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SUMMARY Wide deployment of artificial intelligence (AI) is inducing
exponentially growing energy consumption. Traditional digital platforms
are becoming difficult to fulfill such ever-growing demands on energy ef-
ficiency as well as computing latency, which necessitates the development
of high efficiency analog hardware platforms for AI. Recently, optical and
electrooptic hybrid computing is reactivated as a promising analog hard-
ware alternative because it can accelerate the information processing in
an energy-efficient way. Integrated photonic circuits offer such an ana-
log hardware solution for implementing photonic AI and machine learning.
For this purpose, we proposed a photonic analog of support vector machine
and experimentally demonstrated low-latency and low-energy classification
computing, which evidences the latency and energy advantages of optical
analog computing over traditional digital computing. We also proposed an
electrooptic Hopfield network for classifying and recognizing time-series
data. This paper will review our work on implementing classification com-
puting and Hopfield network by leveraging silicon photonic circuits.
key words: photonic neural networks, support vector machine, integrated
photonic circuits, silicon photonics, machine learning, optical AI

1. Introduction

1.1 Optical Neural Networks

Nowadays, super-big artificial intelligence (AI) systems
built on various neural network models have been widely
deployed for advanced applications such as image genera-
tion and natural language understanding [1]. Their scales
are continuously increasing at a rate of almost ten times per
year, inducing exponential growth in energy consumption as
well as computing latency [2]. Such ever-growing demands
on high energy efficiency and low latency are difficult to
be fulfilled by traditional digital processors with the CMOS
technology approaching to physical limits. Under such a
circumstance, the brain-like neuromorphic systems showing
unparalleled energy efficiency have intrigued a wide interest
to develop physical analog hardware for accelerating AI in
an energy efficient way [3]–[5].

Optics/photonics provide a promising platform for
such a hardware, which can accelerate AI by implement-
ing neural networks in optical systems such as integrated
photonics [6], [7], diffractive optics [8], Fourier optics [9],
and fiber optics [10]. The main reason that these opti-
cal systems can accelerate neural network computing lies
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in that the vector-matrix multiplication (VMM) in heavily
used fully connected linear layers in neural networks can
be completed just by optical propagation at the light speed
in media. Optical propagation itself does not consume ad-
ditional energy and is not influenced by parasitic RC ef-
fects. Thus, this optical VMM process in linear layers of
neural networks can be accelerated in a very high energy ef-
ficiency. Meanwhile, high speed optical modulation and de-
tection have been well established and already deployed for
high-capacity optical interconnects in data centers. Band-
width as high as 10∼100 GHz is achievable for all periph-
eral components such as drivers, modulators, detectors, and
transimpedance amplifiers, which enable high speed data
input and output (I/O). Similarly, optical/photonic neural
networks can leverage these components to achieve high-
throughput computing. Therefore, optical implementation
of neural networks offers advantages of high speed, low en-
ergy consumption, low latency, and high throughput [11].

1.2 Issues and Perspectives

For general AI applications, the neural network models such
as multiple-layer perceptron, convolutional neural network
(CNN), and recurrent neural network (RNN) must use a
large quantity of learnable parameters, nonlinear activation
functions, and deep layer to achieve high performance. For
an example of CNN for recognizing the Japanese katakana
characters, we had been able to achieve > 99% test accu-
racy with larger than 250 thousand of parameters and cas-
caded convolutional layers. Obviously, so far, it is unable to
realize such a scale for integrated photonic neural networks
(PNN).

Besides the small scale, there are also several issues
that need to be addressed for applications of PNN.

(1) Lack of efficient all-optical nonlinear activation
functions. Currently, the layers of nonlinear neurons usu-
ally adopt the optical-electrical-optical (OEO) conversion
scheme, where the electrical part can be a digital processor
[6], [12] or an analog circuit [13]. PNN with such a hybrid
scenario has been proven able to show energy efficiency and
latency advantages over pure electronic ones [12].

(2) Latency of post-convolution data processing for op-
tically implementing CNN. The convolution computing for
multiple kernels is usually done by leveraging both time
and wavelength domains [14]. The convolutional part can
be optically accelerated; however, the heavy use of post-
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convolution processing causes a non-negligible delay and
power consumption. Since the subsequent part (usually hav-
ing a form of MLP) requires the flatten input of all convolu-
tional results, the results being sampled in time domain must
be waited to complete for all kernel sizes, saved in memory,
flattened, and post-processed before being sent to the next
layer, which induces delays and consumes energy and may
cancel out those saved in optical convolution. It is still chal-
lenging to optically connect the convolutional part and its
subsequent layer.

(3) Training compatibility. Training the hardware neu-
ral network cannot be performed in the same way as training
the software one. The latter one usually adopts backpropa-
gation training algorithm for which all calculation can be
done in a tensor-based operation. Recently, analog back-
propagation training was demonstrated for PNN by adopting
additional efforts including in-situ gradient evaluation using
cameras and optical error vector propagation [12]. This ana-
log backpropagation is different from the digital one; thus,
training compatibility will be a problem for general AI ap-
plications heterogeneously incorporating both hardware and
software.

(4) Learning needs large quantities of samples. The
learning processing of current neural network models is sub-
stantially different from the learning of our brains. The
neural network learns in a statistic manner to cover suffi-
cient features from a large quantity of samples. This learn-
ing method is not efficient for hardware implementation of
neural networks because it increases the power consumption
and training time. Training with small-number samples (i.e.,
few-shot learning) will be an important issue to be consid-
ered for training PNN hardware [15].

Due to above issues and challenges, PNN could be a
promising solution more suitable for specific AI applica-
tions instead of general ones. For specific tasks, we could
explore specific machine learning algorithms that could
avoid above challenges and meanwhile offer power and la-
tency advantages. Since the electronics is indispensable for
the data I/O at the least, PNN must be of an OE-hybrid form.
For an ideal architecture, the electronics remains as data I/O
only and the photonics completes computing only by op-
tical propagation without being broken by electronic mod-
ules. This schematic could offer the best latency and power
efficiency.

For other hybrid architectures toward general AI, the
boundary between electronics and photonics should be op-
timized to achieve system advantages. For learning with
small-number samples, the traditional Hopfield network is
an important recurrent neural network to model the brain-
like learning process. It does not need large numbers of
training samples and once its network parameters are set
according to few samples, it can correctly recognize even
partially forgotten or deviated patterns due to the associa-
tive memory effect that shows high similarity to brain-like
learning. Establishing analog Hopfield network on photon-
ics platforms can greatly save training cost and enable robust
recognition by just one-time sampling for temporally coded

signals.
Based on above perspectives, we proposed to imple-

ment support vector machine (SVM) like principle [16] and
EO-Hopfield network [17] by silicon photonic circuits for
classification computing, both of which are specific machine
learning models that even have profound applications inside
general AI models. This paper will review our works on
implementing these two specific machine learning models
on silicon photonics platform from principle, architecture,
algorithm, to applications.

2. Principle and Architecture

2.1 Projection-Based Classification

Classifying data is a common task of machine learning. In
machine learning, besides neural network-based algorithms
(MLP, CNN, etc), SVM as an important supervised learning
algorithm is also widely used to analyze data for classifica-
tion and regression [18]. It has high robustness and general-
ization ability and can be incorporated into neural network
as a classifier to form hybrid models [19]. At the beginning,
SVM is a binary linear classifier, but now in addition to per-
forming linear classification, SVMs can efficiently perform
a non-linear classification using the kernel trick by mapping
their inputs into high-dimensional or infinite feature spaces
to seek a hyper-plane to separate the data of different labels.

This nonlinear projection principle can be implemented
by several mapping ways, either treating the input data us-
ing a nonlinear function or performing mutual computing
between different elements of the input data. This prin-
ciple is different from that of the MLP. MLP can be ex-
pressed as y = w f (. . . (w f (wx + b) + b)), linear combina-
tions of nonlinear activation functions f (sigmoid, ReLU,
etc), where w and b are learnable parameters of matrix trans-
formation. In contrast, this principle can be expressed as
y = wG(x) + b, where G is the nonlinear mapping func-
tion, and it is not necessary to keep the same dimension as
the original data. Figure 1(a) shows a schematic to illus-
trate this principle for a one-dimensional data x of two labels
with a periodic feature. If adopting the MLP model to clas-
sify the data, the classification is like to train the equation
of y = w f (. . . (w f (wx + b) + b)) to approximate a sinusoidal
function, which is obviously not a simple way. However, if
we directly map the data by sinusoidal function to a two-
dimensional space, the new generated data x′ can be easily
separated by a line. The separating line is not unique, but
the optimized line is given by the maximum margin, i.e., the
maximum distances of the worst data points to the line. Sim-
ilarly, this principle can be extended to higher dimensional
data classification.

Compared to the MLP, this principle has advantages in
photonic implementation because it does not need activation
functions to interleave fully connected layers and deep-layer
structures. Direct nonlinear mapping and inter-element mul-
tiplication on the original input data can leverage the EO
nonlinearity of various kinds of photonics devices such as
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Fig. 1 (a) Schematic of nonlinear projection enabled classification. (b)
A photonic topology to implement the nonlinear projection-based classifi-
cation principle utilizing MZI’s EO nonlinearity. Inset: a MZI unit (revised
from [16]).

Mach-Zehnder interferometers (MZI), ring resonators, and
p-i-n waveguide attenuators. Thus, the whole photonic cir-
cuit can be realized by only passive waveguides, without ne-
cessities to integrate optical nonlinearity such as optical am-
plifiers and all-optical nonlinear devices, offering an easy
way for implementing machine learning tasks in photonic
circuits.

To demonstrate the photonic implementation of this
principle, we proposed a photonic classifier network (PCN)
in Fig. 1(b) [16]. The phase shifter is a device which can
change the optical phase for the light passing through when
a voltage or current is applied to it. A MZI is an interferom-
eter device consisting of two 3-dB couplers and two phase
shifters. When a phase difference is set between two phase
shifters, the optical output amplitude of MZI can be arbitrar-
ily adjusted. The data to be analyzed is originally an electri-
cal signal and input as voltage or current to one phase shifter
of a MZI, which is indicated as the “data input”. Then, we
utilize the EO nonlinearity of MZI to map the input data into
the 8-dimensional optical complex amplitude space. The
mapping functions can be constructed in various ways by
inputting the data into the MZI networks. For example, we
input two bits of XOR into two MZIs of the left column of
MZIs indicated by arrows in Fig. 1(b) and input four param-
eters of Iris dataset into the four MZIs of the right column
of MZIs. A subsequent VMM consisting of MZI meshes of
Clement’s topology completes the linear separation by con-
structing the plane in 8-dimensional complex space. The
results (i.e., labels) are marked out by the optical power dis-
tributions at the output ports. Therefore, the classification
computing is completed only by optical propagation inside
the photonic circuit without being interrupted by interme-
diate OEO conversion, offering low latency and low power
consumption. This PCN can offer high efficiency classifica-

tion and equivalent performance for several machine learn-
ing tasks even with fewer learnable parameters compared to
the conventional MLP models [16].

2.2 Principle Explanation by XOR

We exemplify the abovementioned principle by XOR which
is a linearly inseparable problem and usually used to ver-
ify the nonlinear classification capability for neural network
models [20]. XOR has four data patterns and two labels
as expressed by {x = [[0, 0], [0, 1], [1, 0], [1, 1]], label =

[0, 1, 1, 0]}, a two-parameter and two-target problem. Ob-
viously, these four patterns cannot be linearly divided into
two groups in accordance with their labels. For explain-
ing the nonlinear projection principle described above,
we simply use two MZIs (2 × 2 type, two inputs with
only one port having light input) to accept the input of
its two bits (in a unit of π) as optical phase, respec-
tively. As a result, this maps the two bits into a com-
plex space and after mapping, the data x becomes to x′ =

[[0, i, 0, i], [0, i,−1, 0], [−1, 0, 0, i], [−1, 0,−1, 0]], according
to the equation of MZI [16]. For the projected data x′, we
can easily find a linear transformation in complex space hav-
ing the coefficients w and b, as shown in Eqs. (1) and (2) re-
spectively, to separate its labels according to y = |wx′T + b|2
using optical power detection. The label here is using a one-
hot vector to present 0 and 1; thus, y has two complementary
columns as shown in Eq. (3). This XOR example explains
the nonlinear projection enabled classification.

w =

[
−0.678 − 0.215i −0.381 + 0.116i −0.579 − 0.526i −0.095 + 0.211i
−0.630 − 0.189i −0.570 + 0.046i 0.463 − 0.228i 0.990 − 0.159i

]
(1)

b =
[
−0.476 − 0.126i −0.142 − 0.410i

]
(2)

yT =

[
1.0 5.4e − 4 1.2e − 4 1.0

1e − 3 1.0 1.0 6.8e − 4

]
(3)

2.3 EO-Hopfield Network

Hopfield network is a single layer recurrent network and ac-
cepts one-shot trigger input into the neurons. It can be a
discrete or continuous type, depending on using a binary
neuron function or a continuous one. Hopfield network has
one important unique feature, associative memory, which is
a brain-like learning behavior. The pattern is remembered
by the network weights, and it can be recalled by recur-
sively updating the neurons even when inputting a partial
or damaged pattern. Thus, it does not need a large quantity
of training data.

We proposed to input time-series data into Hopfield
network and leverage the associative memory effect for fea-
ture extraction and recognition for temporal analog sig-
nals. For this purpose, we extend the photonic topology in
Fig. 1(b) to EO-Hopfield network by adding electrical feed-
back to the MZIs that are used as the neurons [17]. As
shown in Fig. 2, the optical outputs are converted to elec-
trical signals by photodetectors (PD) which are feedbacked
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Fig. 2 Architecture of the EO-Hopfield network utilizing electrical feed-
back to the MZI (revised from [17]).

to four MZIs via amplifiers (Amp), forming OE loops. This
is continuous Hopfield-like recurrent network by leveraging
the MZI’s OE nonlinearity. The analog data is input to an
MZI, and the output of each MZI is connected to other three
MZIs and itself, depending on the weight state given by the
MZI mesh. The architecture can be trained to remember
four waveforms by using four corresponding spatial feature
vectors of the optical outputs which are sampled just one
time at the end of signal input. For some simple tasks, this
feature vector can directly give out the results of classifi-
cation, while for complex tasks, this vector can be used as
an input feature for subsequent processing by linear trans-
formation as did in photonic reservoir computing [21], [22].
Once being trained, even though the input waveform devi-
ates from its learned one, it can be correctly recognized.

3. Experiment and Discussion

3.1 Photonic Device and Measurement

We fabricated a silicon photonic device for the topology in
Fig. 1(b) based on the AIST SCR 12-inch silicon photonic
platform [23]. Figure 3(a) shows the fabricated device on a
220-nm silicon-on-insulator wafer with a 3-µm buried oxide
layer. The chip is of 5 mm in length and 1.3 mm in width and
consists of fully etched silicon wire waveguide of 430 nm in
width. All phase shifters and MZIs are thermo-optic ones
using TiN micro-heaters. All these fundamental devices are
the standardized ones in our silicon photonic PDK (process
design kits). For all MZIs, only the top arm was fabricated
with a heater. The average π-shift power for these thermo-
optical phase shifters is about 17 mW at 1.53 µm. The blue
and red arrows indicate the MZIs for inputting the data of 2-
bit Boolean logic and 4-parameter Iris dataset [24], respec-
tively. All ground pads are indicated by the letter “G”. The
red square shows the MZI unit device. This chip works only
for TE polarization and a p-i-n phase shifter of rib wave-
guide was inserted in each output waveguide for easy polar-
ization adjustment, which is not shown in Fig. 3(a).

The chip in Fig. 3(a) was packaged into a module with
coupled fibers and electrical connectors via wiring bonding.

Fig. 3 (a) Fabricated silicon photonic chip. (b) Packaged module and
experimental setup (revised from [16]).

After packaging, the fiber-to-fiber loss is about 4.5 dB for
the referenced straight waveguide. For measurement, a laser
at 1.53 µm was input after being tuned to TE polarization.
An 8-channel optical power meter was used to measure the
optical powers at eight output ports. The computer read the
optical powers and ran the training algorithms to update the
voltages for all on-chip phase shifters via two multi-channel
direct-current sources. Thus, after training, the learned state
is indicated by the voltage distribution among all heaters.
For verification, we just keep the learning voltage distribu-
tion and input the new data into the MZIs.

3.2 Training Method

On-chip training is a challenge for PNN hardware. Neu-
ral networks built on computer can be trained by back-
propagation (BP) algorithm which is very highly efficient
because of tensor-based gradient evaluation for both fully
connected linear layer and nonlinear activation layer. For
PNN, the weight information is in electrical domain, while
the gradient information is in optical domain. Due to the
lack of efficient protocol for evaluating the gradient in opti-
cal domain and updating it from optical to electrical domain,
the same back-propagation algorithm as used in software
cannot be applied to the PNN if without taking additional
measures. So far, there are four ways for setting weight for
PNN.

(1) Training the computer model of PNN. A circuit
analogy is first built on computer and then it can be trained
by the same BP algorithm as used in software. After train-
ing, the learned weight parameters will be deployed to the
PNN for optical implementation of the learned model. This
method means that the PNN only implements the inference
for a computer model of PNN, leaving the training to digi-
tal processors. An example of this method is the diffractive
optical neural network [8].

(2) Forward differential method. For this method, the
gradient for each parameter is evaluated by two-time for-
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ward propagation (FP). For all parameters, one propagation
is performed with the current value and the other propaga-
tion is done by adding a small variation to the current value.
The cost function is evaluated using the optical outputs of
each propagation and then the gradient is calculated using
two costs. After the gradients are evaluated for all parame-
ters, an optimizer (Adam, RMSprop, etc) can be used to up-
date the parameters, similar as that used in back-propagation
algorithm. This method is mentioned in [6] for on-chip
training, while it was not experimentally demonstrated yet.
In this study, we experimentally demonstrated this FP algo-
rithm for on-chip training. We used the mean squared error
(MSE) as the cost function.

(3) Global optimization algorithm. This algorithm
treats the chip as a black box and determines the parameters
by global optimization process. We established such an al-
gorithm named bacterial foraging optimization (BFO) based
on stochastic process [16], [25]–[28] for on-chip training
and reconfiguring photonic chip. Genetic algorithm was
also demonstrated for on-chip training a photonic chip [29].
If using only the optical input and output ports of the chip,
abovementioned FP and global optimization algorithms are
the only possible ways for on-chip training although they
are not as highly efficient as the BP. We developed a Python-
based tool based on Pytorch [30] for both on-chip training
experiment and PNN simulation with both FP and BFO al-
gorithms incorporated.

(4) Analog optical back-propagation training. Re-
cently, an in-situ optical BP training was demonstrated by
measuring the gradient through infrared camera and prepar-
ing optical error back propagation [12]. On-chip power
monitoring, local feedback circuits from optical to electri-
cal domains, and optical error preparation are required for
really deploying this method.

3.3 Boolean Logic Classification

We demonstrated Boolean logic classification based on both
FP and BFO algorithms. Here we show the results of BFO
training. The logical values (0 and 1) of the AND and OR
can be separated linearly, so they are regarded as the lin-
early separable problems. In contrast, the logical values of
XOR cannot be separated linearly; thus, XOR is regarded
as a linearly inseparable problem that is usually used to
test the nonlinear classification capability for a neural net-
work model. Based on the principle explained above in the
Sect. 2, we normalize the two bits (0 and 1) of Boolean log-
ics as 0 and π, and input them into the MZIs as indicated
in Fig. 3(a). Here we demonstrate classification, simulta-
neously for both XOR and AND. For XOR, we assign the
ports 1 and 3 to present the logic values 0 and 1, respec-
tively. At the same time, for AND, we assign the ports 5
and 7 to present the logic values of 0 and 1, respectively.

Before training, the optical output powers (not shown)
are random for all bit patterns ([00, 01, 10, 11]). After train-
ing, as shown in Fig. 4, the power map features the XOR-
like pattern at the ports 1 and 3, while the AND-like pattern

Fig. 4 Optical output power distribution after BFO training, which
shows the XOR and AND classification result (cited from [16]).

at the ports 5 and 7. In other words, when we input a bit
pattern, the maximum optical powers occur at the ports ac-
cording to its assigned logic values. For example, when the
bit pattern is 01, the port 3 has a higher power than the port
1, and the port 5 higher than the port 7, indicating the logic
value of 1 for XOR and 0 for AND. Therefore, the high
or low powers at the ports 3 and 7 correspond to the logic
values, while the high or low powers at the ports 1 and 5
indicate the bar states of their logic values, for XOR and
AND, respectively. For actual applications, balanced detec-
tion can be adopted between the two ports assigned to stand
for different logic values, from which the binary output can
be achieved. In essence, this is optical analog computing
enabled by optical interference, although the results can be
interpreted as digital logics through comparators when read-
ing the optical results into electrical domain.

3.4 Iris Dataset Classification

We demonstrated another machine learning benchmark, the
Iris dataset classification [16]. This task is to judge the Iris
flower species from the statistic data of four flower sizes
[7], [24]. This dataset has three kinds of Iris flowers (Se-
tosa, Versicolor, and Virginica) and 150 samples in total (50
samples for each species). Thus, it is a four-parameter and
three-label classification task. Similar as the XOR classifi-
cation as shown in the Sect. 3.3, we need assign three ports
to stand for each species for the Iris classification. At the
port that stands for a species, the optical output power is
to be maximized by the training when the parameters of a
flower belonging to this species are input.

All parameters in the dataset were first normalized to
2π (min-max normalized) and then input into the four MZIs
as indicated in Fig. 3(a). Before training, the optical power
distribution is random-like pattern (not shown), showing no
information related to the Iris classification. After training,
as shown in Fig. 5(a), the maximum-power ports are clearly
separated into three groups for 90 training samples. When
the input parameters belong to Setosa, Versicolor, or Vir-
ginica, the maximum power occurs at the port 1, 3, or 5,
respectively, as we assigned. If the maximum power port is
not the assigned one, the classification is accounted as the
wrong recognition. The training accuracy is about 94.44%.
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Fig. 5 Optical output power distribution (a) after BFO training for 90
Iris samples and (b) for model test for 60 samples. (c) Learned voltages
and powers for all phase shifters by FP and BFO algorithms (cited from
[16]).

After training, we kept the learned voltages at all phase
shifters (i.e., the learned on-chip phase distribution is re-
mained as it is) and input another 60 samples that were not
included in the train samples to verify the classification. As
shown in Fig. 5(b), the test accuracy is about 96.67%, verify-
ing the training effectiveness and validation of our photonic
chip in classification computing. The learned voltages and
corresponding powers are shown in Fig. 5(c) for all phase
shifters (heaters). The BFO and FP algorithms show a sim-
ilar overall profile of voltage distribution, presenting a mu-
tual confirmation. These electrical powers are required to
maintain the optical phases to implement Iris classification.
The total on-chip electrical power is about 360 mW. In addi-
tion, for our photonic chip, the computing latency is the op-
tical propagation time from the data input to output, which is
estimated to be less than 100 ps. This demonstration shows
the potential of our projection based PNN in low latency and
low power classification without using traditional nonlinear
activation functions.

3.5 Bit Pattern Recognition by EO-Hopfield Network

Here we use the EO-Hopfield network architecture in Fig. 2
to recognize the bit sequences by simulation to understand
its function [17]. We consider four 4-bit patterns, all-
one (1111), all-zero (0000), half-zero/half-one (0011), and
half-one/half-zero (1100) for waveform recognition. Each
pattern will be presented by an output power distribution
(feature vector) at four output ports. For simpleness, the
maximum-power position will be used present each pattern.
We input the bit in a unit of π and set the gain coefficient
(convert optical powers to optical phase by a pre-amplified
circuits supplied with a normalized voltage) to 1.5π for the
amplifier. The loop delay can be a tunable parameter and
one bit delay is assumed here (other delay lengths are also
applicable, which are not discussed in this work).

Obviously, if without OE feedback, we cannot distin-
guish all-one and half-zero/half-one, and all-zero and half-
one/half-zero by only sampling the last output because their
last bits are same. We train the EO-Hopfield architecture to

Fig. 6 Normalized optical power sampled at the last bit for training
and testing waves (w0 = [0.9, 0.9, 0.9, 0.9], w1 = [0.1, 0.1, 0.1, 0.1],
w2 = [0.1, 0.1, 0.9, 0.9], w3 = [0.9, 0.9, 0.1, 0.1]).

distinguish above four patterns by just sampling the optical
output at the last bit. The architecture can be described as
a recursive equation yt = w · (s ⊗ f (xt)) · f (gyt−1), where xt
and yt are the input data and output optical power at a time,
g is the amplifier’s gain parameter, f is the EO nonlinearity
of MZI neuron, s is an eight-dimensional optical complex
vector to be input into the MZI neurons, and w is a matrix
containing the network parameters which describe the neu-
ron connections and save the memorized patterns. w and s
are training parameters. The final spatial vector y depends
on the interaction between these two parameters and the his-
tory of input data. In other words, this system converts the
time-series data to a unique spatial vector.

As shown in Fig. 6, after training, each pattern can be
characterized by a different port of maximum power. The
maximum power occurs at the respective ports of 0, 1, 2,
3 at the last bit for different patterns, indicating the pattern
separation. After training the network using these four ideal
bit patterns, we input the damaged bit patterns deviated by
10% for all bits (as denoted by w0, w1, w2, and w3 in Fig. 6)
and these damaged analog patterns can also be correctly dis-
tinguished. Thus, training the EO-Hopfield network does
not need a large quantity of training samples. We perform
the training using only four samples, but the trained sys-
tem shows wider applicability to much more samples de-
viated from the training ones, offering robust recognition
[17]. It is still an open question to figure out the range of de-
viation without influencing recognition accuracy. Inputting
data into recurrent Hopfield network has not been proposed
previously, as far as we know, especially for hardware im-
plementation. Thus, our proposal offers a novel application
for Hopfield network.

4. Conclusions

We reviewed our work on implementing machine learn-
ing tasks and EO-Hopfield network by leveraging sili-
con photonic circuits. We experimentally demonstrated
the machine learning benchmarks by adopting nonlinear
projection-based principle which can be realized only by
passive silicon waveguides and can avoid the difficulty of
integrating optical nonlinear device. Computing was com-
pleted only by on-chip optical propagation. We verified in
principle that our proposed EO-Hopfield network was an
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applicable analog hardware for classifying and recognizing
time-series data. Our work evidences the potential of silicon
photonic circuits for low latency and low power classifica-
tion computing.
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