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Distributed Event-Triggered Stochastic Gradient-Tracking for
Nonconvex Optimization

Daichi ISHIKAWA†, Nonmember, Naoki HAYASHI††a), and Shigemasa TAKAI†, Members

SUMMARY In this paper, we consider a distributed stochastic noncon-
vex optimization problem for multiagent systems. We propose a distributed
stochastic gradient-tracking method with event-triggered communication.
A group of agents cooperatively finds a critical point of the sum of local
cost functions, which are smooth but not necessarily convex. We show
that the proposed algorithm achieves a sublinear convergence rate by ap-
propriately tuning the step size and the trigger threshold. Moreover, we
show that agents can effectively solve a nonconvex optimization problem
by the proposed event-triggered algorithm with less communication than
by the existing time-triggered gradient-tracking algorithm. We confirm the
validity of the proposed method by numerical experiments.
key words: distributed stochastic algorithm, event-triggered communica-
tion, nonconvex optimization

1. Introduction

As typified by the Internet of Things and big data processing,
the importance of large-scale systems has been increasing.
A large-scale system can be modeled as a multiagent sys-
tem, in which a group of agents autonomously performs
distributed processing [1]. Recently, solving optimization
problems in a distributed manner with a multiagent system
has attracted great attention [2]–[8]. In distributed optimiza-
tion, each agent cooperatively estimates an optimal solu-
tion by exchanging the estimated values. A number of dis-
tributed algorithms have also been considered for nonconvex
optimization. Zhu and Martínez proposed a dual subgra-
dient algorithm for constrained optimization [9]. Lorenzo
and Scutari considered a distributed iterative algorithm with
successive convex approximation [10]. Tatarenko and Touri
proposed a push-sum-based algorithm for time-varying and
directed graphs [11]. Jiang et al. proposed a proximal gradi-
ent algorithm over time-varying multiagent networks [12].

Although these online algorithms have played a cru-
cial role in machine learning and data analysis, deterministic
approaches encounter difficulties when handling large-scale
problems because they require the computation of a full gra-
dient. In contrast, stochastic gradient descent algorithms,
which leverage random sampling to approximate the gradi-
ent, offer advantages in reducing the computational burden.
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Moreover, random sampling can escape non-optimal local
minima and lead to faster convergence in practice. Dis-
tributed stochastic gradient descent algorithms for noncon-
vex optimization have also been investigated in [13]–[16].

Many of the existing distributed methods are based on
time-triggered algorithms, and agents must exchange infor-
mation with neighbors at every iteration of the algorithm.
However, high-frequency communication by time-triggered
algorithms can be a bottleneck due to limited power re-
sources and poor network environments. Distributed algo-
rithms with event-triggered communication have been pro-
posed for convex optimization problems [17]–[22]. Event-
triggered communication is a method where agents commu-
nicate only when a certain event occurs and can effectively
utilize network resources [23], [24]. Event-triggered algo-
rithms for nonconvex optimization problems have also been
considered in [25]–[27]. However, the convergence of naive
gradient-based algorithms is relatively slow. Therefore, the
gradient-tracking method with event-triggered communica-
tion is also preferable for distributed optimization to enhance
convergence performance.

Motivated by this, we propose a distributed stochastic
gradient-tracking algorithm with event-triggered communi-
cation. A group of agents cooperatively minimizes the sum
of local cost functions, which are smooth but not necessar-
ily convex. Each agent has estimations for a critical point
and a gradient of its own local cost function. At each it-
eration, each agent randomly chooses gradient information
with sampled data and exchanges these estimations with the
neighboring agents only when the error between the last trig-
gered estimation and the current estimation exceeds a trig-
ger threshold. This is in contrast to the existing distributed
stochastic algorithms [13]–[16] that require communication
at every iteration. Thus, the proposed algorithm inherits the
advantages of the fast convergence of the stochastic gradient-
tracking algorithm [15] and the efficient communication of
the event-triggered method. We characterize the transient
and steady-state performance of the proposed algorithm in
terms of the expected time-averaged gradient of the cost
function. We also show that the proposed algorithm can
achieve a sublinear convergence rate by appropriately tuning
the step size and the trigger threshold.

This paper is organized as follows. Section 2 addresses
the problem setting of the nonconvex optimization and the
distributed event-triggered stochastic gradient-tracking al-
gorithm. Section 3 presents the convergence analysis of the
proposed algorithm. Section 4 shows the validity of the
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proposed method through a numerical example. Section 5
concludes this paper.

2. Event-Triggered Stochastic Gradient-Tracking
Method

Let R and N be the sets of real numbers and nonnegative
integers, respectively. 1n ∈ Rn and 0n ∈ Rn are vectors
whose elements are all 1s and all 0s, respectively. In ∈ Rn×n
and On ∈ R

n×n are the identity matrix and zero matrix,
respectively. The transpose of a vector or a matrix is denoted
by [·]T. The Euclidean norm of a vector or the spectral
norm of a matrix is denoted by ‖ · ‖. For a matrix X, the
spectral radius, the adjugate matrix, and the determinant
are represented by ρ(X), adj(X), and |X|, respectively. The
diagonal matrix consisting of the diagonal components of X
is represented by diag(X). The Kronecker product is denoted
by ⊗. For two vectors a,b ∈ Rn, a < b and a ≤ b show the
inequality relations of each element.

We consider the following nonconvex optimization
problem with n agents:

minimize
x∈Rp

F(x) =
1
n

n∑
i=1

fi(x), (1)

where fi : Rp → R is a local objective function that is not
necessarily convex (i ∈ V = {1,2, . . . ,n}).

The communication between agents is represented by
a directed graph G = (V,E), where E ⊂ V × V is the set
of edges. In this paper, we make the following assumptions
about the local cost function and the graph G.

Assumption 1: The local cost function fi is `-smooth (` ≥
1); that is, there exists a positive constant ` ≥ 1 such that
‖∇ fi(x) − ∇ fi(y)‖ ≤ `‖x − y‖ for all x,y ∈ Rp .

Assumption 2: The directed communication graph G =
(V,E) is strongly connected and admits a doubly stochastic
weight matrix W = [wi j] ∈ R

n×n, where wi j is the weight
for a directed edge ( j, i) ∈ E.

Each agent i generates a sequence of estimations {xi
(k)
}

of the solution of the optimization problem (1). Without
loss of generality, we assume that xi

(0) = xj

(0) for all i, j ∈ V.
At iteration k, each agent i receives a stochastic gradient
gi(xi(k), ξ

i
(k)
), where ξi

(k)
∈ Rq is a random vector sampled at

iteration k and gi : Rp × Rq → Rp is a Borel-measurable
function that represents the stochastic gradient evaluated at
the estimation xi

(k)
with the sampled data ξi

(k)
.

We consider the sub-σ-algebra of F on a probability
space (Ω,F ,P) such that F0 = {Ω,∅} and Fk = σ({ξi(t) | 0 ≤
t ≤ k − 1, i ∈ V}) for k ≥ 1.

Assumption 3: The stochastic gradient process
{gi(xi(k), ξ

i
(k)
)}k≥0 satisfies the following:

(a) The random vector ξi
(k)

is independent.
(b) For all k ≥ 0 and i ∈ V, E[gi(xi(k), ξ

i
(k)
) | Fk] =

∇ fi(xi(k)).
(c) For all k ≥ 0 and i ∈ V, there exists a constant νi > 0

such that E[‖gi(xi(k), ξ
i
(k)
) − ∇ fi(xi(k))‖

2 | Fk] ≤ ν
2
i .

The proposed distributed event-triggered stochastic
gradient-tracking algorithm is summarized in Algorithm 1,
where N in

i and Nout
i are the sets of in-neighbor agents and

out-neighbor agents of agent i. Each agent i ∈ V has the
state xi

(k)
∈ Rp and the variable yi

(k)
∈ Rp at iteration k ∈ N.

These are the estimates of a critical point x∗ ∈ X∗ of the
optimization problem (1) and the overall gradient ∇F, re-
spectively, where X∗ = {x ∈ Rp | F(x) ≤ F(y),∀y ∈ Rp}.
Each agent i updates its state according to Algorithm 1 via
local communication on the directed graph G, where α is the
step size at iteration k.

Each agent i determines when it communicates with
the neighbors depending on the values of the variables vi

(k)

and ui
(k)
, which are the internal states for the estimation by

the gradient-tracking and gradient descent algorithms. Let
k iv(m) and k iu(m) be them-th trigger times when agent i sends
the internal variables vi

(k)
and ui

(k)
to the neighbors. Suppose

that ṽi
(k)

and ũi
(k)

are the latest values that were sent to the
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neighbor agent j ∈ N in
i before iteration k; that is,

ṽi
(k) =

{
vi
(k)

if k ∈ κiv,

ṽi
(k−1) otherwise,

ũi
(k) =

{
ui
(k)

if k ∈ κiu,

ũi
(k−1) otherwise,

where κiv = {k iv(1), k iv(2), . . . } and κiu = {k iu(1), k iu(2), . . . }
are the sets of trigger times for vi

(k)
and ui

(k)
.

In the event-triggered communication, agent i sends
the internal variable vi

(k)
to the neighbors in N in

i when
‖vi
(k)
− ṽi
(k−1)‖ ≥ E i

v(k), where E i
v(k) is the trigger thresh-

old for vi
(k)
. Similarly, ui

(k)
is sent to the neighbors when

‖ui
(k)
− ũi
(k−1)‖ ≥ E i

u(k), where E i
u(k) is the threshold for

ui
(k)
. The trigger thresholds represent the tolerance of the

errors eiv(k) = ‖vi(k) − ṽi
(k)
‖ and eiu(k) = ‖ui

(k)
− ũi
(k)
‖.

3. Convergence Analysis

We introduce stack vectors such that xk = [(x1
(k)
)T, (x2

(k)
)T,

. . . , (xn
(k)
)T]T ∈ Rnp , yk = [(y1

(k)
)T, (y2

(k)
)T, . . . , (yn

(k)
)T]T

∈ Rnp , gk = [g1(x1
(k)
, ξ1
(k)
)T,g2(x2

(k)
, ξ2
(k)
)T, . . . ,gn(xn(k),

ξn
(k)
)T]T ∈ Rnp , ev

k
= [(e1

v(k))
T, (e2

v(k))
T, . . . , (env (k))T]T ∈

Rnp , and eu
k
= [(e1

u(k))
T, (e2

u(k))
T, . . . , (enu(k))T]T ∈ Rnp .

Then, from Algorithm 1, we have

yk+1 = W(yk + gk − gk−1) + Levk+1, (2)
xk+1 = W(xk − αyk+1) + Leuk+1, (3)

where W =W⊗ Ip and L =W− Inp . Moreover, the trigger
errors satisfy

‖evk ‖ ≤ E v
k , ‖e

u
k ‖ ≤ Eu

k , (4)

where E v
k
=

√∑n
i=1(E

i
v(k))2 and Eu

k
=

√∑n
i=1(E

i
u(k))2.

We define the averaging matrix, the spectral of the
consensus-error matrix, and the spectral of the Laplacian
matrix by J =

(
1
n1n1T

n

)
⊗ Ip , λ = ‖W − J‖, and λL = ‖L‖,

respectively. From Assumption 2, we have λ ∈ [0,1)
and λL ∈ [0,1). We also consider the averaging vec-
tors as follows: xk = 1

n (1
T
n ⊗ Ip)xk , yk = 1

n (1
T
n ⊗ Ip)yk ,

∇fk = 1
n (1

T
n ⊗ Ip)∇fk , and gk = 1

n (1
T
n ⊗ Ip)gk .

In the following argument, we conduct the convergence
analysis of the proposed algorithm. We first show the fun-
damental properties of the gradient of the cost function.

Lemma 1: UnderAssumptions 1–3, we have the following:

(a) yk+1 = gk, ∀k ≥ 0.
(b) ‖∇fk − ∇F(xk)‖2 ≤ `2

n ‖xk − Jxk ‖2 , ∀k ≥ 0.
(c) E[‖gk − ∇fk ‖2 | Fk] ≤ ν2

a, ∀k ≥ 0,

where ν2
a =

1
n

∑n
i=1 ν

2
i .

Lemma 1 can be proven in the same way as Lemma 1

in [15].
The next lemmas show the recursive relation with re-

spect to the estimations.

Lemma 2: Under Assumptions 1–3, we have

uk+1 ≤ Guk + bk, (5)

where

uk =


E

[
‖xk+1−Jxk+1 ‖

2

n

]
E

[
‖yk+1−Jyk+1‖

2

n`2

] , G =

[ 3+λ2

4
6λ2α2`2

1−λ2
192λ2

5(1−λ2)
3+λ2

4

]
,

bk =

[
C∗5 (E

u
k+1)

2

C∗1+C∗2α
2E[‖∇fk ‖2]+C∗3 (E

u
k+1)

2+C∗4 (E
v
k+2)

2

]
,

and

C∗1 =
12ν2

a

`2 , C∗2 =
48λ2

5
(
1 − λ2) , C∗3 =

27λ2
L

n
,

C∗4 =
λ2
L(3 + λ

2)

n`2(1 − λ2)
, C∗5 =

2(1 + λ2)λ2
L

(1 − λ2)n
.

Lemma 3: Suppose that 0 < α ≤ min
{

1−λ2

72λ2`
,
√

5(1−λ2)
√

32λ`
,

(1−λ2)2

36
√

3λ2`

}
and 0 ≤ Eu

k
≤ 5

64
1−λ2

λ2λL`
for all k ≥ 0. Then,

ρ(G) < 1 and
∑∞

k=0 Gk = (I2 −G)−1 hold.

Lemmas 2 and 3 can be proven in the same way as
Proposition 1 and Lemma 10 in [15]. To ensure that G
is convergent, it is necessary to enforce the condition on
the upper bound of the step size, which depends on the
smoothness parameter ` of the local cost function. Lemmas 2
and 3 imply that the step size needs to be sufficiently small
if the local cost function has a larger smoothness parameter.

The next result evaluates the upper bound on the accu-
mulated consensus errors.

Lemma 4: Suppose that 0 < α ≤ min
{

1−λ2

72λ2`
,
√

5(1−λ2)
√

32λ`
,

√
5(1−λ2)2

192λ2`

}
and 0 ≤ Eu

k
≤ 5

64
1−λ2

λ2λL`
for all k ≥ 0. Then,

under Assumptions 1–3, for all k ≥ 0, we have

K∑
k=0
E

[
‖xk − Jxk ‖2

n

]
≤ C∗11 + C∗7 K + C∗8

K−1∑
k=0
E[‖∇fk ‖2] + C∗9

K−1∑
k=0
(Eu

k+1)
2

+ C∗10

K−1∑
k=0
(E v

k+2)
2, (6)

where

C∗6 =
192λ2α2

(1 − λ2)3
, C∗7 =

192λ2α2`2

(1 − λ2)3
C∗1,

C∗8 =
192λ2α2`2

(1 − λ2)3
C∗2,
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C∗9 =
8

1 − λ2 C∗5 +
192λ2α2`2

(1 − λ2)3
C∗3,

C∗10 =
192λ2α2`2

(1 − λ2)3
C∗4,

C∗11 =
C∗6 (4λ

2nν2
a + 4λ2 ‖∇f0‖

2 + 2λ2
L(E

v
0 )

2)

n
.

Proof : From (5), for all k ≥ 1, we have uk+1 ≤ Gku0 +∑k−1
t=0 Gtbk−1−t . Then, we have

K−1∑
k=0

uk+1 ≤

K−1∑
k=0

Gku0 +

K−1∑
k=1

k−1∑
t=0

Gtbk−1−t

≤

(
∞∑
k=0

Gk

)
u0 +

(
∞∑
k=0

Gk

)
K−1∑
k=0

bk

= (I2 −G)−1 u0 + (I2 −G)−1
K−1∑
k=0

bk, (7)

where the last equality follows from Lemma 3.
We consider the upper bound of (I2 −G)−1. If 0 < α ≤

√
5(1−λ2)2

192λ2`
holds, we have |I2 − G| = (1−λ

2)2

16 − 1152λ4α2`2

5(1−λ2)2
≥

(1−λ2)2

32 . This yields

(I2 −G)−1 =
adj (I2 −G)��I2 −G

�� ≤

[
8

1−λ2
192λ2α2`2

(1−λ2)3

6144λ2

5(1−λ2)3
8

1−λ2

]
.

(8)

By substituting (8) for (7) and using the fact that
‖x0 − Jx0‖ = 0, for K ≥ 1, we have

K∑
k=0
E

[
‖xk − Jxk ‖2

n

]
≤ C∗6E

[
‖y1 − Jy1‖

2

n

]
+ C∗7 K + C∗8

K−1∑
k=0
E[‖∇fk ‖2]

+ C∗9

K−1∑
k=0
(Eu

k+1)
2 + C∗10

K−1∑
k=0
(E v

k+2)
2. (9)

Then, from (2), we have

E
[
‖y1 − Jy1‖

2]
= E[‖(W − J)g0 + Lev0‖

2]

≤ 2E
[
E[‖(W − J)g0‖

2 | Fk]
]
+ 2E[‖Lev0‖

2]

≤ 2E
[
E

[
‖(W − J)(g0 − ∇f0 + ∇f0)‖

2 | Fk
] ]

+ 2λ2
L(E

v
0 )

2

≤ 4E
[
‖(W − J)(g0 − ∇f0)‖

2] + 4E
[
‖(W − J)∇f0‖

2]
+ 2λ2

L(E
v
0 )

2

≤ 4λ2nν2
a + 4λ2 ‖∇f0‖

2 + 2λ2
L(E

v
0 )

2, (10)

where the last inequality follows from Lemma 1 (c).
From (9) and (10), we have (6). �

The next result shows the recursive relation with respect
to the cost function.

Lemma 5: Suppose that the step size satisfies 0 < α ≤ 1
2`

and the trigger threshold satisfies
∑∞

k=0(E
u
k+1)

2 < ∞ and∑∞
k=0(E

v
k+2)

2 < ∞. Then, under Assumptions 1–3, for all
k ≥ 0, we have

E [F(xk+1)|Fk]

≤ F(xk) −
α

2
‖∇F(xk)‖2 −

α

4
‖∇fk ‖2

+
α`2

2
‖xk − Jxk ‖2

n
+
α2`ν2

a

2
. (11)

Proof : From the `-smoothness of F, for all x,y ∈ Rp , we
have

F(y) ≤ F(x) + 〈∇F(x),y − x〉 +
`

2
‖y − x‖2 . (12)

From Lemma 1 (a), for all k ≥ 0, we also have

xk+1 = xk − αyk+1 = xk − αgk . (13)

Thus, we obtain

F(xk+1)

≤ F(xk) + 〈∇F(xk),xk+1 − xk〉 +
`

2
‖xk+1 − xk ‖2

= F(xk) − α〈∇F(xk),gk〉 +
α2`

2
‖gk ‖2. (14)

Because E
[
gk

��Fk ] = ∇fk , we have

F(xk+1)

≤ F(xk) − α〈∇F(xk),∇fk〉 +
α2`

2
E[‖gk ‖2 | Fk]

= F(xk) −
α

2
‖∇F(xk)‖2 −

α

2
‖∇fk ‖2

+
α

2
‖∇F(xk) − ∇fk ‖2 +

α2`

2
E[‖gk ‖2 | Fk]

≤ F(xk) −
α

2
‖∇F(xk)‖2 −

α

2
‖∇fk ‖2

+
α`2

2
‖xk − Jxk ‖2 +

α2`

2
E[‖gk ‖2 | Fk], (15)

where the last inequality follows from Lemma 1 (b). From
Lemma 1 (c), we further have

E[‖gk ‖2 | Fk]

= E[‖gk − ∇fk + ∇fk ‖2 | Fk]

= E[‖gk − ∇fk ‖2 | Fk] + 2E[〈gk − ∇fk,∇fk〉 | Fk]

+ E[‖∇fk ‖2 | Fk]

≤ ν2
a + ‖∇fk ‖2. (16)

This yields

E [F(xk+1)|Fk]
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≤ F(xk) −
α

2
‖∇F(xk)‖2 −

α(1 − α`)
2

‖∇fk ‖2

+
α`2

2
‖xk − Jxk ‖2

n
+
α2lν2

a

2
. (17)

Thus, for 1 − α` ≥ 1
2 , Lemma 5 holds. �

The next theorem presents the convergence of the esti-
mation of each agent to a critical point.

Theorem 1: Suppose that the step size satisfies 0 < α ≤

min
{

1
2` ,

1−λ2

72λ2`
,
√

5(1−λ2)
√

32λ`
,
√

5(1−λ2)2

192λ2`2

}
and the trigger threshold

satisfies
∑∞

k=0(E
u
k+1)

2 < ∞ and
∑∞

k=0(E
v
k+2)

2 < ∞ with 0 ≤
Eu
k
≤ 5

64
1−λ2

λ2λL`
. Then, under Assumptions 1–3, we have

lim
K→∞

1
nK

n∑
i=1

K−1∑
k=0
E

[
‖∇F(xik)‖

2]
≤ 2λ`ν2

aα +
9126λ2`2ν2

a

(1 − λ2)3
α2. (18)

Proof : From Lemma 5, for K ≥ 1, we have

E [F(xK )]

≤ E [F(x0)] −
α

2

K−1∑
k=0
E[‖∇F(xk)‖2]

−
α

4

K−1∑
k=0
E[‖∇fk ‖2] +

α`2

2

K−1∑
k=0
E

[
‖xk − Jxk ‖2

n

]
+
α2`ν2

aK
2

. (19)

Because F∗ ≤ E [F(xK )] holds for K ≥ 1, we have

K−1∑
k=0
E

[
‖∇F(xk)‖2

]
≤

2(F(x0) − F∗)
α

−
1
2

K−1∑
k=0
E[‖∇fk ‖2]

+ `2
K−1∑
k=0
E

[
‖xk − Jxk ‖2

n

]
+ α`ν2

aK . (20)

From Assumption 1, for K ≥ 1, we also have

1
n

n∑
i=1

K−1∑
k=0
E[‖∇F(xik)‖

2]

≤
2
n

n∑
i=1

K−1∑
k=0
E

[
‖∇F(xik) − ∇F(xk)‖2 + ‖∇F(xk)‖2

]
≤ 2`2

K−1∑
k=0
E

[∑n
i=1 ‖xik − xk ‖2

n

]
+ 2

K−1∑
k=0
‖∇F(xk)‖2

≤ 2`2
K−1∑
k=0
E

[
‖xk − Jxk ‖2

n

]
+ 2

K−1∑
k=0
‖∇F(xk)‖2 . (21)

By substituting (20) for (21), we obtain

1
n

n∑
i=1

K−1∑
k=0
E[‖∇F(xik)‖

2]

≤
4(F(x0) − F∗)

α
−

K−1∑
k=0
E[‖∇fk ‖2]

+ 4`2
K−1∑
k=0
E

[
‖xk − Jxk ‖2

n

]
+ 2α`ν2

aK . (22)

Then, for 0 < α ≤ min
{

1
2` ,

1−λ2

72λ2`
,
√

5(1−λ2)
√

32λ`
,
√

5(1−λ2)2

192λ2`2

}
and

0 ≤ Eu
k
≤ 5

64
1−λ2

λ2λL`
, we have

1
nK

n∑
i=1

K−1∑
k=0
E[‖∇F(xik)‖

2]

≤ C∗12 +
C∗13
K
+

C∗14
K

K−1∑
k=0
(Eu

k+1)
2 +

C∗15
K

K−1∑
k=0
(E v

k+2)
2

− (1 − 4`2C∗8 )
K−1∑
k=0
E[‖∇fk ‖2], (23)

where

C∗12 = 4`2C∗7 + 2αλ`ν2
a,

C∗13 =
4(F(x0) − F∗)

α
+ 4`2C∗11,

C∗14 = 4`2C∗9, C∗15 = 4`2C∗10.

Moreover, if 0 < α ≤
√

5(1−λ2)2

192λ2`2 , then 1 − 4`2C∗8 ≥ 0
holds. This concludes the proof. �

From the proof of Theorem 1, ifα = C√
K
, Eu

k
= O

(
1√
k

)
,

and E v
k
= O

(
1√
k

)
, we further have

1
nK

n∑
i=1

K−1∑
k=0
E

[
‖∇F(xik)‖

2] = O (
1
√

K

)
, (24)

where O(·) represents the big-O notation and C is a posi-
tive constant. This implies that the proposed algorithm can
achieve sublinear convergence by appropriately tuning the
step size and the trigger threshold.

The constants C∗p (p = 1,2, . . . ,15) in the proofs of
Lemmas 2–4 and Theorem 1 are closely related to the con-
vergence properties of the algorithm. For example, the regret
bound depends on these constants with the network-related
parameters λ and λL and the smoothness parameter of the
cost function `. Further investigation of the relationship
between these constants and the convergence property is a
future direction of this paper.

4. Numerical Example

This section presents a numerical example of the proposed
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Table 1 Trigger thresholds.

algorithm. We consider a multiagent system with 3 agents
whose cost functions are given by

f1(x) =



x4 + 6x3 − 40x2 + 6x if |x | ≤ R,
(4R3 + 18R2 − 80R + 6)x
−3R4 − 12R3 + 40R2, if R < x,(
−4R3 + 18R2 + 80R + 6

)
x

−3R4 + 12R3 + 40R2, if x < −R,

f2(x) = 80x,

f3(x) =



x4 + 2x3 − 24x2 + 10x + 8 if |x | ≤ R,(
4R3 + 6R2 − 48R + 10

)
x

−3R4 − 4R3 − 24R2 + 8, if R < x,(
−4R3 + 6R2 + 48R + 10

)
x

−3R4 + 4R3 − 24R2 + 8, if x < −R,

where R = 1000. In this example, the step size is given by
α = 0.005.

First, we compare the performance of the proposed al-
gorithm for different trigger thresholds E1, E2, and E3,
which are shown in Table 1. Figure 1 shows the time-
averaged gradient 1

nk

∑n
i=1

∑k−1
τ=0 E

[
‖∇F(xiτ)‖2

]
, where k is

the iteration of the algorithm and Time-Triggered represents
the result of the stochastic gradient descent algorithm with
gradient-tracking [15], which uses time-triggered communi-
cation. Figure 2 shows the total number of communications
per agent. Figure 1 shows that the time-averaged gradient ap-
proaches 0 by the proposed algorithm. In particular, the case
with the threshold E1 is comparable to the time-triggered al-
gorithm, while the cases with E2 and E3 exhibit slower con-
vergence. Moreover, Fig. 2 shows that the event-triggered
algorithm can reduce the total number of communications
compared to the time-triggered algorithm. Figure 2 shows
that the case with E1 requires fewer communications than
the other cases. In general, the higher the threshold value is,
the lower the number of communications is. However, in the
present condition, the opposite occurs. This may be because
the thresholds for E2 and E3 are set too high, and it takes
time for the agents to reach an agreement. This indicates
that if the threshold is set appropriately, the number of com-
munications can be significantly reduced while maintaining
the same convergence as a time-triggered algorithm.

Next, we compare the performance of the proposed
gradient-tracking algorithm (GTDSGD) with the distributed
stochastic gradient descent algorithm (DSGD) [3]. In this
example, the trigger threshold of the event-triggered algo-
rithm is set as E1 and the step size for the DSGD algo-
rithm is set as α = 0.003. Figures 3 and 4 show the time-
averaged gradient and the total number of communications
per agent, respectively. Figure 4 shows that the proposed

Fig. 1 Comparison of the time-averaged gradient.

Fig. 2 Total number of communications per agent.

Fig. 3 Comparison of the time-averaged gradient.

Fig. 4 Total number of communications per agent.

event-triggered algorithm requires fewer total communica-
tions than the time-triggered DSGD algorithm. Figure 3
shows that the GTDSGD algorithm converges faster than
the DSGD algorithm even though the number of communi-
cations is small. This is due to the improved convergence
rate achieved by the gradient-tracking step of the proposed
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Fig. 5 Accuracy rate.

algorithm.
Finally, we consider an application to a distributed mul-

ticlass logistic regression problem with 10 agents for the
MNIST dataset [28]. The image feature vector of agent
i is given by hi

(k)
∈ R784. Let Xi

(k)
∈ R784×10 be the

weight matrix of agent i at iteration k, whose elements are
estimated by the distributed online algorithms after being
vectorized as xi

(k)
. The output of agent i at iteration k

is given by the softmax function pi
(k)
= ex̌i

(k)/
∑10
`=1 e[x̌

i
(k)
]` ,

where x̌i
(k)
= (Xi

(k)
)Thi
(k)
∈ R10 and [a]` is the `-th el-

ement of the vector a. Then, the local cost function
of agent i at iteration k is given by the loss function
fi(xi(k)) = −

∑M
m=1

∑10
c=1[q

i,m
(k)
]c log[pi,m

(k)
]c , where pi,m

(k)
is the

output for the m-th data value assigned to agent i at iteration
k, qi,m

(k)
is the label for the data pi,m

(k)
, and M is the batch size

of each agent. In this example, 60,000 images are used for
training, and 10,000 images are used as the test data. The
batch size is given as M = 100. The step size and the trigger
thresholds are given as α = 0.005 and

E i
v(k) =

{
0 k ≤ 1000,

20
(k+104)0.26 k > 1000,

E i
u(k) =

0.01
(k + 100)0.26 .

Figure 5 shows the accuracy rate for the test data with the
proposed event-triggered algorithm and the time-triggered
stochastic gradient-tracking algorithm [15]. Figure 6 shows
the time-averaged gradient. From these results, the accuracy
of the event-triggered algorithm is comparable to that of the
time-triggered algorithm. Figure 7 shows the total number
of communications per agent. In this numerical example,
the number of communications with the proposed algorithm
can be reduced by more than 40% compared to that with the
time-triggered algorithm.

5. Conclusion

In this paper, we presented a distributed event-triggered
method for nonconvex optimization on multiagent networks.
We proposed a stochastic gradient-tracking algorithm by
which the estimation of every agent converges to a criti-
cal point. We showed that the proposed algorithm achieves a

Fig. 6 Comparison of the time-averaged gradient.

Fig. 7 Total number of communications per agent.

sublinear convergence rate by appropriately setting the step
size and the trigger threshold. We also showed that the
trigger times can be effectively reduced by event-triggered
communication compared to the time-triggered method. An
extension to a more general network topology is one of our
future research directions.
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