Multiple-Insertion-Correcting Non-Binary Quantum Codes and Decoding Algorithm

Ken NAKAMURA \(^{a}\), Nonmember and Takayuki NOZAKI \(^{a,}\), Senior Member

SUMMARY This paper investigates non-binary quantum codes correcting multiple insertion errors. This paper provides an insertion-correcting procedure of the deletion-correcting non-binary codes constructed by Matsumoto and Hagiwara. By giving the procedure, we present multiple-insertion-correcting non-binary quantum codes.

key words: Decoding Algorithm, Insertion Error, Non-Binary Codes, Quantum Codes

1. Introduction

Insertion and deletion errors have been introduced as a quantum synchronization error model in a quantum communication channel [1]. In classical coding theory, Levenshtein [2] proved that any classical code correcting \(t \) deletion errors can also correct \(s \) deletion and insertion errors. In other words, any classical code correcting \(t \) deletion errors can also correct \(t \) insertion errors. Shibayama and Hagiwara [3] showed that any quantum code correcting single deletion error can correct single insertion error under the modified Knill-Laflamme conditions by Shibayama and Ouyang [4]. However, it is an open problem whether \(t \)-deletion-correcting quantum codes can correct \(t \) insertion errors. Similar to the author of [5], we expect this statement to be true. A study of an insertion-correcting procedure for deletion-correcting quantum codes helps to show it.

The aim of our study is to provide multiple-insertion-correcting non-binary quantum codes. This paper presents multiple-insertion-correcting non-binary quantum codes by showing an insertion-correcting procedure of the multiple-deletion-correcting non-binary quantum codes [10]. Additionally, to show the insertion-correcting procedure, this paper shows an algorithm to make an index set such that includes the indices of all inserted symbols and its cardinality is at most twice the number of insertions.

The rest of the paper is organized as follows. Section 2 introduces the notations used throughout the paper. Moreover, Section 2 gives error models and deletion-correcting non-binary quantum codes given in [10]. Section 3 provides an algorithm to make an index set that includes the indices of all inserted symbols and its cardinality is at most twice the number of insertions. Section 4 presents a multiple insertion error correcting algorithm of the multiple-deletion-correcting non-binary quantum codes [10]. Section 5 concludes the paper.

2. Preliminary

This section gives the notations used throughout the paper. Moreover, this section introduces error models and deletion-correcting non-binary quantum codes [10]. To introduce the codes, we define a monotonically increasing periodic sequence, which can locate all deletion indices.

2.1 Notations

Let \(\mathbb{Z}, \mathbb{Z}^+, \) and \(\mathbb{C} \) be the sets of all integers, positive integers, and complex numbers, respectively. For \(a, b \in \mathbb{Z} \), define \([a, b] := \{i \in \mathbb{Z} \mid a \leq i \leq b\}\). Moreover, define \([b] := \{0, b\}\). In particular, \(\mathbb{Z}_l = \{0, 1, ..., l - 1\} \) represents the set of \(l \)-adic symbols. Let \(|P|\) be the cardinality of a set \(P \). For \(a \in \mathbb{Z} \) and \(b \in \mathbb{Z}^+, a\%b \) stands for the remainder when \(a \) divided by \(b \).

For \(x = (x_i) \in \mathbb{Z}^n \) and \(P = \{p_1, p_2, ..., p_t\} \subseteq [1, n] \) with \(p_1 < p_2 < \cdots < p_t \), define \(x_P := (x_{p_1}, x_{p_2}, ..., x_{p_t}) \). To simplify the notation, we write a vector \(x = (x_1, x_2, ..., x_n) \) as a sequence \(x_1, x_2, ..., x_n \). For example, for \(x = 0120 \in \mathbb{Z}^4, y \), we have \(x_{[1,3]} = 012 \) and \(x_{[1,4]} = 00 \).

Let \(\mathcal{H}_l \) be the complex vector space of dimension \(l \). For \(s \in \mathbb{Z}_l, \) let \(|s\rangle \in \mathcal{H}_l \) be a column vector whose only the \((s + 1)\)th component is 1 and the other components are 0, and \(\langle \mu | \) the adjoint of a vector \(|\mu\rangle \in \mathcal{H}_l \).

Let \(\text{tr}(A) \) be the trace of a matrix \(A \). For two matrices \(A = (a_{ij}) \) and \(B \), the tensor product \(A \otimes B \) is defined as
\[
A \otimes B := \begin{pmatrix}
a_{1,1}B & a_{1,2}B & \cdots & a_{1,n}B \\
a_{2,1}B & a_{2,2}B & \cdots & a_{2,n}B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1}B & a_{m,2}B & \cdots & a_{m,n}B
\end{pmatrix},
\]

where \(A\) is an \(m \times n\) matrix. In particular, \(A^{\otimes n}\) denotes \(A \otimes A \otimes \cdots \otimes A\). For \(x = (x_i) \in \mathbb{Z}^n\), define \(|x| := |x_1| \otimes \cdots \otimes |x_n|\). The set of all density matrices of quantum states represented by \(n\) qubits is denoted by \(S(\mathcal{H}_2^{\otimes n})\).

2.2 Error Models

For \(x = (x_i) \in \mathbb{Z}^n\), \(t \in \mathbb{Z}^+\), and a set of deletion indices \(P \subseteq [1, n]\) with \(|P| = t \leq n\), define \(t\) deletion errors \(D_P : \mathbb{Z}^n \rightarrow \mathbb{Z}^{(n-t)}\) at \(P\) as \(D_P(x) = x_{(1, P)} = x_{(1, n) \setminus P}\). For example, \(D_{\{2\}}(0120) = 020\). For \(x \in \mathbb{Z}^n\), \(t \in \mathbb{Z}^+\), and a set of insertion indices \(P \subseteq [1, n+t]\) with \(|P| = t\), define the set of sequences inserting \(t\) symbols at position \(P\) to \(x\) by \(B_P(x)\), i.e., \(B_P(x) := \{y \in \mathbb{Z}^{(t+n)} \mid D_P(y) = x\}\). For example, if \(l = 3\), \(B_{\{1\}}(0120) = \{01200, 01210, 01220\}\). Then, \(t\) insertion errors at \(P\) is a change from \(x\) to \(z \in B_P(x)\).

In the erasure channel, some transmitted symbols can become the erasure symbol \(?\). For example, when the transmitted sequence is 0121012, the received sequence can become 072012. Now, we can regard erasures as the errors whose indices are known to the receiver. Hence, we also regard the erasure model as the model where the receiver gets the received sequence \(D_P(x)\) with deletion errors and knows the indices \(P\) of the deletions.

For \(\rho = \sum_{x, y \in \mathbb{Z}^n} c_{x, y} |x\rangle \langle y| \in S(\mathcal{H}_2^{\otimes n})\) and \(P \subseteq [1, n]\), the partial trace \(Tr_P : S(\mathcal{H}_2^{\otimes n}) \rightarrow S(\mathcal{H}_2^{\otimes (n-t)})\) is defined as

\[
Tr_P(\rho) := \sum_{x \in \mathbb{Z}^n} c_{x, y} \text{tr}([D_P(x)] P) |D_P(y)\rangle \langle D_P(y)|.
\]

Then, for \(\rho \in S(\mathcal{H}_2^{\otimes n})\) and a set of deletion indices \(P = \{p_1, p_2, \ldots, p_t\} \subseteq [1, n]\) with \(p_1 < p_2 < \cdots < p_t\), define \(t\) deletion errors \(D_P : S(\mathcal{H}_2^{\otimes n}) \rightarrow S(\mathcal{H}_2^{\otimes (n-t)})\) at \(P\) as

\[
D_P(\rho) = Tr_{P_1} \circ Tr_{P_2} \circ \cdots \circ Tr_{P_t}(\rho),
\]

where \(f \circ g\) is the composition of the maps \(f\) and \(g\). In a similar way to \(B_P(x)\), for \(\rho \in S(\mathcal{H}_2^{\otimes n})\), \(t \in \mathbb{Z}^+\), and \(P \subseteq [1, n+t]\) with \(|P| = t\), define

\[
B_P(\rho) := \{\sigma \in S(\mathcal{H}_2^{\otimes (n+t)}) \mid D_P(\sigma) = \rho\}.
\]

Then, \(t\) insertion errors at \(P\) is a change from \(\rho\) to \(\rho' \in B_P(\rho)\). If \(\rho\) is pure, \(\rho' \in B_P(\rho)\) is denoted by the following.

Theorem 1 (Fact 2.6 of [11]): Consider a quantum state \(\rho = \sum_{x, y \in \mathbb{Z}^n} c_{x, y} |x\rangle \langle y| \in S(\mathcal{H}_2^{\otimes n})\) and a permutation \(\tau\) on \([1, n]\). By abuse of notation, we define the index permutation \(\tau(\rho) \in S(\mathcal{H}_2^{\otimes n})\) for \(\rho\) by

\[
\tau(\rho) := \sum_{x \in \mathbb{Z}^n} c_{x, y} |x_{\tau(1)} \cdots x_{\tau(n)}\rangle \langle y_{\tau(1)} \cdots y_{\tau(n)}|.
\]

In addition, for \(t, n \in \mathbb{Z}^+\) and \(P = \{p_1, p_2, \ldots, p_t\} \subseteq [1, n+t]\) with \(p_1 < p_2 < \cdots < p_t\), let \(\tau_P\) be the permutation on \([1, n+t]\) such that \(\tau_P(i) = p_i\) for \(i \in [1, t]\) and \(j < k \Rightarrow \tau_P(j) < \tau_P(k)\) for \(j, k \in [t + 1, n + t]\). Then, if \(\rho \in S(\mathcal{H}_2^{\otimes n})\) is pure, any quantum state \(\rho' \in B_P(\rho)\) is denoted by \(\rho' = \tau_P(\sigma \otimes \rho)\) for some \(\sigma \in S(\mathcal{H}_2^{\otimes n})\).

Similar to the classical erasure model, \(t\) quantum erasures on \(P\) is regarded as an error model where the receiver gets \(D_P(\rho)\) and knows \(P\).

2.3 Monotonically Increasing Periodic Sequence [10]

The sequence repeating the symbols from 0 to \(t\) such as 012\cdots0121012 is denoted by \(m \in \mathbb{Z}^n_{(t+1)}\). More precisely, \(m = (m_i)\) satisfies \(m_i = (i - 1)/6(t + 1)\). We call \(m\) the monotonically increasing periodic sequence on \(\mathbb{Z}^n_{(t+1)}\). For example, if \(t = 2\) and \(n = 7\), \(m = 0120120\).

The sequence \(m \in \mathbb{Z}^n_{(t+1)}\) can locate \(t\) deletion indices as the following procedure [10]. For at most \(t\) deletion errors \(D_P\), define \(y = (y_i) := D_P(m)\). Let \(k = \min\{j \mid j \geq y_{j+1}\}\). The set \(Z_{(t+1)} \{y_1, \ldots, y_k\}\) is the set of all the deleted symbols on \(m_{[1, t+1]}\). Hence, from \(Z_{(t+1)} \{y_1, \ldots, \ldots, y_k\}\), we get all the deletion indices on \([1, t+1]\). Repeat the procedure above from \(y_{k+1}\) until the rightmost component in \(y\) and we get all the deletion indices.

2.4 Deletion-Correcting Non-binary Quantum Codes [10]

This section introduces deletion-correcting non-binary quantum codes \(Q'\) given in [10]. Let \(Q \subseteq \mathcal{H}_q^{\otimes n}\) be a \(t\) erasure-correcting quantum code. Define the map \(\eta_i : \mathcal{H}_q \rightarrow \mathcal{H}_{q(t+1)}\) by \(\eta_i : |j\rangle \mapsto |j(t+1)\rangle\). Conversion from \(|\phi\rangle\) in \(Q\) to \(|\psi\rangle\) in \(Q' \subseteq \mathcal{H}_q^{\otimes(n+t)}\) is defined as apply \(\eta_{(i-1)/6(t+1)}\) to the \(i\)th physical system of \(|\phi\rangle\) for all \(i \in [1, n]\).

In general, if a message is pure (resp. mixed), the corresponding codeword is also pure (resp. mixed). In this paper, suppose that both messages and codewords are pure.

Example 1: The Shor code \(Q_S \subseteq \mathcal{H}_2^{\otimes 3}\) [12] is a 2-erasure-correcting quantum code. This example gives a 2-deletion-correcting quantum code \(Q'_{S} \subseteq \mathcal{H}_2^{(n+3)}\) based on the Shor code. By the Shor code, a message \(|\mu\rangle = |0\rangle + |\beta\rangle |1\rangle \in \mathcal{H}_2^{(n+1)}\) is encoded to

\[
|\phi\rangle = \alpha \left(\frac{000}{\sqrt{2}} + |111\rangle\right)^{\otimes 3} + \beta \left(\frac{000}{\sqrt{2}} - |111\rangle\right)^{\otimes 3} \in Q_S,
\]

where \(\alpha, \beta \in \mathbb{C}\). By applying \(\eta_{(i-1)/6}\) to the \(i\)th qubit of \(|\phi\rangle\)
for all \(i \in [1, 9] \), we get a codeword
\[
|\psi\rangle = \alpha \left(\frac{1012 + 345}{\sqrt{2}} \right)^{\otimes 3} + \beta \left(\frac{1012 - 345}{\sqrt{2}} \right)^{\otimes 3} \in Q'_S.
\]

The following is a \(t \)-deletion-correcting procedure [10] of \(Q' \). Let \(\{ \mu \} \in \mathcal{H}^m_{t(t+1)} \) and \(|\psi\rangle \in \mathcal{Q}' \subset \mathcal{H}^m_{t(t+1)} \) be the message and its corresponding codeword, respectively. For \(n' \in [n - t, n - 1] \), assume that the receiver receives \(\rho = D_P(|\psi\rangle \langle \psi|) \in S(\mathcal{H}^m_{t(t+1)}) \) and knows the number \(n' \) of qudits of \(\rho \) without destroying \(\rho \). Perform a projective measurement corresponding to \(\{ M_0, M_1, \ldots, M_t \} \) on each qudit in \(\rho \), where
\[
M_k := \sum_{j=0}^{t} |j(t + 1) + k\rangle \langle j(t + 1) + k| \tag{1}
\]
for \(k \in \mathbb{Z}_{t+1} \). Let \(\rho' \) be the quantum state after the measurement and \(y = (y_t) \in \mathbb{Z}^{n'}_{t(t+1)} \) the sequence such that \(y_t \) is the measured outcome of the \(t \)-th qudit of \(\rho \). Then, for \(m \in \mathbb{Z}^{n'}_{t(t+1)}, y = D_P(\rho) \) and \(\rho' = D_P(|\psi\rangle \langle \psi|) \) hold. Since \(|P| = n - n' \leq t \), we locate \(P \) by the locating procedure in Section 2.3. Hence, since \(D_P \) can be regarded to as at most \(t \) erasures, we get \(\{ \mu \} \) by applying a \(t \)-erasure-correcting procedure of \(Q \).

3. Algorithm for Finding a Set Containing Insertion Indices

Now, we will consider an insertion locating procedure for \(m \in \mathbb{Z}^n_{t(t+1)} \). However, it is difficult to locate insertion indices \(P \) from a sequence \(z \in B_P(m) \), because we cannot uniquely detect the insertion indices. For example, if \(m = 012 \) and \(z = 0012 \), since \(0012 \in B_{[1]}(012) \cap B_{[2]}(012) \), we cannot choose \(P = \{ 1 \} \) or \(P = \{ 2 \} \). Hence, we give a procedure that satisfies \(P \subset \mathcal{P} \) with satisfying
\[
P \subseteq \mathcal{P}, \tag{2}
\]
\[
|P| \leq 2|P|. \tag{3}
\]
By \(\mathcal{P} \), we get \(w = D_P(z) \). Then, \(w \) satisfies \(w = D_P(m(i')) \), where \(|P'| \leq t \). In words, \(D_P \) converts \(t \) insertion errors for \(m \) to at most \(t \) deletion errors for \(m \). For example, for \(m = 012 \) and \(z = 0012 \), if we can set \(\mathcal{P} = \{ 1, 2 \} \), \(D_P \) changes from 0012 to 12 = \(D_P(012) \).

3.1 Procedure and Example

The following definition gives notations used in this section.

Definition 1: For \(x = (x_i) \in \mathbb{Z}^n_2 \), let \(J_x(x) \) be the set of indices of a symbol \(s \in \mathbb{Z}_s \), i.e., \(J_x(x) := \{ i \in [1, n] | x_i = s \} \). Then, we define \(N(x|s) := |J_x(x)| \) and denote the \(r \)-th smallest element of \(J_x(x) \) by \(J_x(x|r) \). For convergence, we define \(J_x(x|0) := 0 \) and \(J_x(x|N(x|s) + 1) := n + 1 \).

Example 2: Suppose \(x = 0212010212 \in \mathbb{Z}^n_4 \). We get \(J_1(x) = \{ 3, 6, 10 \} \) and \(N(x|1) = 3 \). Moreover, we have
\[
J_1(x|0) = 0, \quad J_1(x|1) = 3, \quad J_1(x|2) = 6, \quad J_1(x|3) = 10, \quad J_1(x|4) = 12.
\]

Then, for \(P \in [1, n + t'] \) with \(|P| = t' \leq t \), the following procedure derives \(\mathcal{P} \) satisfying Eqs. (2) and (3).

Procedure 1:

Input: \(m \in \mathbb{Z}^n_{t(t+1)}, z = (z_i) \in B_P(m) \)

Output: \(\mathcal{P} \subset [1, n + t'] \)

1. Select a marker \(a \) satisfying
\[
N(z|a) = \left\lfloor \frac{n - a}{t + 1} \right\rfloor, \tag{4}
\]
where \(\lfloor x \rfloor \) is the smallest integer greater than or equal to a real number \(x \). Define \(e := \lfloor (n - a)/(t + 1) \rfloor \).

2. For \(i \in [e] \), define
\[
S_m(i) := \{ J_a(m, i) + 1, J_a(m, i + 1) - 1 \},
\]

Then, for \(i \in [e] \), set
\[
T_i = \{ s \in \mathbb{Z}^n_{t(t+1)} | N(m_{S_m(i)}|s) < N(z_{S_m(i)}|s) \} \tag{5}
\]

3. Get \(\mathcal{P} \) as follows:
\[
\mathcal{P} = \bigcup_{i \in \{ e \}} \{ j \in S_e(i) | z_j \in T_i \}
\]

Example 3: Assume that \(m = 01201212 \in \mathbb{Z}^9_2 \) and \(z = 0212010212 \in B_{[1]}(m) \). Then, \(t' = 2 \).

1. By the following calculation, select \(a = 1 \):
\[
N(z|0) = 4, \quad N(z|1) = 3, \quad N(z|2) = 4,
\]
\[
\left\lfloor \frac{n - 0}{t + 1} \right\rfloor = 3, \quad \left\lfloor \frac{n - 1}{t + 1} \right\rfloor = 3, \quad \left\lfloor \frac{n - 2}{t + 1} \right\rfloor = 3.
\]

2. Note that \(e = 3 \). Since
\[
S_m(0) = \{ 1, 1 \}, \quad S_e(0) = \{ 1, 2 \},
\]
\[
S_m(1) = \{ 3, 4 \}, \quad S_e(1) = \{ 4, 5 \},
\]
\[
S_m(2) = \{ 6, 7 \}, \quad S_e(2) = \{ 7, 9 \},
\]
\[
S_m(3) = \{ 9, 9 \}, \quad S_e(3) = \{ 11, 11 \}.
\]

we get
\[
m_{S_m(0)} = 0, \quad z_{S_e(0)} = 02,
\]
\[
m_{S_m(1)} = 20, \quad z_{S_e(1)} = 20,
\]
\[
m_{S_m(2)} = 20, \quad z_{S_e(2)} = 020,
\]
\[
m_{S_m(3)} = 2, \quad z_{S_e(3)} = 2.
\]

Hence, we have \(T_0 = \{ 2 \}, \quad T_1 = 0, \quad T_2 = \{ 0 \}, \) and \(T_3 = 0 \).

3. From the above, we get
\[
\{ j \in S_e(0) | z_j \in T_0 \} = \{ 2 \},
\]
\[
\{ j \in S_e(1) | z_j \in T_1 \} = 0,
\]
\[
\{ j \in S_e(2) | z_j \in T_2 \} = \{ 7, 9 \}.
\]
\{j \in S_x(3) \mid z_j \in T_1\} = \emptyset.

Hence, get \(\bar{P} = \{2\} \cup \emptyset \cup \{7, 9\} \cup \emptyset = \{2, 7, 9\} \).

Recall \(P = \{2, 7\} \). Here, \(P \subseteq \bar{P} \) and \(\|\bar{P}\| \leq 2|P| \) holds. Hence, \(\bar{P} \) satisfies Eqs. (2) and (3).

3.2 Justification

Theorem 2: The set \(\bar{P} \) of Procedure 1 satisfies Eqs. (2) and (3).

proof: Define \(U := \{z_i \mid i \in P\} \). In words, \(U \) is the set of symbols inserted to \(m \). We have \(t \geq |P| \geq |U| \).

Hence, \(Z_{(t+1)} \setminus U \neq \emptyset \). Then, \(a \in Z_{(t+1)} \setminus U \) satisfies \(N(z_a) = N(m(a)) \). Since \(N(m(a)) = [(n - a)/(t + 1)] \), step 1 finds \(a \in Z_{(t+1)} \setminus U \). For all \(j \in P \cap S_x(i), N(m_{S_m(i)}[z_j]) < N(z_{S_x(i)}[z_j]) \) holds. Hence, \(T_i = \{z_j \mid j \in P \cap S_x(i)\} \).

In words, \(T_i \) is the set of symbols inserted to \(m_{S_m(i)} \). Because \(P \cap S_x(i) \subseteq \{j \in S_x(i) \mid z_j \in T_i\} \) and Eq. (5), we get

\[
\bigcup_{i \in [e]} (P \cap S_x(i)) \subseteq \bigcup_{i \in [e]} \{j \in S_x(i) \mid z_j \in T_i\} = \bar{P}.
\] (6)

Note that \(\bigcup_{i \in [e]} S_x(i) = \{1, n + t'\} \setminus \{j \in \{1, n + t'\} \mid z_j = a\} \) and \(\{1, n + t'\} \setminus \{j \in \{1, n + t'\} \mid z_j = a\} \cap P = \emptyset \). Hence, we have

\[
\bigcup_{i \in [e]} (P \cap S_x(i)) = P \cap \bigcup_{i \in [e]} S_x(i) = P.
\] (7)

Combining Eqs. (6) and (7), we obtain Eq. (2).

We denote the set of indices of symbols inserted to \(m_{S_m(i)} \) by \(R_i \), i.e., \(m_{S_m(i)} = D_{R_i}(z_{S_x(i)}) \).

In addition, since \(m = 012...012...01 \), the number of a symbol \(s \) of \(m_{S_m(i)} \) between \(i \)th marker and \((i + 1)\)th marker is at most 1, i.e., \(1 \geq N(m_{S_m(i)}[s]) \).

From the above, we get

\[
1 \geq N(m_{S_m(i)}[s]) = N(D_{R_i}(z_{S_x(i)}))[s] = N(z_{S_x(i)}[R_i])[s] = \{j \in S_x(i) \mid R_i \cap z_j = s\}
\]

for any \(s \in Z_{(t+1)} \).

Hence,

\[
|T_i| = \sum_{s \in T_i} 1 \geq \sum_{s \in T_i} \{j \in S_x(i) \mid R_i \cap z_j = s\} = \bigcup_{s \in T_i} \{j \in S_x(i) \mid R_i \cap z_j = s\} = \{j \in S_x(i) \mid z_j \in T_i \} \cap R_i \]

(8)

From the definition of \(T_i \) and \(R_i \), \(|R_i| \leq |T_i| \) holds. Hence, Eq. (8) yields

\[
2|R_i| \geq |R_i| + |T_i| \geq |R_i| + \{j \in S_x(i) \mid z_j \in T_i \} \cap R_i = \{j \in S_x(i) \mid z_j \in T_i \} \cup R_i\]

(9)

for any \(i \in [e] \).

The family \(\{S_x(i)\}_{i \in [e]} \) is pairwise disjoint, i.e., \(S_x(i_1) \cap S_x(i_2) = \emptyset \) for distinct \(i_1, i_2 \in [e] \).

Moreover, since \(R_i \subseteq S_x(i) \), \(\{R_i\}_{i \in [e]} \) is also pairwise disjoint. Similarly, since \(\{j \in S_x(i) \mid z_j \in T_i\} \subseteq S_x(i) \), \(\{\{j \in S_x(i) \mid z_j \in T_i\}\}_{i \in [e]} \) is also pairwise disjoint. Recall that \(R_i \) is the set of the indices of the symbols inserted to \(m_{S_m(i)} \), i.e., \(\bigcup_{i \in [e]} R_i = P \).

Therefore, we obtain

\[
|\bar{P}| = \bigcup_{i \in [e]} \{j \in S_x(i) \mid z_j \in T_i\} = \sum_{i \in [e]} |\{j \in S_x(i) \mid z_j \in T_i\}| \leq \sum_{i \in [e]} 2|R_i| = 2 \bigcup_{i \in [e]} R_i = 2|P|.
\]

Thus, we get Eq. (3). \(\square \)

4. Insertion-Correcting Procedure

This section provides the insertion-correcting procedure (Procedure 2) of the deletion-correcting quantum code \(Q' \) [10]. This implies that \(Q' \) is a \(t \)-insertion-correcting quantum code. Moreover, this section gives an example and justification.

4.1 Procedure and Example

For a pure codeword \(|\psi\rangle \in Q' \subset H_{l(t+1)}^{\otimes n} \) and \(P \subset \{1, n + t'\} \) with \(|P| = t' \leq t \), suppose that the receiver receives \(\rho \in B_{P}(|\psi\rangle \langle \psi|) \) and knows the number \(t' \) of insertions without destroying \(\rho \). Let \(M_k \) be the matrix given by Eq. (1), i.e.,

\[
M_k = \sum_{i \in [t+1]} |j(i + 1) + k\rangle \langle j(i + 1) + k| \text{ for } k \in \mathbb{Z}_{(t+1)}.
\]

Let \(|\mu\rangle \in H_{l(t+1)}^{\otimes n} \) be the message that becomes \(|\psi\rangle \in Q' \) by encoding.

Procedure 2:
Input: \(\rho \in B_{P}(|\psi\rangle \langle \psi|) \)
Output: \(|\mu\rangle \in H_{l(t+1)}^{\otimes n} \)

1. Perform a projective measurement corresponding to \(\{M_0, M_1, ..., M_t\} \) on each qudit in \(\rho \). Let \(\rho' \) be the quantum state after the measurement, and \(z = (z_i) \in \mathbb{Z}_{(n+t')} \) be the sequence such that \(z_i \) is the measured outcome of the \(i \)th qudit of \(\rho \).
2. Get \(\bar{P} \) from \(z \) by Procedure 1.
3. Make \(D_{\bar{P}}(\rho') \).
4. By applying the \(t \)-deletion-correcting procedure (Sect. 2.4) of \(Q' \) to \(D_{\bar{P}}(\rho') \), output \(|\mu\rangle \).

Example 4: Let \(Q'_S \) be a 2-quantum deletion-correcting quantum code based on the Shor code in Example 1. Assume that \(\rho \in B_{\{2,7\}}(|\psi\rangle \langle \psi|) \) for \(|\psi\rangle \in Q'_S \).

1. Perform a projective measurement corresponding to \(\{P_0, P_1, P_2\} \) on each qudit in \(\rho \), where

\[
P_0 = |0\rangle \langle 0| + |3\rangle \langle 3|, \quad P_1 = |1\rangle \langle 1| + |4\rangle \langle 4|, \quad P_2 = |2\rangle \langle 2| + |5\rangle \langle 5|.
\]

Then, we have \(z = 0z_21201z_72012 \). The symbols \(z_2 \) and
Define \(j \) and (3), there exists the set \(\mathcal{Z}_7 \) of inserted qudits. In this example, assume that \(z = 0212010212 \).

2. Get \(\overline{P} = [2, 7, 9] \) by Procedure 1 (See Example 3).

3. We make \(\mathcal{D}_{(2,7,9)}(\rho') \).

4. From Lemma 1, which is given in the next section, \(\rho' \in \mathcal{B}_{(2,7,9)}(\langle \psi \rangle \langle \psi \rangle) \) holds. Hence, since \(\mathcal{D}_{(2,7,9)}(\rho') = \mathcal{D}_{(2,7,9)}(\langle \psi \rangle \langle \psi \rangle) \), we can get the message by applying a 2-deletion-correcting procedure of \(Q_5' \) to \(\mathcal{D}_{(2,7,9)}(\rho') \).

4.2 Justification

This section proves that we can get the message by applying Procedure 2 to the received quantum state. To show it, we give the following lemma.

Lemma 1: Consider \(z \) and \(\rho' \) in Step 1 of Procedure 2. Then, for \(m \in \mathbb{Z}_{(t+1)}^+ \), \(P \subset \{1, n + t'\} \) with \(|P| = t' \), and \(\langle \psi \rangle \in \mathcal{Q}' \), \(z \in \mathcal{B}_P(m) \) and \(\rho' \in \mathcal{B}_P(\langle \psi \rangle \langle \psi \rangle) \) hold.

Proof: Define \(A_k := \{ j(t + 1) + k \mid j \in [l - 1]\} \) for \(k \in \mathbb{Z}_{(t+1)} \). In addition, from Eq. (1), we get \(M_k = \mathcal{S}(\mathcal{H}_{(t+1)}^\delta') \) from Theorem 1. We denote \(\mathcal{D}_P(\rho') = \mathcal{D}_P(\langle \psi \rangle \langle \psi \rangle) \).

Then, from the construction (Sec. 2.4) of \(Q' \), if \(c_{x,y} \neq 0 \), \(x = (x_1) \), \(y = (y_1) \in \mathbb{Z}_{(t+1)}^n \) satisfy \(x_1, y_1 \in A_{(i-1)} \) for all \(i \in [1, n] \). From the above, the outcome of the projective measurement on the \(i \)th qudit in \(\langle \psi \rangle \langle \psi \rangle \) is \((i-1)\%\% (t+1)\) with probability 1, and the quantum state does not change by the measurement. Assume that \(\sigma \in \mathcal{S}(\mathcal{H}_{(t+1)}^\delta') \) is represented by

\[
\sum_{x,y \in \mathbb{Z}_{(t+1)}^n : \sigma = c_{x,y}} c_{x,y} \langle x \rangle \langle y \rangle.
\]

Then, the outcome of the projective measurement on the \(i \)th qudit is \(\sigma \in \mathbb{Z}_{(t+1)}^+ \) with probability \(\sum_{x \in \mathbb{Z}_{(t+1)}^n} c_{x,x} \) and the quantum state changes to another quantum state by the measurement. From the above, the outcomes of the inserted qudits are one of \(\mathbb{Z}_{(t+1)}^+ \), and the outcomes of the other qudits are repeated from 0 to \(t \) in order, such as 01\(\ldots \). 0\(\ldots \) 0\(\ldots \). Hence, for \(m \in \mathbb{Z}_{(t+1)}^+ \), \(m = \mathcal{D}_P(z) \) holds. Similarly, \(\langle \psi \rangle \langle \psi \rangle = \mathcal{D}_P(\rho') \) holds. Therefore, \(z \) and \(\rho' \) satisfy \(z \in \mathcal{B}_P(m) \) and \(\rho' \in \mathcal{B}_P(\langle \psi \rangle \langle \psi \rangle) \).

Theorem 3: For a message \(\mu \) and its corresponding code-word \(\langle \psi \rangle \in \mathcal{Q}' \subset \mathcal{H}_{(t+1)}^\delta' \), the quantum state obtained by applying Procedure 2 to \(\rho \in \mathcal{B}_P(\langle \psi \rangle \langle \psi \rangle) \) is \(|\mu\rangle \) if \(|P| \leq t \).

Proof: The sequence \(z \) and the quantum state \(\rho' \) given in Step 1 satisfy \(z \in \mathcal{B}_P(m) \) and \(\rho' \in \mathcal{B}_P(\langle \psi \rangle \langle \psi \rangle) \) from Lemma 1. Since the set \(\overline{P} \) given in Step 2 satisfies Eqs. (2) and (3), there exists the set \(P' \subset [1, n] \) such that \(\mathcal{D}_P(\rho') = \mathcal{D}_P(\langle \psi \rangle \langle \psi \rangle) \) and \(|P'| = |P| \). Hence, in Step 3, \(\rho' \) changes to \(\mathcal{D}_P(\rho') = \mathcal{D}_P(\langle \psi \rangle \langle \psi \rangle) \). Since \(|P'| = |\overline{P} \setminus P| \leq t \), we have \(|\mu\rangle \) by applying the \(t \)-deletion-correcting procedure of \(Q' \) to \(\mathcal{D}_P(\langle \psi \rangle \langle \psi \rangle) \), i.e., in step 4, we get \(|\mu\rangle \). Therefore, we obtain \(|\mu\rangle \) by applying Procedure 2 to \(\rho \in \mathcal{B}_P(\langle \psi \rangle \langle \psi \rangle) \).

Theorem 3 states that Procedure 2 is a \(1 \)-insertion-correcting procedure of \(Q' \).

5. Conclusions

This paper provided an insertion-correcting procedure of the codes constructed by Matsumoto and Hagiwara. By giving the procedure, we presented multiple-insertion-correcting non-binary quantum codes.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 22K11905. The author also would like to thank the anonymous reviewers for their careful reading and their insightful comments and suggestions.

References

Ken NAKAMURA received B.S. degree from Yamaguchi University in 2023. Since April 2023, he has been currently pursuing the M.S. degree in Department of Informatics, Yamaguchi University. His research interests is insertion/deletion correcting quantum codes.

Takayuki Nozaki received B.E., M.E., and D.E. degrees from Tokyo Institute of Technology in 2008, 2010, and 2012, respectively. He is currently an associate professor at Yamaguchi University. His research interests include error correcting codes and coding theory. He received the Best Paper Award from the IEICE of Japan in 2018. He is a member of IEEE, ACM, AMS, and IPSJ.