
786
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.5 MAY 2024

PAPER Special Section on Mathematical Systems Science and its Applications

Two-Phase Approach to Finding the Most Critical Entities in
Interdependent Systems

Daichi MINAMIDE†, Nonmember and Tatsuhiro TSUCHIYA†a), Member

SUMMARY In interdependent systems, such as electric power systems,
entities or components mutually depend on each other. Due to these inter-
dependencies, a small number of initial failures can propagate throughout
the system, resulting in catastrophic system failures. This paper addresses
the problem of finding the set of entities whose failures will have the worst
effects on the system. To this end, a two-phase algorithm is developed. In
the first phase, the tight bound on failure propagation steps is computed us-
ing a Boolean Satisfiablility (SAT) solver. In the second phase, the problem
is formulated as an Integer Linear Programming (ILP) problem using the
obtained step bound and solved with an ILP solver. Experimental results
show that the algorithm scales to large problem instances and outperforms
a single-phase algorithm that uses a loose step bound.
key words: interdependent networks, cascading failures, satisfiability,
integer programming, critical entities

1. Introduction

Cyber-physical systems, typically electric power systems,
can often be regarded as interdependent systems [1]–[3].
In an interdependent system, entities of the system mutually
depend on each other in a complex manner. For example, the
control center of an electric power system requires electricity,
which is provided by the power network. On the other hand,
the power network needs the control center together with the
communication network. In such a system, a small number
of initial failures can lead to a catastrophic system failure
as a result of cascading failure propagation. This paper
considers failures in interdependent systems and addresses
the problemof identifying themost vulnerable entitieswhose
failures result in the worst-case scenario.

As a model of interdependent systems, we adopt the
implicative interdependency model proposed and adopted
by a series of works [4]–[7]. The authors of this series of
work showed that many practical problems under this model
are NP-hard, which means that it is highly unlikely that
polynomial-time algorithms exist for these problems.

The problem that we address in this paper is one of these
problems. Specifically, we consider the K-most vulnerable
node problem [4]. The goal of this problem is to find the
K entities whose initial failures cause the maximum number
of failures in the end. This problem is important because
identifying the most vulnerable part of a system is critical

Manuscript received April 17, 2023.
Manuscript revised August 16, 2023.
Manuscript publicized September 20, 2023.
†The authors are with Graduate School of Information Science

and Technology, Osaka University, Suita-shi, 565-0871 Japan.
a) E-mail: t-tutiya@ist.osaka-u.ac.jp
DOI: 10.1587/transfun.2023MAP0003

to cope with the worst case scenario and to design plans to
strengthen the system.

Although the problem is NP-hard, recent advances in
mathematical programming solvers enable us to deal with
many instances of NP-hard problems in practice, and thus we
base our approach on modern mathematical programming
solvers. Specifically, we propose a two-phase algorithm that
uses a Boolean Satisfiability (SAT) solver and an Integer
Linear Programming (ILP) solver. In the first phase, the tight
bound on failure propagation steps is computed using an SAT
solver. In the second phase, the problem is formulated as an
ILP problem using the obtained step bound and solved with
an ILP solver.

The use of ILP solving was already proposed in the
previouswork [4]; but the previous approach did not consider
the bound on the failure propagation steps that can occur.
Instead, this previous study used a trivial upper bound in
reducing the K-most vulnerable node problem to ILP. This
requires the IPL solver to analyze an unnecessarily large
number of steps, resulting in a large computation time. Our
approachmakes use of an SAT solver to obtain the maximum
possible failure propagation steps, which leads to a much
more compact ILP formulation. As a result, a significant
speedup is achieved for ILP solving which easily offsets the
computation cost for SAT solving.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes related work. Section 3 describes the
implicative interdependency model for interdependent sys-
tems. Section 4 provides the definition of the problem that
is addressed and an overview of the proposed algorithm.
Section 5 and Sect. 6 describe Phase 1 and Phase 2 of the al-
gorithm, respectively. Section 7 shows experimental results
that we obtained by applying the algorithm to some problem
instances. Section 8 concludes this paper.

2. Related Work

Cascading failures have sometimes been observed in cyber-
physical systems, such as electric power systems. The ap-
proach of treating such systems as interdependent systems
has received recent attention, since it enables us to account
for cascading failures that would be otherwise impossible to
explain. Many models of interdependent systems have been
proposed so far. A well-known model proposed by [2] treats
an interdependent system as a pair of networks which mu-
tually depend on each other and provides a graph-theoretic
interpretation of cascading failures. For example, a power

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



MINAMIDE and TSUCHIYA: TWO-PHASE APPROACH TO FINDING THE MOST CRITICAL ENTITIES IN INTERDEPENDENT SYSTEMS
787

system can be regarded as a composition of a power network
and a Supervisory Control And Data Acquisition (SCADA)
network. Later studies that extended or generalized this
model include [3], [8], [9].

Problems similar to the K-most vulnerable node prob-
lem can be found in several studies. For example, the
work [10] assumed the model of [2] and addressed a prob-
lem they named the interdependent power network disruptor
problem. The goal of this problem is to find k nodes whose
removal minimizes the size of the largest connected compo-
nent remaining in the network after cascading failures. Other
studies include [11] and [12].

The application of an SAT solver to the analysis of
cascading failures is studied in [13], [14]. In particular, [14]
is similar to this study in that [14] proposes a two-phase
approach using SAT and IPL solvers to find the most critical
nodes in interdepenent networks. These previous studies
are built on the model of [2], instead of the implicative
interdependency model which we adopted here. Because
the two underlying models are substantially different, the
formulations of SAT and IPL are totally different from those
presented in this paper.

The studies most related to this paper are [4]–[7] where
the implicative interdependency model is adopted. In par-
ticular, [4] introduced the K-most vulnerable node problem
and proposed an ILP approach to the problem. (The ILP
formulation is described in [7] in more detail.) Our ILP
formulation is different from that of the previous study not
only in that ours makes use of the value of m, but also in
that the constraint formulas are slightly different. We made
some modifications to them because it was difficult for us to
see that the original ILP formulation faithfully captures the
implicative interdependency model.

3. Model of Interdependent Systems

An interdependent system consists of n entities that depend
on each other. We denote the i-th entity simply by i ∈
{1,2, . . . ,n} unless otherwise mentioned. The state of an
entity is either operational or failed at a given time. Each
entity is associated with a logic formula, which we call a
dependency formula, that represents such dependency†. The
dependency formula is in the form of a sum of products of
symbols, where symbols represent entities. These products
are called min-terms. The dependency formula for entity i is

ei,1,1ei,1,2 . . . ei,1,pi ,1+· · ·+ei,ti ,1ei,ti ,2 . . . ei,ti ,pi ,ti , (1)

where ti is the number of min-terms and pi,l is the number
of symbols in the l-th min-term.

The formula means that the entity i relies on those that
appear in the formula and that i requires that all entities of at
least one of the min-terms be operational. We assume that
failures propagate in steps; an entity will fail in step j, that
is, transit from the operational state to the failed state if, for
†The formula is called a live equation in [4] and a dependency

equation in [7].

Fig. 1 Failure propagation when a2 and a3 are initially failed. An O or
F represents that an entity is operational or failed, respectively.

every min-term, at least one entity in the min-term failed at
the end of step j − 1.

For example, suppose that an entity a is associated with
formula b1b2b3 + b4b5 + b6, then a will fail in step j if in
step j − 1: 1) b1, b2, or b3 failed, 2) b4 or b5 failed, and 3)
b6 failed.

For another example, consider a system which is
taken from [4]. The entities of the example are:
a1,a2,a3, b1, b2, b3, b4. The dependency formulas for these
entities are as follows.

a1 :: b2
a2 :: b2
a3 :: b4
b1 :: a1 + a2
b2 :: a1a2
b3 :: a2 + a1a3
b4 :: a3

Figure 1 shows how failures propagate in the systemwhen a2
and a3 initially failed, that is, failed in step 0. These failures
cause the failures of b2, b3, and b4 in step 1. In step 2, a1
fails because b2 failed. In step 3, b1 fails because both a1
and a2 failed. In step 4 or later steps, no entity changes its
state because all entities have already failed.

We say that the system reaches the steady state in step j
if the last failure occurs in step j. In the above example, the
system reaches the steady state in step 3.

4. Problem and Our Approach

As mentioned earlier, we consider the problem of determin-
ing the most vulnerable entities in a system. In [4], this
problem is called the K-most vulnerable node problem.
The K-most vulnerable node problem: Given an integer
K, find a set of K entities such that the failures of these
entities at step 0 result in the greatest number of failed entities
when the steady state is reached.

In [4], the decision version of the K-most vulnerable
node problem is proved to be NP-complete, which means
that its optimization version, that is, the K-most vulnerable
node problem is NP-hard. The NP-hardness implies that
it is unlikely that an polynomial-time algorithm exists for
the problem. Generally, two common approaches are avail-
able to tackle NP-hard problems. One approach is to use a
heuristic algorithm that is efficient but cannot compute op-
timal solutions in general. In this paper, we take the other



788
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.5 MAY 2024

approach: We devise an algorithm that can always find opti-
mal solutions. Such an algorithm cannot avoid exponential
time complexity in the worst case; therefore the goal of the
proposed algorithm is to compute optimal solutions in rea-
sonable time for practical problem instances.

The proposed approach consists of two phases. In the
first phase, we determine the maximum possible number of
the step in which the steady state is reached when the number
of initially failed entities is K. Let m denote this maximum
number. Our algorithm computes this value by repeatedly
executing a Boolean satisfiability (SAT) solver.

In the second phase, the K most vulnerable node prob-
lem is formulated into an ILP problem and in turn solved by
an ILP solver. The value of m is used in the ILP formulation.

SAT and the decision version of ILP are both NP-
complete; thus, any solvers for these problems have expo-
nential time complexity. However, modern solvers integrate
many optimization techniques and are usually able to handle
very large problems.

5. Phase 1: Computing the Maximum Steps of Failure
Propagation

Phase 1 of the proposed approach is used to compute m, the
maximum possible step number in which failure propagation
stops when there are initially exactly K failed entities in
step 0. We address this problemusing aBoolean satisfiability
(SAT) solver. SAT is the problem of determining if a given
Boolean formula is satisfiable, i.e., if there is at least one
truth value assignment to the Boolean variables that makes
the formula evaluate to true. For example, (x∨y)∧(¬x∨¬z)
is satisfiable because it has a satisfying value assignment to
the variables, such as x = true, y = true, z = f alse.

SAT is an NP-complete problem and, thus no
polynomial-time algorithm exists unless P = NP. However,
recent SAT solvers can often solve large problem instances
very fast, thanks to advanced optimization techniques. We
will show below the problem of deciding if the steady state is
reached by step j can be reduced to SAT. Repeatedly solving
SAT instances with j being increased, we can obtain m, i.e.,
the possible maximum number of failure propagation steps.

Now we show how to construct a Boolean formula that
is satisfiable if and only if the steady state may NOT be
reached by step j. The formula is obtained by unwinding the
state transition relation of the given interdependent system.
The Boolean variables that appear in the formula are x(j)i ,
where i corresponds to an entity and j represents the step
number. The truth value of x(j)i represents the state of entity i
at the end of step j: if it is true, then entity i is operational at
the end of step j; otherwise i is failed. The formula, denoted
as M (j), is in the form as follows:

M (j) :=


I j = 0

M (j−1) ∧ T (j−1, j) ∧ P(j) j ≥ 1
(2)

The ingredients of this formula are explained below.

I is used to represent the condition for initial failures.

I := Card(x(0)1 , x
(0)
2 , . . . , x

(0)
n ,n − K) (3)

where Card() is a cardinality constraint [15] and evaluates
to true if and only if exactly n − K variables are assigned
true. For example, Card(x, y, z,2) could be xy¬z ∨ x¬yz ∨
¬xyz. Cardinality constraints have been widely studied in
the field of SAT theories, and many different encodings are
known. Cardinality constraints play an important role in
many SAT instances (i.e., Boolean formulas) arising from
practical applications [15].

T (j−1, j) represents the state transition from step j − 1 to
step j. T (j−1, j) is a conjunction of Boolean formulas each
of which determines the state of each entity. Note that the
dependency formula for entity i is of the form:

ei,1,1ei,1,2 . . . ei,1,pi ,1+· · ·+ei,ti ,1ei,ti ,2 . . . ei,ti ,pi ,ti (4)

The state of an entity i is represented as follows.

x(j)i ⇔(
x(j−1)
i ∧

(x(j−1)
ei ,1,1 . . . x

(j−1)
ei ,1,pi ,1

∨ · · · ∨ x(j−1)
ei ,ti ,1

. . . x(j−1)
ei ,ti ,pi ,ti

)

)
(5)

This formula directly represents the dependency formula: it
means that i is operational at the end of step j if and only
if i is operational in step j − 1, and all entities in one of the
min-terms of the dependency formula are also operational.
T (j−1, j)
i is a conjunction of the formulas each corresponding
to an entity.

P(j) is a Boolean formula that evaluates to true if at
least one entity changes its state from operational to failed in
step j. The formula is as follows:

P(j) :=
∨

1≤i≤n
¬x(j)i x(j−1)

i (6)

The conjunct ¬x(j)i x(j−1)
i for each entity i represents that the

entity is operational at the end of step j − 1 (represented by
x(j−1)
i ) but is failed at the end of step j (represented by¬x(j)i ).

As a result, it can be seen that M (j) is satisfiable if and
only if a set of K entities exists whose initial failures cause
some entity to fail in step j.

Shown below are the formulas I, T (0,1), and P(1) for the
running example presented in Sect. 3.

I := Card(x(0)
a1 , x

(0)
a2 , x

(0)
a3 , x

(0)
b1 , x

(0)
b2 , x

(0)
b3 , x

(0)
b4 ,5) (7)

T (0,1) :=
(
x(1)
a1 ⇔ (x

(0)
a1 ∧ x(0)

b2 )
)

∧

(
x(1)
a2 ⇔ (x

(0)
a2 ∧ x(0)

b2 )
)

∧

(
x(1)
a3 ⇔ (x

(0)
a3 ∧ x(0)

b4 )
)

∧

(
x(1)
b1 ⇔ (x

(0)
b1 ∧ (x

(0)
a1 ∨ x(0)

a2 ))
)

∧

(
x(1)
b2 ⇔ (x

(0)
b2 ∧ (x

(0)
a1 x(0)

a2 ))
)



MINAMIDE and TSUCHIYA: TWO-PHASE APPROACH TO FINDING THE MOST CRITICAL ENTITIES IN INTERDEPENDENT SYSTEMS
789

Fig. 2 Algorithm for computing m.

∧

(
x(1)
b3 ⇔ (x

(0)
b3 ∧ (x

(0)
a2 ∨ x(0)

a1 x(0)
a2 ))

)
∧

(
x(1)
b4 ⇔ (x

(0)
b4 ∧ x(0)

a3 )
)

(8)

P := ¬x(1)
a1 x(0)

a1 ∨ ¬x(1)
a2 x(0)

a2 ∨ ¬x(1)
a3 x(0)

a3

∨¬x(1)
b1 x(0)

b1 ∨ ¬x(1)
b2 x(0)

b2 ∨ ¬x(1)
b3 x(0)

b3 ∨ ¬x(1)
b4 x(0)

b4 (9)

Here, K is set to two. For this example, M (1) is satisfiable.
One of the satisfying value assignments to the variables is:

x(0)
a1 = true x(0)

a2 = f alse x(0)
a3 = f alse

x(0)
b1 = true x(0)

b2 = true x(0)
b3 = true

x(0)
b4 = true

x(1)
a1 = true x(1)

a2 = f alse x(1)
a3 = f alse

x(1)
b1 = true x(1)

b2 = f alse x(1)
b3 = f alse

x(1)
b4 = f alse

This assignment corresponds to the failure propagation pat-
tern shown in Fig. 1.

Because of this property, the greatest step number when
failure propagation stops can be obtained by repeatedly
checking the satisfiability of M (j) with j being gradually
increased. This algorithm is shown in Fig. 2. It repeats the
satisfability check for M (j) with j being gradually increased.
When M (j) turns out to be unsatisfiable, the algorithm will
return j−1 as the value of m because in that case some entity
can fail in step j − 1, but none can in step j.

6. Phase 2: Finding the Most Vulnerable Entities

Phase 2 computes the most vulnerable entities that lead to
the maximum number of failed entities in the steady state.
This problem is directly reduced to a 0-1 ILP problem.

The idea behind this ILP formulation is similar to the
SAT encoding. We represent step-wise state transitions us-
ing variables that represent entities’ state in different steps.
The most significant differences are that all variables in the
ILP problem are of integer type, not Boolean, and that only
a conjunction of linear arithmetic constraints can be used
to define the feasible solution space. Below we show how
to formulate the problem using only linear arithmetic con-
straints over 0-1 integer variables.

We let X (j)i denote these 0-1 integer variables. The
variable X (j)i represents the state of entity i at the end of step j.

The state is failed if the value of the variable is 1; operational,
otherwise. (Note that in the SAT encoding described in
Sect. 5, we use the values true and f alse to represent the
state of being operational and failed, respectively.)

The objective function is:

Maximize X (m)1 + X (m)2 + · · · + X (m)n (10)

Clearly, the value of the objective function represents the
number of failed entities at the end of step m.

Once the optimal solution to the ILP problem was ob-
tained, the solution to the K-most vulnerable node problem
can be directly obtained from it. When the values of X (j)i rep-
resent the optimal solution to the ILP problem, the optimal
solution to the original problem is as follows:

{i | X (0)i = 1} (11)

That is, if entity i is failed in step 0, that is, X (0)i = 1, then i
is one of the K most vulnerable entities.

The constraints of the ILP problem are used to define:
1) initial failures and 2) failure propagation (state transition).
The former is straightforward. The initial state of the system
is represented by the constraint:

X (0)1 + X (0)2 + · · · + X (0)n = K (12)

This can be regarded as a liner arithmetic form of I of the
SAT encoding shown in the previous section. Note again
that entity i is initially failed when X (0)i = 1.

Failure propagation is specified by a collection of linear
arithmetic constraints that represent the state of each entity
i at the end of each step j. In other words, these constrains
are used to have the value of X j

i conform to the system
model. The constrains use as many additional 0-1 variables
as the min-terms in the dependency formula for an entity i.
Let C(j)

i,1,C
(j)
i,2, . . . ,C

(j)
i,ti

be these 0-1 variables, where ti is the
number of min-terms.

Note again that the dependency formula for entity i is
of the form:

ei,1,1ei,1,2 . . . ei,1,pi ,1 + · · · + ei,ti ,1ei,ti ,2 . . . ei,ti ,pi ,ti
(13)

The variable C(j)
i,l

is used to represent that at least one entity
in the l-th min-term has failed. For each C(j)

i,l
, this property

can be enforced with the two constraints shown below.

C(j)
i,l
≥

X (j−1)
ei ,l ,1 + X (j−1)

ei ,l ,2 + · · · + X (j−1)
ei ,l ,pi ,l

pi,l
(14)

C(j)
i,l
≤ X (j−1)

ei ,l ,1 + X (j−1)
ei ,l ,2 + · · · + X (j−1)

ei ,l ,pi ,l
(15)

C(j)
i,l

can be replaced with X (j−1)
e if the l-th min-term

consists of a single entity e. For presentation sake, however,
we use C(j)

i,l
, instead of X (j−1)

e , in the rest of this section.
Using C(j)

i,k
, the value of X (j)i is specified by the three



790
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.5 MAY 2024

constraints as follows.

X (j)i ≤
C(j)
i,1 + C(j)

i,2 + · · · + C(j)i,ti

ti
+ X (j−1)

i (16)

X (j)i ≥ C(j)
i,1 + C(j)

i,2 + · · · + C(j)i,ti
− ti + 1 (17)

X (j)i ≥ X (j−1)
i (18)

Because of these constraints, X (j)i = 1 if and only if:
1) X (j−1)

i = 1 or 2) C(j)
i,1, . . . , C(j)i,ti

are all 1. This faithfully
represents the dependency formula.

For instance, consider entity b3 in the example of the
system described in Sect. 3. Its dependency formula is a2 +
a1a3. The value of X (1)

b3 is determined by the following
constraints.

C(1)
b3,1 ≥

X (0)
a2
1

(19)

C(1)
b3,1 ≤ X (0)

a2 (20)

C(1)
b3,2 ≥

X (0)
a1 + X (0)

a3
2

(21)

C(1)
b3,2 ≤ X (0)

a1 + X (0)
a3 (22)

X (1)
b3 ≤

C(1)
b3,1 + C(1)

b3,2

2
+ X (0)

b3 (23)

X (1)
b3 ≥ C(1)

b3,1 + C(1)
b3,2 − 1 (24)

X (1)
b3 ≥ X (0)

b3 (25)

In this example, the first min-term, namely a2, contains only
one entity; thus, as stated above, C(1)

b3,1 can be replaced with
X (0)
a2 .

7. Experimental Results

We wrote a Python program that implements the algorithm.
In the implementation of Phase 1, Z3 [16] is used as an
SAT solver. Although Z3 is actually an SMT (Satisfiability
Modulo Theories) solver which supports many background
theories, only pure Boolean algebra is used in the program.
We utilized the built-in cardinality constraints of Z3, rather
than explicitly implementing them. Calling Z3 from the
Python program is implemented via the APIs provided by
the Z3Py package. All files are available at the project’s

repository†.
Phase 2 of the algorithm uses an external solver. The

program outputs a file in the LP format. This format is a
de-facto standard for description of LP and ILP problems.
We used SCIP [17] to solve the ILP program output by our
program.

A total of eight problem instances are taken from [7].
The authors of [7] obtained these instances by analyzing the
power system in Maricopa county in Arizona. The power
system is considered to be comprised of a power network
and a communication network. The entities of the power
network include load buses, generator buses, neutral buses,
and transmission lines, whereas the entities of the commu-
nication network include cell towers, fiber-lit buildings, and
fiber links. The K values are also taken from [7]. Table 1
summarizes these problem instances.

For comparison purposes, we ran only Phase 2 of the
algorithm with m being replaced with n − 1. As n is the
total number of entities, clearly the steady state is reached by
step n − 1 at the latest. This approach is the same as the one
proposed by [4], [7], except that some linear constraints are
different.

For each problem instance, we ran the proposed two-
phase algorithm and the Phase 2-only algorithm with a time-
out set to 1800 seconds. All runs were performed on a laptop
PC runningWindows10 Home 64 bits with a Core i5-6200U
CPU and 8GB memory.

The experimental results are summarized in Table 2.
The second leftmost column shows the number of failed
entities at the end of failure propagation when K is set to
the value shown in Table 1. The column “m” shows the
possible maximum number of the step in which the steady
state is reached. The remaining columns show computation
time in seconds. The total computation time of the proposed
†https://github.com/tatsuhirotsuchiya/k-most-vulnerble-nodes

Table 1 Problem instances.

Table 2 Experimental results.

https://github.com/tatsuhirotsuchiya/k-most-vulnerble-nodes


MINAMIDE and TSUCHIYA: TWO-PHASE APPROACH TO FINDING THE MOST CRITICAL ENTITIES IN INTERDEPENDENT SYSTEMS
791

algorithm is the sum of the computation times of Phase 1
and Phase 2. The column “ILP only” shows the computation
time requiredwhen ILP is only usedwithout running Phase 1.
As stated above, this is basically the same approach as the
existing one [4], [7]. TO stands for timeout.

The results clearly show that the proposed approach
substantially outperforms the ILP-only approach. The ILP-
only approach timed out for four of the eight problem in-
stances. By contrast, the proposed two-phase approach was
able to solve all the problem instances within the timeout
period.

The computation time for the proposed approach is
comprised of two parts: Phase 1 using the SAT solver and
Phase 2 using the IPL solver. The relative ratios between
these two parts varied for different instances. But the total
time was always smaller than the time used by the IPL-only
approach.

For small problems, Phase 1 consumed a longer time
than did Phase 2; however the total computation time for
these small problems was very small in the first place. By
contrast, larger problems, namely, 89 bus, 118 bus, 145 bus,
and 300 bus, the computation time of Phase 2 was dominant
in the total computation time. Note that a single run of
Phase 1 involves solving a total of m + 1 SAT instances with
different j (1 ≤ j ≤ m+1). Therefore, the computation time
for each of the SAT instances was evenmuch smaller than the
ILP instance. The ILP-only approach failed to solve these
four problems. Although Phase 1 consumed a small part of
the total computation time, it made a significant contribution
to the reduction of computation time.

8. Conclusion

In the paper, we proposed a two-phase algorithm that com-
putes the most vulnerable entities in interdependent systems
where entities rely on each other to function. In such sys-
tems, a small number of entities can lead to a system-wide
failure as a result of failure propagation. More specifically,
the problem is to find the set ofK entities whose initial fail-
ures maximize the number of induced failed entities. The
proposed algorithm solves the problem by making use of
a Boolean satisfiability (SAT) solver and an integer linear
programming (ILP) solver. In the first phase, an SAT solver
is used to compute the maximum number of failure prop-
agation steps. In the second phase, an ILP solver is used
to find the set of the most vulnerable entities. Empirical
results show that the maximum step number obtained by a
SAT solver was critical in reducing computation time and
that as a result, the proposed algorithm is able to solve large
problem instances.

As future work, we plan to adapt the proposed algo-
rithm to other related problems. These problems include,
for example, the hardening problem [7], which is the prob-
lem of determining the entities that should be hardened to
minimize the damage of the worst case scenario.

References

[1] V. Rosato, L. Issacharoff, F. Tiriticco, S. Meloni, S. Porcellinis, and
R. Setola, “Modelling interdependent infrastructures using interact-
ing dynamical models,” International Journal of Critical Infrastruc-
tures, vol.4, no.1–2, 2008.

[2] S.V. Buldyrev, R. Parshani, H. Gerald Paul, E. Stanley, and S. Havlin,
“Catastrophic cascade of failures in interdependent networks,” Na-
ture, vol.464, no.7291, pp.1025–1028, April 2010.

[3] O. Yagan, D. Qian, J. Zhang, and D. Cochran, “Optimal allocation of
interconnecting links in cyber-physical systems: Interdependence,
cascading failures, and robustness,” IEEE Trans. Parallel Distrib.
Syst., vol.23, no.9, pp.1708–1720, Sept. 2012.

[4] A. Sen, A. Mazumder, J. Banerjee, A. Das, and R. Compton, “Iden-
tification of K most vulnerable nodes in multi-layered network using
a new model of interdependency,” Proc. IEEE Conference on Com-
puter Communications Workshops, pp.831–836, April 2014.

[5] A. Das, J. Banerjee, andA. Sen, “Root cause analysis of failures in in-
terdependent power-communication networks,” 2014 IEEE Military
Communications Conference, pp.910–915, 2014.

[6] A. Das, C. Zhou, J. Banerjee, A. Sen, and L. Greenwald, “On the
smallest pseudo target set identification problem for targeted attack
on interdependent power-communication networks,”MILCOM2015
- 2015 IEEE Military Communications Conference, pp.1015–1020,
2015.

[7] J. Banerjee, K. Basu, and A. Sen, “On hardening problems in critical
infrastructure systems,” International Journal of Critical Infrastruc-
ture Protection, vol.23, pp.49–67, 2018.

[8] A. Sturaro, S. Silvestri, M. Conti, and S.K. Das, “A realistic model
for failure propagation in interdependent cyber-physical systems,”
IEEE Trans. Netw. Sci. Eng., vol.7, no.2, pp.817–831, 2020.

[9] Z. Huang, C. Wang, M. Stojmenovic, and A. Nayak, “Characteriza-
tion of cascading failures in interdependent cyber-physical systems,”
IEEE Trans. Comput., vol.64, no.8, pp.2158–2168, Aug. 2015.

[10] D.T. Nguyen, Y. Shen, and M.T. Thai, “Detecting critical nodes in
interdependent power networks for vulnerability assessment,” IEEE
Trans. Smart Grid, vol.4, no.1, pp.151–159, March 2013.

[11] Y. Shen and M.T. Thai, “Network vulnerability assessment under
cascading failures,” 2013 IEEE Global Communications Conference
(GLOBECOM), pp.1526–1531, 2013.

[12] A. Veremyev, K. Pavlikov, E. Pasiliao, M. Thai, and V. Boginski,
“Critical nodes in interdependent networks with deterministic and
probabilistic cascading failures,” J. Glob. Optim., vol.74, pp.803–
838, Sept. 2019.

[13] K. Hanada, T. Tsuchiya, and Y. Fujisaki, “Satisfiability-based anal-
ysis of cascading failures in systems of interdependent networks,”
2019 IEEE 24th Pacific Rim International Symposium on Depend-
able Computing (PRDC), pp.105–1058, 2019.

[14] K. Hida and T. Tsuchiya, “Finding critical nodes in interdependent
networks with SAT and ILP solvers,” CoRR, vol.abs/2211.05659,
2022.

[15] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Hand-
book of Satisfiability: Volume 185 Frontiers in Artificial Intelligence
and Applications, IOS Press, 2009.

[16] L.M. de Moura and N.S. Bjørner, “Z3: An efficient SMT solver,”
Proc. 14th International Conference Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2008), C.R. Ra-
makrishnan and J. Rehof, eds., Lecture Notes in Computer Science,
vol.4963, pp.337–340, Springer, 2008.

[17] G. Gamrath, D. Anderson, K. Bestuzheva, W.K. Chen, L. Eifler,
M. Gasse, P. Gemander, A. Gleixner, L. Gottwald, K. Halbig,
G. Hendel, C. Hojny, T. Koch, P. Le Bodic, S.J. Maher, F. Matter,
M. Miltenberger, E. Mühmer, B. Müller, M.E. Pfetsch, F. Schlösser,
F. Serrano, Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider,
D. Weninger, and J. Witzig, “The SCIP Optimization Suite 7.0,”
ZIB-Report 20-10, Zuse Institute Berlin, March 2020.

http://dx.doi.org/10.1504/ijcis.2008.016092
http://dx.doi.org/10.1504/ijcis.2008.016092
http://dx.doi.org/10.1504/ijcis.2008.016092
http://dx.doi.org/10.1504/ijcis.2008.016092
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1109/tpds.2012.62
http://dx.doi.org/10.1109/tpds.2012.62
http://dx.doi.org/10.1109/tpds.2012.62
http://dx.doi.org/10.1109/tpds.2012.62
http://dx.doi.org/10.1109/infcomw.2014.6849338
http://dx.doi.org/10.1109/infcomw.2014.6849338
http://dx.doi.org/10.1109/infcomw.2014.6849338
http://dx.doi.org/10.1109/infcomw.2014.6849338
http://dx.doi.org/10.1109/milcom.2014.156
http://dx.doi.org/10.1109/milcom.2014.156
http://dx.doi.org/10.1109/milcom.2014.156
http://dx.doi.org/10.1109/milcom.2015.7357578
http://dx.doi.org/10.1109/milcom.2015.7357578
http://dx.doi.org/10.1109/milcom.2015.7357578
http://dx.doi.org/10.1109/milcom.2015.7357578
http://dx.doi.org/10.1109/milcom.2015.7357578
http://dx.doi.org/10.1016/j.ijcip.2018.08.001
http://dx.doi.org/10.1016/j.ijcip.2018.08.001
http://dx.doi.org/10.1016/j.ijcip.2018.08.001
http://dx.doi.org/10.1109/tnse.2018.2872034
http://dx.doi.org/10.1109/tnse.2018.2872034
http://dx.doi.org/10.1109/tnse.2018.2872034
http://dx.doi.org/10.1109/tc.2014.2360537
http://dx.doi.org/10.1109/tc.2014.2360537
http://dx.doi.org/10.1109/tc.2014.2360537
http://dx.doi.org/10.1109/tsg.2012.2229398
http://dx.doi.org/10.1109/tsg.2012.2229398
http://dx.doi.org/10.1109/tsg.2012.2229398
http://dx.doi.org/10.1109/glocom.2013.6831290
http://dx.doi.org/10.1109/glocom.2013.6831290
http://dx.doi.org/10.1109/glocom.2013.6831290
http://dx.doi.org/10.1007/s10898-018-0703-5
http://dx.doi.org/10.1007/s10898-018-0703-5
http://dx.doi.org/10.1007/s10898-018-0703-5
http://dx.doi.org/10.1007/s10898-018-0703-5
http://dx.doi.org/10.1109/prdc47002.2019.00036
http://dx.doi.org/10.1109/prdc47002.2019.00036
http://dx.doi.org/10.1109/prdc47002.2019.00036
http://dx.doi.org/10.1109/prdc47002.2019.00036
https://arxiv.org/abs/2211.05659
https://arxiv.org/abs/2211.05659
https://arxiv.org/abs/2211.05659
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24


792
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.5 MAY 2024

Daichi Minamide received his bachelor’s
degree in engineering and master’s degree in in-
formation science fromOsakaUniversity in 2020
and 2022, respectively. He is currntly with Pana-
sonic Automotive Systems Co., Ltd. The current
work was conducted when he was a master’s stu-
dent.

Tatsuhiro Tsuchiya is currently a profes-
sor in the Department of Information Systems
Engineering at Osaka University. He received
the M.E. and Ph.D. degrees from Osaka Univer-
sity in 1995 and 1998, respectively. His research
interests are in the areas of model checking, soft-
ware testing, and dependable systems.


