃 (x) = 𝜋

2 (𝑥0𝑥1𝑥2)+𝜋(𝑥0𝑥1𝑥2)+ 3𝜋
2 (𝑥0𝑥1𝑥2),

which will be useful in our next definition. We see it outlined

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8 𝑔9 𝑔10 𝑔11 𝑔12 𝑔13 𝑔14 𝑔15 𝑔16 𝑔17 𝑔18 𝑔19 𝑔20

𝑞0 : |𝑥0 ⟩ • • • • • • • • • • • •
𝑞1 : |𝑥1 ⟩ • • • • • • • • • •
𝑞2 : |𝑥2 ⟩ • • • • • • • • • • • •
𝑞3 : |0⟩

Fig. 4: Algorithm input: a circuit consisting of Toffoli gates.

in the truth table in Table 1. Here we can see that, for
example, the input |101⟩ is mapped to 𝑒𝑖 (3𝜋/2) |101⟩ (that
is, an identity for the state, with an added relative phase of
3𝜋/2). We use this in the following definition that is used
in our proposed method.

Definition 2: For an added phase function 𝑃(x) of a quan-
tum circuit, we define a phase function which is a Boolean
function 𝐹𝜃 (x) with respect to the input variables x of the
circuit such that:

𝑃(x) = 𝜃 if (𝐹𝜃 (x) = 1)

For legibility reasons, we drop 𝐹𝜃 ’s dependence on (x)
from the notation from here on out.

As an example, recall the added phase function for the
RTOF 𝜃 (x) = 𝜋

2 (𝑥0𝑥1𝑥2) + 𝜋(𝑥0𝑥1𝑥2) + 3𝜋
2 (𝑥0𝑥1𝑥2). We can

take 𝐹 𝜋
2
= 𝑥0𝑥1𝑥2, 𝐹𝜋 = 𝑥0𝑥1𝑥2, and 𝐹3𝜋

2
= 𝑥0𝑥1𝑥2. With

these 𝐹 𝜋
2
, 𝐹𝜋 , 𝐹3𝜋

2
, we can then express the added phase

function as 𝜃 (x) = (𝜋/2)𝐹 𝜋
2
+ 𝜋𝐹𝜋 + (3𝜋/2)𝐹3𝜋

2
. These

𝐹 𝜋
2
, 𝐹𝜋 , 𝐹3𝜋

2
are thus phase functions that will be used to

calculate our corrections later. We show these values as
a truth table in Table 2. As in the example in Definition
1, we can see that for input |101⟩, 𝐹3𝜋/2 (101) = 1, which
means that 𝑃(101) = 3𝜋

2 , in turn meaning that |101⟩ →
𝑒𝑖3𝜋/2 |101⟩.

Hereafter, we will use the phrase “phase function/added
phase function at 𝑔𝑖” to denote the phase function/added
phase function on the target qubit after applying gates
𝑔0, · · · , 𝑔𝑖 to the input qubit. Consequently, we use the qual-
ifier total to denote the phase function/added phase function
of the entire circuit, as opposed to the phase function/added
phase function at 𝑔𝑖 .

3.2 Erasing Relative Phases

We now present an outline of how to go about replacing
the Toffoli gates with RTOFs and erase the relative phases.
Because it has a lot in common with our proposed method
later, we only present its rough outline and then illustrate in
the example that follows how it is executed. We subsequently
demonstrate what are some inherent issues that will need to
be addressed before proposing the full algorithm.

1 Each Toffoli gate among a quantum Boolean circuit’s
gates 𝑔1, · · · , 𝑔𝑛 is replaced with an RTOF, unless it is
part of uncomputation logic, in which case it is replaced
with an RTOF†.

2 Calculate 𝐹 𝜋
2
, 𝐹𝜋 , 𝐹3𝜋

2
, the phase functions for the rel-

ative phases introduced by the previous step.
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Table 3: Calculating the Phase Function for Fig. 4. using the Naive Method
input init 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6
𝑞0 00001111 00001111 00001111 00001111 00001111 00011110 00010111
𝑞1 00110011 00111100 00111100 00110101 00110101 00110101 00110101
𝑞2 01010101 01010101 01011001 01011001 01011001 01011001 01011001
𝑞3 00000000 00000000 00000000 00000000 00010001 00011000 00001001

Additional P(x) 000 𝜋
2 000 𝜋

2 000 3𝜋
2

𝜋
2 000

Total P(x) 000 𝜋
2 000 𝜋

2 0000 𝜋
2 00 𝜋

2
input 𝑔7 𝑔8 𝑔9 𝑔10 𝑔11 𝑔12 𝑔13
𝑞0 00010111 00010111 01110010 01110100 01110100 01110100 01110100
𝑞1 00111010 00111010 00111010 01010101 01011010 01011010 01011010
𝑞2 01011001 01101100 01100011 01100011 01100011 01100011 01100011
𝑞3 00011101 00011011 00011011 00011011 01011001 00111001 01101001

Additional P(x) 000 𝜋
2 𝜋 𝜋

2 00 0 𝜋
2 0𝜋0 3𝜋

2 0𝜋 0 3𝜋
2

𝜋
2 𝜋0000 0 𝜋

2 𝜋 3𝜋
2 0000

Total P(x) 000 𝜋
2

3𝜋
2

𝜋
2 0 𝜋

2 0 𝜋
2 0 3𝜋

2
3𝜋
2 00 3𝜋

2 00 𝜋
2

𝜋
2

3𝜋
2 00 3𝜋

2 0 𝜋
2

3𝜋
2 0 3𝜋

2 00 3𝜋
2

𝑞0 : |𝑥0 ⟩ : • • • ⊕ ⊕ ⊕ ⊕ •
𝑞1 : |𝑥1 ⟩ : ⊕ • ⊕ • • ⊕ • ⊕ • ⊕ • ⊕
𝑞2 : |𝑥2 ⟩ : • • • • ⊕ • • • • ⊕ • • • • • • ⊕ • • ⊕
𝑞3 : |0⟩ : ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
𝑎0 : |0⟩ : ⊕ ⊕ ⊕ • • ⊕
𝑝1 : |0⟩ : ⊕ S ⊕
𝑝3 : |0⟩ : ⊕ ⊕ S S S ⊕ ⊕ ⊕

𝐹3𝜋
2

𝐹 𝜋
2

Fig. 5: The transformed Fig. 4 using the Naive Method

3 For each gate 𝑔𝑖 , calculate the Boolean logic function
𝑓𝑖, 𝑗 (x) at its target bit 𝑞 𝑗 after applying 𝑔𝑖 , where 𝑖 is an
index we use to iterate through the gates, 𝑥 ∈ {0, 1}𝑛,
𝑗 is an index for the qubit, and 𝑛 is the number of input
qubits. We then save 𝑓𝑖, 𝑗 (x) for later use.

4 Once we have calculated all 𝑓𝑖, 𝑗 (x), search the circuit
for any 𝑓𝑖, 𝑗 (x) that is identical to one of 𝐹 𝜋

2
, 𝐹𝜋 , 𝐹3𝜋

2
.

5 For every such 𝑓𝑖, 𝑗 (x) found, the appropriate number
of S-gates are then applied to the location where the 𝐹𝜃

𝑓𝑖, 𝑗 (x) is associated with is realized, e.g. if 𝑓1, 𝑗 (x) =
𝐹 𝜋

2
, then a single S-gate is applied to 𝑞 𝑗 , the target bit

of 𝑔1, which then drives the S-gate according to 𝐹 𝜋
2
.

We subsequently remove this 𝐹𝜃 from further searches.
6 If no 𝑓𝑖, 𝑗 (x) is found in Step 5, a circuit implement-

ing the remaining 𝐹 𝜋
2
, 𝐹𝜋 , 𝐹3𝜋

2
which are not found is

synthesized to drive the appropriate S-gates on an an-
cilla qubit and prepended to the circuit. These act on
ancilla bits 𝑝1, 𝑝2, 𝑝3, respectively, such that their final
state values are |0⟩. Collectively, these circuits cre-
ate the state 𝑒−𝑖 (𝑃 (x) ) |000⟩ for the added phase func-
tion 𝑃(x). When these states are introduced to the
original set of qubits 𝑒𝑖𝑃 (x) |𝜓⟩ to create the system
𝑒−𝑖 (𝑃 (x) ) |000⟩⊗𝑒𝑖𝑃 (x) |𝜓⟩, they erase the relative phase
𝑒𝑖𝑃 (x) and we are left with |000⟩ ⊗ |𝜓⟩., where ⊗ is the
tensor product we used in Sec. 2.1
Hereafter we will refer to this method as the Naive

method. We illustrate it using Example 1.

Example 1: We transform the circuit in Fig. 4 using the
Naive method. We first replace all the Toffoli gates in
𝑔1 − 𝑔13 (up to the dashed line barrier) with RTOFs be-
cause they comprise the computation logic. We then re-
place the Toffoli gates in 𝑔14 − 𝑔20, the uncomputation logic,

with RTOF†s to cancel out the phases of the correspond-
ing compute RTOFs in 𝑔1 − 𝑔13 that were replaced ear-
lier. Table 3 shows the process of calculating the Boolean
and phase functions from these RTOFs. Each of the cells
shows the truth values of the functions 𝑓𝑖, 𝑗 (x) at the la-
beled gate 𝑔𝑖 , as a one hot string, denoting the value
𝑓𝑖, 𝑗 (x = 000), 𝑓𝑖, 𝑗 (x = 001), · · · , 𝑓𝑖, 𝑗 (x = 111), where
𝑥0, 𝑥1, 𝑥2 = x, from left to right. We start from 𝑖𝑛𝑖𝑡, where
𝑓0, 𝑗 (x) = 𝑥 𝑗 for 𝑗 ∈ {0, 1, 2} and 𝑓0,3 = 0. We denote the
added phase function 𝑃(x) and show its value at every 𝑔𝑖 .

We start by calculating the action of 𝑔1. 𝑔1 acts on 𝑞1
and now implements the function 𝑓1,1 (x) = 𝑥0 ⊕ 𝑥1 such that
𝑞1 = |𝑥0 ⊕ 𝑥1⟩ at 𝑔1. We adjust the 𝑞1 line in the 𝑔1 cell to
reflect this function. We do the same for 𝑔2 and 𝑔3, which
are Toffoli gates. Note that we do not calculate the added
phase here; this is because their contribution to the total
added phase function will be canceled by its corresponding
uncomputation gates 𝑔19 and 𝑔18 respectively. We thus cal-
culate the phase function only up to 𝑔13. We assume that
the uncomputation logic similarly also reverses the phase
because we replaced them with RTOF† earlier.

Now for 𝑔4, we see that it acts on the output bit 𝑞3. Just
like our calculation for 𝑔1, we now calculate the function
𝑓4,3 (x) = 𝑥1𝑥2, and update the 𝑞3 line in the 𝑔4 cell accord-
ingly. Additionally, we calculate the added phase function at
𝑔4, which is 𝑃(x) = 𝜋

2 (𝑥1 · 𝑥2). We depict it in an analogous
one hot encoding to the Boolean functions, this time with
each digit having possible values {0, 𝜋

2 , 𝜋,
3𝜋
2 }.

We repeat the process for all the gates until we end up
with a total added phase function of 𝑃(x) = 𝜋

2 (𝑥0𝑥1𝑥2) +
3𝜋
2 (𝑥0𝑥1𝑥2 + 𝑥0𝑥1𝑥2) + 𝑥0𝑥1𝑥2 giving us 𝐹 𝜋

2
= 𝑥0𝑥1𝑥2 and

𝐹3𝜋
2
= 𝑥0𝑥1𝑥2 + 𝑥0𝑥1𝑥2 + 𝑥0𝑥1𝑥2.
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|𝑥0 ⟩ |𝑥0 ⟩

|𝑥1 ⟩ • = • |𝑥1 ⟩

|𝑥2 ⟩ 𝑆 ⊕ 𝑆† S |𝐹 ⟩

|𝐹 ⟩ = 𝑒𝑖 𝜋 (𝑥0𝑥1𝑥2 ) | (𝑥0 · 𝑥1 ) ⊕ 𝑥2 ⟩

Fig. 6: The 𝑅𝑇𝑂𝐹𝑆

|𝑥0 ⟩ (𝑏) • • • |𝑥0 ⟩

|𝑥1 ⟩ (𝑎) = • |𝑥1 ⟩

|𝑥3 ⟩ S S H T† T T T† H S† |𝐹 ⟩

|𝐹 ⟩ = 𝑒𝑖 𝜋 (𝑥0𝑥1𝑥2 ) | (𝑥0 · 𝑥1 ) ⊕ 𝑥2 ⟩

Fig. 7: The 𝑅𝑇𝑂𝐹𝑆 with inputs swapped
input 𝜃 (x)
000 0
001 0
010 0
011 0
100 0
101 +𝜋
110 0
111 0

Table 4: Added phases by an 𝑅𝑇𝑂𝐹𝑆 .

We then search the circuit for the phase function for 𝐹 𝜋
2
,

comparing the function in 𝑞3 in each column of Table 3, and
fail to find it there. Therefore we generate a phase correction
element. The phase correction element is generated and set
to act on 𝑝1, while using an ancilla 𝑎0. We then apply an
S-gate here and then the same set of gates’ inverses in reverse
order in order to uncompute the output.

We repeat the search again for 𝐹3𝜋
2

, fail to find it again,
and again prepend an appropriate phase correction element,
this time acting on 𝑝3 and applying three S-gates.

The generated circuit is shown in Fig. 5. The phase
correction element for 𝐹 𝜋

2
is denoted by the dotted box la-

beled 𝐹 𝜋
2
. Similarly, the phase correction element for 𝐹3𝜋

2
is denoted by the dashed box labeled 𝐹3𝜋

2
. The two of them

together use 12 Toffoli gates. The original circuit uses 14
Toffoli gates. Each of these takes 7 T-gates to implement,
which gives us a T-count of 98. With the circuit in Figure 5,
we instead have 26 RTOFs. Since it takes 4 T-gates to im-
plement an RTOF, the transformation thus has a T-count of
104, resulting in a gain of 6 T-gates.

We can see from Table 3 that the phase functions are
complicated, and on top of that, both 𝐹 𝜋

2
and 𝐹3𝜋

2
depend

on three variables. As Fig 5 shows, the logic to correct this
phase can match or even become much bigger than the circuit
itself. In the next section, we can simplify this significantly
with the introduction of different forms of the 𝑅𝑇𝑂𝐹.

4. Proposed Algorithm

4.1 Simplifying the Phase Function

As we will see in Section 5, correcting for three different
added phase functions results in highly complicated phase
correction logic. To remedy this shortcoming, in lieu of
using the 𝑅𝑇𝑂𝐹 as a base element, we instead propose the
use of the 𝑅𝑇𝑂𝐹𝑆 , depicted in Fig. 6. This gate incorporates
the an S-gate before the target bit and an S†-gate after the
target bit to erase the relative phases on the |110⟩ and |111⟩
states, creating a version of the Margolus gate [6] that only
has a 𝜋 relative phase on the |101⟩ state (note that in this
notation, 𝑅𝑇𝑂𝐹

†
𝑆

is denoted by S†). We illustrate this with
Table 4. This makes calculating the phase function easier
and possibly reduces the cost of the logic to return the phase.

We can immediately see the advantage of the 𝑅𝑇𝑂𝐹𝑆
here. It means each individual 𝑅𝑇𝑂𝐹𝑆 contributes a phase of
𝜋 on the |101⟩ state and subsequent phase-correcting quan-
tum Boolean circuit would only need to act on the 𝜋 phase.

Another observation is that swapping the CNOT con-
nections of the 𝑅𝑇𝑂𝐹𝑆 function, as depicted in Fig. 7, moves
the relative phase to different states without affecting the final
Boolean function. It is therefore possible to manipulate the
final phase function just by an appropriate choice of 𝑅𝑇𝑂𝐹𝑆 .
We observe that a Boolean function 𝑓 with 𝑛 inputs generally
requires more gates to implement as its ON-set (the number
of fulfilling assignments) approaches 2𝑛−1, or half the total
number of possibilities, are in the ON-set. We therefore
assign the inputs according to whichever assignment pushes
the ON-set closer to either 0 or 2𝑛. If the ON-set is the same
with either assignment, then the input with a “lower index”
(defined in Algorithm 1 is chosen as “a”. We describe this
process using Algorithm 1.

We can see that the above manipulation is made much
easier by using the 𝑅𝑇𝑂𝐹𝑆 . Because all the 𝑅𝑇𝑂𝐹𝑆 only
add 𝜋 to the total added phase function, this limits our com-
parison to one phase function 𝐹𝜋 .

Finally, we observe that adding two S-gates at arbitrary
points on the input qubits can change the phase function but
maintain the same Boolean mapping. We can thus search
for an appropriate point to insert the S-gates on the output
qubits to possibly affect the final phase function. Searching
for this appears to be difficult at first glance. However,
suppose a circuit has a set of gates 𝑔1, · · · , 𝑔𝑛, defined as in
Section 3.2. The original total phase function of the circuit
is 𝐹𝜋 = 𝐹𝜋𝑔1

⊕ · · · 𝐹𝜋𝑔𝑖−1
⊕ 𝐹𝜋𝑔𝑖

· · · ⊕ 𝐹𝜋𝑔𝑛
, where each 𝐹𝜋𝑔𝑖

denotes the phase function from 𝑔𝑖 .
We select a gate 𝑔𝑖 that implements the function 𝑓𝑖, 𝑗

from that set. If we then apply two S-gates after its target
bit 𝑞 𝑗 , the added phase function of the whole circuit thus
becomes 𝐹𝜋𝑛𝑒𝑤 = 𝐹𝜋𝑔1

⊕ · · · 𝐹𝜋𝑔𝑖−1
⊕ 𝐹𝜋𝑔𝑖

⊕ 𝑓𝑖, 𝑗 ⊕ · · · ⊕
𝐹𝜋𝑔𝑛

. By commutativity of the XOR, we can also calculate
it as 𝐹𝜋𝑛𝑒𝑤 = 𝐹𝜋𝑔1

⊕ · · · 𝐹𝜋𝑔𝑖
· · · ⊕ 𝐹𝜋𝑔𝑛

⊕ 𝑓𝑖, 𝑗 = 𝐹𝜋 ⊕ 𝑓𝑖, 𝑗 .
Again, using the same ON-set heuristic we used for the input
assignments three paragraphs above, we thus have a way to
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Algorithm 1 Picking Assignments

1: function PickAssign(𝑔𝑖)
2: /* 𝑔𝑖 : A Toffoli gate
3: 𝑞𝑎 ,𝑞𝑏 : the control qubits of 𝑔𝑖
4: ON( 𝑓 ) : counts the number of fulfilling assignments of a Boolean
5: function 𝑓

6: lower_index(𝑞𝑎 ,𝑞𝑏) : returns 𝑞𝑏 if 𝑏 < 𝑎. Otherwise, return 𝑞𝑏
*/

7: 𝐹𝑎← 𝐹𝜋 phase function of 𝑔𝑖 with lower_index(𝑞𝑎 ,𝑞𝑏) as 𝑎 input
8: 𝐹𝑏← 𝐹𝜋 phase function of 𝑔𝑖 with lower_index(𝑞𝑎 ,𝑞𝑏) as 𝑏 input
9: if ON(𝐹𝑏) is closer to 2𝑛 or 0 than ON(𝐹𝑎) is then

10: 𝑔𝑖 is changed to an 𝑅𝑇𝑂𝐹 using lower_index(𝑞𝑎 ,𝑞𝑏)
as 𝑏 input

11: return 𝐹𝑏

12: else
13: 𝑔𝑖 is changed to an 𝑅𝑇𝑂𝐹 using lower_index(𝑞𝑎 ,𝑞𝑏)

as 𝑎 input
14: return 𝐹𝑎

15: end if
16: end function

reduce the T-count of correcting the resulting total added
phase function. For any such 𝑓𝑖, 𝑗 , if 𝐹𝜋 ⊕ 𝑓𝑖, 𝑗 has an ON-set
closer to either 0 or 2𝑛 than 𝐹𝜋 , we add two S-gates after it.
Otherwise, we leave the circuit as is and move on to 𝑔𝑖+1.

4.2 Proposed Algorithm

The proposed method then replaces all Toffoli gates with
𝑅𝑇𝑂𝐹𝑆 and 𝑅𝑇𝑂𝐹

†
𝑆

instead of 𝑅𝑇𝑂𝐹 and 𝑅𝑇𝑂𝐹† respec-
tively, while assigning their inputs according to the heuristic
in Sec. 4.1. In this way, we seek to simplify the phase
correction logic.

Our proposed algorithm is described in Algorithm 2.
Line 1 assumes that the input QC has already gone through
the process of replacement in Step 1 of the method from
Section 3.2.

Lines 16-22 describe the process for calculating the
phase functions. Here, we first calculate the Boolean func-
tion 𝑓𝑖, 𝑗 (x) implemented on the target bit 𝑞 𝑗 by the gate
𝑔𝑖 . We then execute Algorithm 1, which was explained in
Section 4.1. Algorithm 1 returns the phase function of the
better assignment, and this is added to the total phase func-
tion. We do this for every gate 𝑔𝑖 to get the total added phase
functions 𝑃(x). Then, Lines 24-29 describe the process of
finding Boolean functions inside the circuit itself that can
be used to drive a phase correction described in Section 4.1.
Finally, if 𝑃(x) is still non-zero, Lines 31-38 describe the
process by which phase correction logic is generated and
appended to the quantum circuit, which is a simplified ver-
sion of Step 6 in Section 3.2. We demonstrate this using
Example 2.

Example 2: We transform the circuit in Fig. 4 this time
using the proposed method. Table 5 outlines the actions of
Lines 16-22. This time there are two lines for added phase
for each Toffoli: (a) denotes when the (a) input is connected
to the qubit with a lower index and (b) denotes when the (b)
input is connected to the qubit with a lower index. “Total
Phase” denotes the resulting phase, with the assignment cho-
sen for the Toffoli gate indicated in parentheses after the bit

Algorithm 2 Erasing Relative Phases.

1: function EraseRelativePhase(QC, 𝑥)
2: QC : A quantum Boolean circuit of gates 𝑔1, · · · , 𝑔𝑚
3: containing 𝑅𝑇𝑂𝐹s in place of Toffoli gates.
4: 𝑥 : an n-bit string 𝑥𝑛𝑥𝑛−1 · · · 𝑥1*/
5: for every 𝑓0, 𝑗 do
6: 𝑓0, 𝑗 ← 𝑥 𝑗 //input qubits initialized to 𝑥 𝑗

7: end for
8: 𝑃← 0
9: /*

10: 𝑓𝑖, 𝑗 (x) : is the same variable defined in Sec. 3.2
11: 𝑃 (x) : the total added phase function for QC,
12: initialized to 0
13: ON( 𝑓 ) : counts the number of fulfilling assignments of
14: the Boolean function 𝑓

15: */
16: for every 𝑔𝑖 in QC do
17: /* 𝑞 𝑗 is the target bit of 𝑔𝑖 */
18: 𝑓𝑖, 𝑗 ← Boolean function obtained from applying 𝑔𝑖 to 𝑓𝑖−1, 𝑗
19: if 𝑞 𝑗 is an output qubit and 𝑔𝑖 is an RTOF then
20: 𝑃← 𝑃 + PickAssign(𝑔𝑖)
21: end if
22: end for
23: /* Search for places to insert 2 S-gates */
24: for every 𝑓𝑖, 𝑗 do
25: if ON(( 𝑓𝑖, 𝑗 ⊕ 𝑃)) < ON(𝑃) such that 𝑃 ≠ 0 then
26: Apply 2 S-gates after 𝑔𝑖 on 𝑞 𝑗

27: 𝑃← ( 𝑓𝑖, 𝑗 ⊕ 𝑃)
28: end if
29: end for
30: /* compose the circuit */
31: if 𝑃 ≠ 0 then
32: /* 𝑝 is the ancilla qubit to drive the phase. */
33: appQC ← quantum Boolean circuit that implements 𝐹𝜋 on

𝑝 using RTOF.
34: inv_appQC← the inverse of appQC
35: QC← quantum Boolean circuit with inv_appQC prepended to

QC
36: QC ← quantum Boolean circuit with two S-gates on qubit 𝑝

prepended to QC
37: QC← quantum Boolean circuit with appQC prepended to QC
38: end if
39: return (QC with no relative phases)
40: end function

string.
Walking through the example, we can already see the

advantages of our method in the first few steps. Unlike in
Example 1, when we get to 𝑔4, because the gates are acting
on the state |0⟩ there is no phase added. When we get to 𝑔6,
we see that both the (a) assignment adds no phase while the
(b) assignment adds a phase of 𝜋 to the |111⟩ state, therefore
we choose the (a) assignment and the calculation stays free
of relative phases. Moving on to 𝑔7, we see that both (a) and
(b) assignments create a phase function with the same size
ON-set, so we choose (a).

Moving on to the next step, we take the final 𝐹𝜋 and
XOR it with each line of columns 𝑔1 − 𝑔13. We find that
XORing each of these with 𝐹𝜋 produces a Boolean function
with an ON-set which is closer to 2𝑛−1 than 𝐹𝜋 and so we
leave the circuit as it is.

Completing the example, we can see that the resulting
phase function 𝐹𝜋 = 𝑥0 · 𝑥1 can be implemented with an
RTOF/RTOF† pair with a negated input acting on 𝑝. We
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Table 5: Calculating the Phase Function for Fig. 4. using the Proposed Method
input 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6
𝑞0 00001111 00001111 00001111 00001111 00001111 00011110 00010111
𝑞1 00110011 00111100 00111100 00110101 00111010 00111010 00111010
𝑞2 01010101 01010101 01011001 01011001 01011001 01011001 01011001
𝑞3 00000000 00000000 00000000 00000000 00010001 00011000 00001001

Additional P(x) (a) 00000000 00000000
Additional P(x) (b) 00000000 0000000𝜋

Total P(x) 00000000 00000000(a)
input 𝑔7 𝑔8 𝑔9 𝑔10 𝑔11 𝑔12 𝑔13
𝑞0 00010111 00010111 01110010 01110100 01110100 01110100 01110100
𝑞1 00111010 00111010 00111010 01010101 01011010 01011010 01011010
𝑞2 01011001 01101100 01100011 01100011 01100011 01100011 01100011
𝑞3 00011101 00011011 00011011 00011011 01011001 00111001 01101001

Additional P(x) (a) 0000𝜋000 000𝜋000𝜋 000𝜋0000 00𝜋00000
Additional P(x) (b) 0000000𝜋 0000𝜋000 0000𝜋000 0000000𝜋

Total P(x) 0000𝜋000(a) 0000000(b) 000𝜋0000(a) 00𝜋𝜋0000(a)

𝑞0 : |𝑥0 ⟩ : • S S† •

𝑞1 : |𝑥1 ⟩ : • • • S • • S • • S† • S† •

𝑞2 : |𝑥2 ⟩ : S • • • • • • • • • • • S†

𝑞3 : |0⟩ : S S S S S S

𝑝 : |0⟩ : S S S S†

Fig. 8: The circuit from Fig. 4 transformed using the Proposed Method

thus synthesize the 𝑅𝑇𝑂𝐹 with negated 𝑥0 input and set its
target bit to the ancilla 𝑝. We then apply two S gates on 𝑝

and repeat the same RTOF’s inverse RTOF† to uncompute
the states.

With 16 total RTOF, the T-count is 64. This is 40 less
than the Naive method’s T-count of 104, and 34 less than the
All-Toffoli case’s T-count of 98.

5. Experimental Results

5.1 Methodology

Our algorithm was implemented using Qiskit[7] and Python.
Calculations for the output logic as well as the phase func-
tions were done by operating on Binary Decision Diagram
(BDD) representations of Boolean functions in the quantum
circuit using the CUDD interface in the TuLiP DD tool[8].
The Qiskit classicalfunction functionality was used to gener-
ate the relative-phase correction Boolean logic circuits from
the calculated BDDs by converting the latter into the appro-
priate Boolean function in Python.

A selection of circuits from RevLib[9] were then read
from REAL format into Qiskit QuantumCircuit format†.
However, some benchmarks do not contain uncomputation
gates as required by quantum computation. We can see this
in from Fig. 9b with the garbage state |𝑔⟩, which are differ-
ent from their initial states. We therefore modify them from
their normal forms by appending any gates that only act on
input qubits and ancilla qubits in the reverse order that they
appear in the circuit.

To have a good distribution of circuits, we take bench-
marks from RevLib generated with the methods from [10]
†Documentation for all benchmarks used are available at the

following URL http://www.revlib.org/realizations.php

𝑎 • • 𝑋 •
𝑏 • • • 𝑋 •

𝑐𝑖𝑛 • • • • • 𝑋 •
𝑠𝑢𝑚

𝑐𝑜𝑢𝑡

(a) FTR 2007

𝑥1 • 𝑥1
1 • 𝑔

0 • • 𝑓
𝑥2 • • 𝑥2
1 • 𝑔

0 • • 𝑔

(b) WD 2009

Fig. 9: Synthesis algorithms for the benchmarks

(WD:2009), [11] (FTR:2007), and [12] (MDS:2005).
FTR:2007 is an Exclusive Sum of Products (ESOP) based
method that cascades the ESOP terms on the output qubits,
and implements each product term as an MPMCT gate. This
is shown in Fig 9a. As such, it needs no uncompute logic and
every single gate contributes to the phase function. These are
chosen to measure the contribution of the phase correction
logic, as well as its performance under reasonably compli-
cated phase functions. WD:2009 is a BDD-based method
that cascades gates to the output using input bits and ancilla.
It creates circuits like Fig. 9b with logic that acts on ancilla
that have corresponding uncompute logic. MDS:2005 is a
database of mostly hand-designed circuits. Each of them
has a unique set of characteristics and provides a mix of dif-
ferent types of logic. Table 6 indicates the source of each
benchmark in the column “Type”.

Additionally, while we used examples in this paper con-
sisting only of NOT, CNOT, and Toffoli gates (NCT), very
few circuits in our benchmark set limit themselves to this
set of gates. Within our benchmarks, we see many that
use Multi-Polarity Multiple Control Toffoli (MPMCT) gates.
While these are not in our original set, we can nonetheless
get a T-count for them by using the clean-ancilla MPMCT
decomposition method in [4]. For MPMCT gates imple-
mented without a relative phase, we get a T-count of 8𝑛− 17
for inputs 𝑛 ≥ 4 (note that the three-input case is the Tof-
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Table 6: Experimental Results
Circuit_Name Type AllToffoli TGates Naive Just𝑅𝑇𝑂𝐹𝑆 Pairwise Proposed vsJust𝑅𝑇𝑂𝐹𝑆% vsNaive% vsPairwise% vsAllToffoli%
cycle10_2_110 MDS:2005 1561 29 948 892 976 892 0 -2.95 8.61 42.86

decod24-enable_126 MDS:2005 357 25 212 204 276 204 0 -30.19 26.09 42.86
hwb6_56 MDS:2005 4039 215 2748 2308 2950 2692 -16.64 -7.35 8.75 33.35
hwb8_115 MDS:2005 30191 919 20444 17252 20006 20292 -17.62 2.14 -1.43 32.79
rd53_130 MDS:2005 665 25 964 564 446 556 1.42 53.73 -24.66 16.39

mod5adder_127 WD:2009 413 21 396 236 296 404 -71.19 25.25 -36.49 2.18
sym9_317 WD:2009 693 43 588 484 432 396 18.18 26.53 8.33 42.86
rd73_312 WD:2009 679 45 1388 732 436 420 42.62 68.59 3.67 38.14
mlp4_245 FTR:2007 9695 191 10140 8556 6110 8692 -1.59 39.74 -42.26 10.35
rd73_252 FTR:2007 2835 111 5860 3044 1950 2940 3.42 66.72 -50.77 -3.7
sao2_257 FTR:2007 3759 43 2652 2148 2274 2148 0 14.25 5.54 42.86
sqn_258 FTR:2007 4347 91 3540 3676 2754 3708 -0.87 22.2 -34.64 14.7

sym9_148 FTR:2007 12509 421 7148 7148 8408 7148 0 -17.63 14.99 42.86
Average -3.25 20.08 -8.80 27.57

foli gate that we have already studied here). For MPMCT
gates implemented up to a relative phase, we get a T-count
of 8𝑛 − 14.

The numbers from the experiments in Table 6 are as
follows:

• AllToffoli, which describe the base T-count of the Clif-
ford+T Toffoli implementation i.e. the All-Toffoli case

• Naive, which is the method described in Sec. 3.2
• Proposed, which uses the method described in Algo-

rithm 2 in full.
• Pairwise, which describes a version of the Proposed

method where only the Toffoli gates that act on non-
output qubits are replaced by 𝑅𝑇𝑂𝐹𝑆 in the circuit (i.e.,
only the ones that can be canceled out by a balancing
𝑅𝑇𝑂𝐹

†
𝑆
)

• Just𝑅𝑇𝑂𝐹𝑆 , which is a version of the Proposed method,
where instead of calling the PickAssign method from
Algorithm 1, it fixes the input assignments to use the
lower indexed input as (a).

In addition, there are four sets of comparison numbers:

• vsToffoli is (𝐴𝑙𝑙𝑇𝑜ff 𝑜𝑙𝑖 − 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)/𝐴𝑙𝑙𝑇𝑜ff 𝑜𝑙𝑖 i.e.
this measures the effect of doing the Proposed method
vs. not doing anything at all.

• vsNaive is (𝑁𝑎𝑖𝑣𝑒 − 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)/𝑁𝑎𝑖𝑣𝑒 and measures
the effectiveness of introducing the 𝑅𝑇𝑂𝐹𝑆 and its cor-
responding input reassignments to the Naive method
described in Sec. 3.2.

• vsJust𝑅𝑇𝑂𝐹𝑆 is (𝐽𝑢𝑠𝑡𝑅𝑇𝑂𝐹𝑆−𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)/𝐽𝑢𝑠𝑡𝑅𝑇𝑂𝐹𝑆
and is meant to measure the effectiveness of the heuris-
tic introduced in Sec. 4.1 by comparing the Proposed
method to merely introducing the 𝑅𝑇𝑂𝐹𝑆 .

• vsPairwise is the result of the equation (𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒 −
𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑)/𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒. One may notice that the Pair-
wise method merely comprises the Toffoli replacement
procedure in Algorithm 2. This means that the com-
parison is to measure the impact of the generated phase
correction elements vs. merely performing the replace-
ment of symmetric Toffoli gates.

At the bottom of the columns for vsToffoli, vsNaive,
vsJust𝑅𝑇𝑂𝐹𝑆 and vsPairwise, we take the arithmetic average

of each column and list it in the “Average” row.

5.2 Analysis

The first thing that we can see is that because of the phase cor-
rection logic, the Naive method often performs worse than
Pairwise. Many times it performs worse than the AllToffoli
method. This is because phase functions get overly com-
plicated. This is seen in the substantial differences between
the T-counts of the Naive method and the Pairwise method.
The Naive method will need significant improvements such
as introducing the 𝑅𝑇𝑂𝐹𝑆 in order to become practical. In-
deed the vsNaive numbers show an overwhelming advantage
in favor of the Proposed method.

The numbers for vsNaive should be considered against
the vsToffoli numbers, which show that the Proposed method
has, on average, 27.57% lower T-count than the AllToffoli
case. While the advantage of the Naive method is unclear in
many cases, the Proposed method is much more unambigu-
ous in its advantage over the AllToffoli method.

That being said, while for most cases the Proposed
method provides a modest advantage in T-count over the
Pairwise method, there still remain cases where it performs
much poorer than the Pairwise method. This means the Pro-
posed method has on average 8.80% higher T-count in the
benchmarks we tested than the Pairwise method. We can
see however that the performance differs greatly between
WD:2009, FTR:2007, and MDS:2005. Because FTR:2007
does not have any uncomputation logic and every gate con-
tributes to the overall phase function, this means that its
T-count savings is dominated by implementing the Toffoli
gates that comprise each MPMCT in a relative phase man-
ner. However, this is balanced out by the T-count of the phase
correction logic. We see that the benchmarks for FTR:2007
have vastly higher T-counts, on average, than the bench-
marks taken from the other two sources under the Proposed
method. Finally, vsJust𝑅𝑇𝑂𝐹𝑆 shows only a modest con-
tribution by the heuristic input reassignment, and is many
times actually detrimental to the overall T-count. This could
be due to the highly complicated Boolean function being im-
plemented, and the heuristic could be failing as the Boolean
functions’ ON-set get closer to the 2𝑛−1 region where it is
unclear whether making the ON-set closer to 0 or 2𝑛 will
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make it simpler. This suggests that it needs a more sophisti-
cated heuristic to decide which assignment to take. Despite
the present disadvantages, however, we still see that several
cases, such as rd73_312, still have lower T-count using the
Proposed method over the vsJust𝑅𝑇𝑂𝐹𝑆 method. Taken
all together, this means that most of the optimization is domi-
nated by the 𝑅𝑇𝑂𝐹 replacement procedure for gates and their
uncomputation logic. However, as we can see, there still re-
main cases where the Proposed method generates circuits
with lower T-count than the Pairwise method. This opens
up an interesting further topic of research of how to analyt-
ically decide a priori whether to use the Proposed method,
Pairwise method, or the Just𝑅𝑇𝑂𝐹𝑆 method, before running
any generation. In the absence of such a method, however,
a practical implementation could simply generate separate
circuits using the Proposed method, Pairwise method, and
Just𝑅𝑇𝑂𝐹𝑆 method, and then compare their T-counts to de-
cide which implementation to use after the fact, at the cost
of additional runtime.

6. Conclusion

This paper proposed a method to convert a quantum circuit
to use 𝑅𝑇𝑂𝐹s instead of Toffoli gates, and then erase the
resulting relative phase by adding extra logic. We demon-
strate that while there are cases where this could reduce the
T-count, there are also many other cases where the correct-
ing logic adds too much to the T-count. We propose several
enhancements to mitigate this increase in T-count, including
the 𝑅𝑇𝑂𝐹𝑆 and a heuristic method to assign inputs in order
to simplify the overall phase function.

We find experimentally that with use of mitigation we
find more cases where replacing with 𝑅𝑇𝑂𝐹s shows an ad-
vantage. However, there remain many cases where even
the simplistic Pairwise method outperforms the Proposed
method. Looking closer at these cases, it is apparent that
cases which use uncompute logic are better suited for using
this method. Additionally, even among the cases we tested,
there were some cases where we can get a lower T-count by
using the heuristic input assignment in the Proposed method.
This suggests that a practical implementation could use some
combination of all of these proposals. We conjecture that
this can either be done analytically before performing the
transformation, or after the fact by selecting the implemen-
tation that has the lowest T-count. Future topic of research
that have resulted from this study include: development of a
better heuristic to select input assignments, and an analyti-
cal method to decide which method to use before doing any
synthesis.
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