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Output Feedback Ultimate Boundedness Control with
Decentralized Event-Triggering
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SUMMARY In cyber-physical systems (CPSs) that interact between
physical and information components, there are many sensors that are con-
nected through a communication network. In such cases, the reduction of
communication costs is important. Event-triggered control that the con-
trol input is updated only when the measured value is widely changed is
well known as one of the control methods of CPSs. In this paper, we
propose a design method of output feedback controllers with decentral-
ized event-triggering mechanisms, where the notion of uniformly ultimate
boundedness is utilized as a control specification. Using this notion, we
can guarantee that the state stays within a certain set containing the origin
after a certain time, which depends on the initial state. As a result, the
number of times that the event occurs can be decreased. First, the design
problem is formulated. Next, this problem is reduced to a BMI (bilinear
matrix inequality) optimization problem, which can be solved by solving
multiple LMI (linear matrix inequality) optimization problems. Finally, the
effectiveness of the proposed method is presented by a numerical example.
key words: cyber-physical systems, event-triggered control, LMI (linear
matrix inequality), output feedback controllers, sensor networks, uniformly
ultimate boundedness

1. Introduction

A cyber-physical system (CPS) is composed of physical and
cyber layers, and a system where physical and information
components are deeply connected through communication
networks [1]–[3]. Several systems such as smart grid, health-
care, distributed robotic systems, and automobile systems
can be regarded as a CPS (see, e.g., [4]–[7]). In large-scale
CPSs, there are many sensors and actuators in the boundary
of physical and cyber layers. Especially, in a sensor network,
multiple sensors are located in a distributed way. As control
theory of CPSs, it is important to develop a control method
over a sensor network.

Event-triggered control is well known as one of the typ-
ical control methods in CPSs [8]–[10]. In event-triggered
control, communications occur only when a measured signal
is widely changed (i.e., an event occurs). One of the typical
event-triggering conditions is to evaluate the difference be-
tween the measured state and the state that was recently sent
to the controller. In event-triggered control over a sensor
network, event-triggering mechanisms are also decentral-
ized, that is, an event-triggering condition is implemented
in each sensor unit. Such control method that each sensor

Manuscript received April 16, 2023.
Manuscript revised September 16, 2023.
Manuscript publicized November 10, 2023.
†The authors are with the Graduate School of Information Sci-

ence and Technology, Hokkaido University, Sapporo-shi, 060-0814
Japan.

a) E-mail: k-kobaya@ssi.ist.hokudai.ac.jp
DOI: 10.1587/transfun.2023MAP0005

has an event-triggering condition is known as a decentralized
event-triggered control method (see, e.g., [11]–[14]).

In this paper, a design method of output feedback con-
trollers with decentralized event-triggering mechanisms is
proposed, where the notion of uniformly ultimate bounded-
ness [15]–[19] is utilized as a control specification. Uni-
formly ultimate boundedness is a specification that the state
stays within a certain set containing the origin after a cer-
tain time depending on the initial state. Hence, as a con-
trol specification, uniformly ultimate boundedness is weaker
than asymptotic stability. However, introducing uniformly
ultimate boundedness, the number of communications from
sensors to a controller can be reduced in the neighborhood
of the origin. This is an advantage of utilizing uniformly
ultimate boundedness.

In design of event-triggered state-feedback controllers
based on uniformly ultimate boundedness, some results us-
ing an LMI (linear matrix inequality) technique have been
obtained in [16], [18], [19]. An LMI feasibility/optimization
problem is a convex programming problem that can be effi-
ciently solved. As a standard tool of control theory, an LMI
technique has been widely used in stability analysis, stabi-
lization, robust control, and so on [20]. It has been also used
in design of event-triggering mechanisms [21].

To the best of our knowledge, an LMI-based controller
design method based on uniformly ultimate boundedness
has not been proposed in the framework of output feed-
back event-triggered control. Based on asymptotic stability,
the authors have proposed a design method of output feed-
back controllers with decentralized event-triggering condi-
tions [22]. In [22], the design problem is reduced to an LMI
feasibility problem. In this paper, we extend the method in
[22] to the case of uniformly ultimate boundedness.

First, we formulate the design problem of output feed-
back controllers in decentralized event-triggered control
based on uniformly ultimate boundedness. In this prob-
lem formulation, we consider simultaneously finding of both
the output feedback controller and the ellipsoid used in uni-
formly ultimate boundedness. Next, using LMI techniques,
the design problem is rewritten. As a result, the design
problem is reduced to a BMI (bilinear matrix inequality) op-
timization problem. Since a BMI optimization problem is
a non-convex optimization problem, it is generally hard to
solve it. BMI constraint conditions derived in the proposed
method become LMI constraint conditions by fixing two
scalars. In addition, these two scalars are chosen from the
bounded intervals. Hence, using e.g., a grid search method,
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the BMI optimization problem derived in this paper can be
rewritten as multiple LMI optimization problems. Finally,
we present a numerical example to verify the effectiveness
of the proposed method.

Notation: Denote byR the set of real numbers. Denote
by In and 0m×n the n×n identitymatrix and them×n zeroma-
trix, respectively. For simplicity of notations, instead of 0m×n
and In, the symbols 0 and I are sometimes used, respectively.
Denote by M � 0 (M � 0) that the matrix M is positive-
(semi)definite. For the scalar a ∈ R, denote dae by the ceiling
function of a. Denote by 1n the n-dimensional vector whose
elements are all one. For the vector x, denote by xi the i-th
element of x. For the matrix M , denote by M> the transpose
matrix of M . For the matrix M , denote by tr(M) the trace of
M . For scalars a1,a2, . . . ,an, denote by diag(a1,a2, . . . ,an)
the diagonal matrix. For matrices/vector A1, A2, . . . , An, de-
note by block-diag(A1, A2, . . . , An) the block diagonal ma-
trix. For the matrix P � 0 and a scalar γ, we define the
ellipsoid E(P, γ) := {x ∈ Rn | x>Px ≤ γ}. The symmetric

matrix
[
A B>

B C

]
is denoted by

[
A ∗

B C

]
. For the matrix M ,

denote by Rowi(M) the i-th row of M .

2. Problem Formulation

Suppose that the following discrete-time linear system is
given as a plant:{

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k),

(1)

where x(k) ∈ Rn is the state of the plant, u(k) ∈ Rm is
the control input, y(k) ∈ Rr is the measured output, and
k ∈ {0,1,2, . . . } is the discrete time. Coefficient matrices
A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rr×n are given in advance.
Suppose also that the number of sensors is r (the dimension
of the measured output), and the sensor i ∈ {1,2, . . . ,r}
measures the i-th element of the measured output. Figure 1
illustrates a networked control system studied in this paper.
We suppose a sensor network, and the controller collects the
measured output from r sensors through a communication
network. Each sensor has an event-triggering mechanism
that determines if the measured value is sent. We suppose
that the controller is directly connected to the plant.

The structure of a controller is given in the form of the
following output-feedback controller with a direct term:{

x̂(k + 1) = AK x̂(k) + BK ŷ(k),
u(k) = CK x̂(k) + DK ŷ(k),

(2)

where x̂(k) ∈ Rn is the state of the controller, and AK ∈

Rn×n, BK ∈ R
n×r , CK ∈ R

m×n, and DK ∈ R
m×r are co-

efficient matrices including design parameters. The vector
ŷ(k) ∈ Rr is the measured output of the plant, which is
managed in the controller, and is defined by

ŷ(k) :=

{
y(k) if y(k) is updated,
ŷ(k − 1) if y(k) is not updated.

(3)

Fig. 1 Networked control system studied in this paper.

The event-triggering mechanism in each sensor determines
if the following condition with yi and ŷi holds:

(ŷi(k − 1) − yi(k))2 > a2
i y

2
i (k) + bi, (4)

where ai > 0 and bi > 0 are scalar parameters which are
given in advance. It is said that the event occurs if the con-
dition (4) is satisfied. When the event occurs, the measured
output in the controller is updated. By the parameter ai ,
we can relatively evaluate the difference between the error
(ŷi(k − 1) − yi(k))2 and y2

i (k). By the parameter bi , we can
absolutely evaluate this difference. If we set bi = 0, then
updates of themeasured output frequently occur in the neigh-
borhood of the origin. This is because (4) may be satisfied
even if (ŷi(k −1)− yi(k))2 is sufficiently small. By setting bi
appropriately, we will overcome this technical issue. Using
(4), the update rule of ŷ(k) of (3) is given by

ŷ(k) :=

{
y(k) if (4) holds for some i,
ŷ(k − 1) otherwise,

(5)

which implies that all measured outputs are aggregated in the
controller if the triggering condition for at least one sensor is
satisfied. From (5), the following inequality always satisfies:

(ŷi(k) − yi(k))2 ≤ a2
i y

2
i (k) + bi, i ∈ {1,2, . . . ,r}. (6)

Next, we define the state of the closed-loop system by
x̄(k) := [x>(k) x̂>(k)]>. Then, we define uniformly ultimate
boundedness proposed in [15] as follows.

Definition 1: Consider the closed-loop system composed
of the linear system (1) and the output feedback controller (2),
(5). Then, it is said that the closed-loop system is uniformly
ultimately bounded (UUB) in a convex and compact set S
containing the origin in its interior if the following condition
holds: for every initial condition x̄(0) = x̄0, there exists
T(x̄0) ∈ {0,1,2, ...} such that the condition x̄(k) ∈ S holds
for any k satisfying k ≥ T(x̄0).

Based on the above setting, we formulate the design
problem of an output-feedback controller with decentralized
event-triggering conditions as follows.
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Problem 1: For the system (1), suppose that the parameters
ai > 0 and bi > 0 in the decentralized event-triggering
condition (4) are given. Then, find coefficient matrices AK ,
BK , CK , and DK in the controller (2) and a positive definite
matrix P ∈ R2n×2n such that the closed-loop system is UUB
in a certain ellipsoid E(P,1).

Remark 1: The update rule (5) of ŷ(k) is synchronous. We
may consider the asynchronous update rule as follows:

ŷi(k) :=

{
yi(k) if (4) holds for some i,
ŷi(k − 1) otherwise.

The proposed method can be directly applied to this case.

3. Main Result

In this section, we propose a solution method for Problem 1
based on LMI techniques. LMI techniques efficiently work,
and Problem 1 can be rewritten as an LMI optimization
problem.

Defining the error variable by e(k) := ŷ(k) − y(k),
which can replace (6) with

e2
i (k) ≤ a2

i y
2
i (k) + bi, (7)

the closed-loop system is derived as

x̄(k + 1) = Āx̄(k) + B̄e(k), (8)

where

Ā =
[
A + BDKC BCK

BKC AK

]
,

B̄ =
[
BDK

BK

]
.

To design a controller such that the closed-loop system is
UUB, we need to consider two cases, i.e., i) x̄(k) < E(P,1)
and ii) x̄(k) ∈ E(P,1).

3.1 Condition that Must be Satisfied in x̄(k) < E(P,1)

First, consider the case of x̄(k) < E(P,1). In this case, the
state x̄ must reach the ellipsoid E(P,1). We introduce a
quadratic Lyapunov function as follows:

V(k) = x̄>(k)Px̄(k), (9)

where P = P> ∈ R2n×2n is a positive-definite matrix. Here,
the control specification that the state x̄ reaches the ellipsoid
E(P,1) is replaced with the control specification that V(k)
monotonically decreases. Hence, we consider the problemof
finding an output feedback controller such that the following
condition is satisfied:

V(k + 1) − V(k) < −βV(k), (10)

where β ∈ [0,1) is a given parameter that tunes the conver-
gence rate.

Then, we can obtain the following lemma in the case i)
x̄(k) < E(P,1).

Lemma 1: Assume that (7) holds. A sufficient condition
that (10) holds is given by the following condition:

P1 −

(
r∑
i=1

τiP2,i + τr+1P3

)
� 0, (11)

where P1, P2,i , and P3 are given as follows:

P1 =


β̄P − Ā>PĀ ∗ ∗

−B̄>PĀ −B̄>PB̄ ∗

0 0 0

 ,
P2,i = block-diag(a2

i Rowi(C)>Rowi(C),0,−Er
i , bi),

P3 = block-diag(P,0,−1),

where β̄ := 1− β, and τ1, τ2, . . . , τr+1 are positive scalars that
are freely determined. The matrix Er

i ∈ R
r×r denotes the

r × r diagonal matrix in which only the (i, i)-th element is 1
and other elements are 0.

Proof : Substituting (8) and V(k) = x̄>(k)Px̄(k) into (10),
we can obtain the following inequality:

(Āx̄(k) + B̄e(k))>P(Āx̄(k) + B̄e(k)) − x̄>(k)Px̄(k)

< −β x̄>(k)Px̄(k).

From this inequality, we can obtain
x̄(k)
e(k)

1


>

P1


x̄(k)
e(k)

1

 > 0 (12)

Noting that the following expression holds:

y2
i (k) = x̄>(k)

[
Rowi(C)>

0n×1

] [
Rowi(C) 01×n

]
x̄(k),

which can rewrite (7) as
x̄(k)
e(k)

1


>

P2,i


x̄(k)
e(k)

1

 ≥ 0, i ∈ {1,2, . . . ,r}. (13)

The condition x̄(k) < E(P,1) implies x̄>(k)Px̄(k) > 1, can
be rewritten as

x̄(k)
e(k)

1


>

P3


x̄(k)
e(k)

1

 > 0. (14)

Finally, the S-procedure [20] is applied to (12), (13), and
(14). Thus, we can obtain (11). 2

3.2 Condition that Must be Satisfied in x̄(k) ∈ E(P,1)

Next, consider the case ii) x̄(k) ∈ E(P,1). To achieve that the
closed-loop system is UUB, it is sufficient that the following
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condition holds: if x̄(k) ∈ E(P,1) is satisfied, then x̄(k+1) ∈
E(P,1) is also satisfied. From this condition, we can derive
the following lemma.

Lemma 2: Assume that (7) holds. A sufficient condition
that both x̄(k) ∈ E(P,1) and x̄(k + 1) ∈ E(P,1) hold is given
by the following condition:

P4 −

(
r∑
i=1

κiP2,i + κr+1P5

)
� 0, (15)

where

P4 =


−Ā>PĀ ∗ ∗

−B̄>PĀ −B̄>PB̄ ∗

0 0 1

 ,
P5 = −P3, and κ1, κ2, . . . , κr+1 are positive scalars that are
freely determined.

Proof : From the condition x̄(k + 1) ∈ E(P,1), we can
derive the following quadratic form:

x̄(k)
e(k)

1


>

P4


x̄(k)
e(k)

1

 ≥ 0. (16)

In a similar way, from the condition x̄(k) ∈ E(P,1), we can
derive the following quadratic form:

x̄(k)
e(k)

1


>

P5


x̄(k)
e(k)

1

 > 0. (17)

Finally, the S-procedure is applied to (13), (16), and (17).
Thus, we can obtain (15). 2

3.3 Reduction to an LMI Optimization Problem

Consider reducing Problem 1 to an LMI optimization prob-
lem.

From the viewpoint of control performance, it is desir-
able the volume of the ellipsoid E(P,1) is smaller. We also
consider minimizing tr(P−1). By minimizing tr(P−1), it is
expected that the volume of E(P,1) becomes smaller. Based
on the result in [18], Lemma 1, Lemma 2, and minimization
of tr(P−1), we can obtain the following theorem as a solution
to Problem 1.

Theorem 1: Problem 1 is reduced to the following BMI
(bilinear matrix inequality) optimization problem:

Problem 2:

find τr+1 ∈ (0, β̄), κr+1 ∈ (0,1),X � 0,Y � 0,
Γ � 0,Λ � 0,Q � 0,W1,W2,W3,DK

minimize tr(2Y +Q) (18)

subject to


(β̄ − τr+1)Φ1 ∗ ∗ ∗

0 Φ2 ∗ ∗

Φ3 Φ4 Φ1 ∗

Φ5 Φ6 0 Φ7

 � 0, (19)


κr+1Φ1 ∗ ∗ ∗

0 Φ′2 ∗ ∗

Φ3 Φ4 Φ1 ∗

Φ5 Φ6 0 Φ′7

 � 0, (20)


Q I 0
I X I
0 I Y

 � 0, (21)

where

Φ1 =

[
X I
I Y

]
,

Φ2 = block-diag(Γ, τr+1),

Φ3 =

[
X A +W1C W3
A + BDKC AY − BW2

]
,

Φ4 =

[
W1 0

BDK 0

]
,

Φ5 =

[
M MY
0 0

]
,

Φ6 = block-diag(0,1r ),
Φ7 = block-diag(2Ir − Γ,Σ−1

b (2Ir − Γ)),
Φ
′
2 = block-diag(Λ,1 − κr+1),

Φ
′
7 = block-diag(2Ir − Λ,Σ−1

b (2Ir − Λ)),

M =
[
diag(a1,a2, . . . ,ar ) 0r×(n−r)

]
,

Σb = diag(b1, b2, . . . , br ).

Two matrices X,Y ∈ Rn×n and two diagonal matrices Γ =
diag(τ1, τ2, . . . , τr ) ∈ R

r×r , Λ = diag(κ1, κ2, . . . , κr ) ∈ R
r×r

are positive definite matrices including decision variables.
The matrices W1 ∈ R

n×r , W2 ∈ R
m×n, W3 ∈ R

n×n, and Dc

are unconstrained matrices including decision variables.

Using the solution for Problem 2, the matrices AK , BK , CK

in the controller (2) are derived as

AK = (X − Y−1)−1(X A + XBDKC − XBCK

+ XBKCs − Y−1BKC −W3Y−1),

BK = (X − Y−1)−1(W1 − XBDK ),

CK =W2Y−1 + DKC,

respectively.

Proof : First, without loss of generality, the matrix P can
be replaced with

P =
[
X Z
Z Z

]
, (22)

where Z ∈ Rn×n is a positive definite matrix (see [23]).
It is shown that X − Z � 0 holds by applying the Schur
complement [20] to P � 0. We define the matrix Y by
Y := (X − Z)−1 � 0. The conditions (11) and (15) can be
rewritten as

Θ1 − Θ
>
2Θ
−1
3 Θ2 � 0, (23)
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Θ
′
1 − Θ

>
2 (Θ

′
3)
−1
Θ2 � 0, (24)

respectively, where

Θ1 = block-diag((β̄ − τr+1)P,Γ, τr+1),

Θ2 =


PĀ PB̄ 0
C̄ 0 0
0 0 1r

 ,
C̄ =

[
M 0r×n

]
,

Θ3 = block-diag(P,Γ−1,Σ−1
b Γ
−1),

Θ
′
1 = block-diag(κr+1P,Λ,1 − κr+1),

Θ
′
3 = block-diag(P,Λ−1,Σ−1

b Λ
−1).

Applying the Schur complement to (23) and (24), we can
derive the following two conditions:

Θ :=
[
Θ1 Θ>2
Θ2 Θ3

]
� 0, (25)

Θ
′ :=

[
Θ′1 Θ>2
Θ2 Θ′3

]
� 0. (26)

We define the matrices T , T̄1, T̄2, T̄ as follows:

T :=
[
In 0n×n
Y −Y

]
,

T̄1 := block-diag(T, Ir ,1),
T̄2 := block-diag(T, Ir , Ir ).
T̄ := block-diag(T̄1, T̄2),

We multiply T̄ from the left of Θ of (25) and Θ′ of (26). In
addition, we multiply T̄> from the right of the obtained two
matrices. We can derive the following two conditions:

T̄ΘT̄> =
[
T̄1Θ1T̄>1 ∗

T̄2Θ2T̄>1 T̄2Θ3T̄>2

]
, (27)

T̄Θ′T̄> =
[
T̄1Θ

′
1T̄>1 ∗

T̄2Θ2T̄>1 T̄2Θ
′
3T̄>2

]
, (28)

where

T̄1Θ1T̄>1 = block-diag(β̄ − τr+1)TPT>,Γ, τr+1),

T̄2Θ2T̄>1 =

TPĀT> TPB̄ 0

C̄T> 0 0
0 0 1r


T̄2Θ3T̄>2 = block-diag(TPT>,Γ−1,Σ−1

b Γ
−1),

T̄1Θ
′
1T̄>1 = block-diag(κr+1TPT>,Λ,1 − κr+1),

T̄2Θ
′
3T̄>2 = block-diag(TPT>,Λ−1,Σ−1

b Λ
−1).

From Γ � 0 and Λ � 0, the following two inequalities holds
(see, e.g., [18]):

(Ir − Γ)Γ−1(Ir − Γ) � 0,
(Ir − Λ)Λ−1(Ir − Λ) � 0,

which can be rewritten as

Γ
−1 − 2Ir + Γ � 0,
Λ
−1 − 2Ir + Λ � 0,

respectively. Applying these inequalities to (27) and (28), the
following conditions can be obtained as a sufficient condition
of (27) and (28):[

T̄1Θ1T̄>1 ∗

T̄2Θ2T̄>1 T̄2Θ̃3T̄>2

]
� 0, (29)[

T̄1Θ1T̄>1 ∗

T̄2Θ2T̄>1 T̄2Θ̃
′
3T̄>2

]
� 0, (30)

where

Θ̃3 = block-diag(P,2Ir − Γ,Σ−1
b (2Ir − Γ)),

Θ̃
′
3 = block-diag(P,2Ir − Λ,Σ−1

b (2Ir − Λ)).

From the definition of T , we can obtain

TPT> =
[
X I
I Y

]
,

TPB̄ =
[

W1
BDK

]
,

TPĀT> =
[

X A +W1C W3
A + BDKC AY − BW2

]
,

C̄T> =
[
M MY

]
,

where

W1 = XBDK + ZBK ,

W2 = CKY − DKCY,
W3 = X AY + XBDKCY − XBCKY + ZBKCY

− Z AKY .

Applying these relations to (29) and (30), we have (19) and
(20). The matrices AK , BK , and CK in the controller (2) can
be obtained from W1, W2, and W3.

Next, consider minimization of tr(P−1). From (22), we
can obtain

P−1 =

[
Y −Y
−Y Y + Z−1

]
.

From this expression, we can obtain tr(P−1) = 2tr(Y ) +
tr(Z−1). We introduce a newmatrix Q such that Q− Z−1 � 0
holds. Then, tr(Q) ≥ tr(Z−1) holds. Hence, minimiza-
tion of tr(P−1) can be equivalently rewritten as minimization
of tr(Q) under Q − Z−1 � 0. From this fact, we can ob-
tain (18). Furthermore, applying the Schur complement to
Q − Z−1 � 0, we can obtain[

Q I
I Z

]
� 0.

Nothing that Z = X − Y−1 holds, this expression can be
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rewritten as[
Q I
I X

]
−

[
0
I

]
Y−1 [

0 I
]
� 0.

Applying the Schur complement to this expression, we can
obtain (21).

Finally, consider T(x̄0) in Definition 1. From (10), we
can obtain V(k) < β̄kV(0). Then, from β̄kV(0) = 1, T(x̄0)
can be obtained as

T(x̄0) =

⌈
−

log(x̄0)
>Px̄0

logβ̄

⌉
.

This completes the proof. 2

The BMI constraint conditions (19) and (20) can be
transformed into the LMI constraint conditions by fixing
the two scalars τr+1 and κr+1. Furthermore, optimal τr+1
and κr+1 must be appropriately chosen from the intervals
(0, β̄) and (0,1), respectively. Hence, a solution to Prob-
lem 1 can be derived by solving multiple LMI optimization
problems through a grid search method [18]. The outline
of the optimization procedure is given as follows: First,
enumerate in an appropriate grid pattern the finite set of
points G := {(τ1

r+1, κ
1
r+1), (τ

2
r+1, κ

2
r+1), . . . , (τ

G
r+1, κ

G
r+1)} from

the (0, β̄)×(0,1) (a fine grid pattern (i.e., a largerG) is better).
Next, solve an LMI optimization problem for each element of
G. Finally, choose the element of G and the corresponding
controller that tr(2Y +Q) is minimal.

4. Numerical Example

4.1 Problem Setting and Obtained Controller

As a plant, we consider the eight-state four-input four-output
system, which is derived based on the decentralized inter-
connected system in [24]. The coefficient matrices A, B,
and C are given by respectively. The parameters ai and bi

A =



1.0130 −0.0044 0.0057 0.0043 0.0110 0.1989 0.0020 0.0076
−0.0515 1 −0.0022 −0.0014 −0.0058 −0.0908 0.0977 −0.0040

0 0 1 0.0289 0 0 0 0.0519
0 0 0 0.9675 0 0 0 0
0 0 0.0275 0.0031 0.8462 0 0 0.0084

−0.0150 0.0125 −0.0006 −0.0004 −0.0013 0.8420 0.0204 0.0010
−0.0321 0.0272 −0.0018 −0.0014 −0.0029 −0.0558 0.8341 −0.0023

0 0 0 0.0220 0 0 0 0.8205


,

B =



−0.0078 0.0024 0.0017 0.0001
0.0583 −0.0008 0.0014 −0.0001

0 0.0171 0 0.0007
0 0.1426 0 0
0 0.0004 0 0.0012

0.0004 −0.0001 0.0153 −0.0002
0.0010 0.0002 0.0374 −0.0008

0 0.0017 0 0.0225


,

C =
[
I4 04×4

]
,

Fig. 2 Time response of the state.

(i = 1,2,3,4) in the event-triggering condition (4) are given
by ai = 0.6 and bi = 0.8, respectively. The parameter β in
(10) is given by β = 0.1.

By solving Problem 2 (i.e., multiple LMI optimization
problems are solved), we can obtain the coefficient matri-
ces AK , BK , CK , and DK of the controller (2) as follows:
respectively.

4.2 Simulation Result and Discussion

Next, we present a numerical simulation. The initial
states of the plant and the controller are given by x(0) =
[10 20 15 20 30 20 10 45]> and x̂(0) = 08×1, respec-
tively. Figure 2 shows the time response of the state in the
plant. Figure 3 shows the time response of the Lyapunov
function. Figure 4 shows the control input. Figure 5 shows
the time response of x(k) + x̂(k). Figure 6 shows the time
response of the event.

From Fig. 2, we see that the state converges to the
neighborhood of the origin. From Fig. 3, we see that the
closed-loop system is UUB. From Fig. 4, we see that the
control input is changed continuously, because event trigger-



776
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.5 MAY 2024

AK =



0.4021 0.0673 −0.0384 −0.0087 0.0050 −0.1112 0.0647 0.0002
0.0322 −0.0448 0.0004 0.0017 −0.0002 −0.0116 0.0061 0.0001
−0.0246 −0.0041 0.5403 −0.0415 −0.1638 −0.0171 0.0033 0.0317
0.0232 0.0007 −0.0517 0.0093 0.0113 −0.0003 0.0006 −0.0025
−0.0292 −0.0027 −1.0186 0.0959 0.9120 −0.0209 0.0050 −0.0618
−5.6143 −0.6988 0.4401 −0.0215 −0.0489 −0.4545 −0.0735 −0.0153
−13.6276 −1.7071 1.3427 −0.0785 −0.0992 −3.3303 0.6500 −0.0244
−0.5654 −0.0575 −19.0819 1.7548 −1.0977 −0.3335 0.0717 −0.3759


,

BK =



−0.0809 0.0012 −0.0056 −0.0007
−0.0082 −0.0469 0.0022 0.0050
0.0019 −0.0009 −0.0855 0.0063
0.0155 0.0005 0.0062 0.0032
−0.0005 0.0004 −0.0024 −0.0014
−0.0016 0.0017 0.0022 −0.0114
0.0017 −0.0056 0.0073 −0.0269
0.0016 0.0055 −0.0197 −0.0250


,

CK =


−9.8287 15.9198 1.6434 −0.0802 −0.1271 −3.6604 1.5570 −0.0311
−0.0984 −0.0011 0.2887 6.4833 −0.0285 −0.0141 0.0035 0.0123
364.4753 45.8527 −18.8258 0.5099 3.5559 87.5031 4.9988 1.6705
25.1427 2.5616 848.2085 −77.5632 48.3749 14.7800 −3.1733 53.2072

,
DK =


0.1592 −0.0768 −0.0091 −0.0693
−0.0768 −0.0022 −0.0298 −0.2382
−0.0091 −0.0298 −0.1616 0.7547
−0.0693 −0.2382 0.7547 1.0794

 ,

Fig. 3 Time response of the Lyapunov functionV (k).

Fig. 4 Control input.

Fig. 5 Time response of x(k) + x̂(k).

ing mechanisms are not introduced in actuators.
From Fig. 5, we see that the state x̂ in the controller is

the estimated value of −x. In other words, the controller
estimates −x, and calculates the control input based on the
estimated value of −x. Hence, the controller obtained by
the proposed method has the structure of conventional con-
trollers consisting of an observer and a state-feedback con-
troller. The reason why x̂ becomes the estimated value of
−x is described as follows. In the Lyapunov function V(k)
of (9), the matrix P is given by (22). Then, we can obtain
V(k) = x>(k)X x(k)+2x̂>(k)Z x(k)+ x̂>(k)Z x̂(k). From this
expression, ∂V(k)/∂ x̂(k) can be derived as ∂V(k)/∂ x̂(k) =
2Z x(k) + 2Z x̂(k), which implies that x̂(k) minimizing V(k)
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Fig. 6 Time response of the event. “1” implies the event occurs (i.e.,
the event-triggering condition is satisfied). “0” implies the event does not
occur.

is given by x̂(k) = −x(k). Thus, to decrease V(k), it is
required that x̂(k) approaches to −x(k).

Finally, from Fig. 6, we see that if the state comes closer
to the neighborhood of the origin (i.e., the Lyapunov function
V(k) comes closer to 0), the occurrence of the event is inhib-
ited. The number of event occurrences is 22. In the cases of
ai = 0.1,0.2,0.3,0.4,0.5, the number of event occurrences
are 47,39,32,28,26, respectively (for simplicity, bi is fixed
as bi = 0.8). We see that for a larger ai , the number of event
occurrences is decreased.

From the viewpoint of event occurrences, consider com-
paring the proposed method with our previously proposed
method [22]. In the method in [22], The event-triggering
condition is given by (4) with ai = 0.6 and bi = 0. Since
the asymptotic stability is considered in [22], bi must be set
as bi = 0. Figure 7 and Fig. 8 show the time response of the
state and the event, respectively. The number of event occur-
rences is 72. Comparing Fig. 2 with Fig. 7, we see that the
latter state converges to the neighborhood of the origin faster
than the former state. Thus, when we consider the asymp-
totic stability, the convergence of the state is better, but many
event occurrences are required. In particular, since bi must
be set as bi = 0, the event occurs even if the state reaches
the neighborhood of the origin (see Fig. 8). As a result, the
number of event occurrences is increased. In the proposed
method based on the notion of uniformly ultimate bounded-
ness, the convergence of the state becomes deteriorated, but
the number of event occurrences is inhibited. Depending
on applications and control purposes, we may choose these
methods.

5. Conclusion

In this paper, we proposed a new design method for decen-
tralized event-triggered control of discrete-time linear sys-
tems over a sensor network. We adopted uniformly ulti-
mate boundedness as a control specification in the proposed
method, which is a weaker specification than asymptotic
stability. Introducing it, communications in the neighbor-
hood of the origin can be decreased. The output feedback

Fig. 7 Time response of the state in our previously proposedmethod [22].

Fig. 8 Time response of the event. “1” implies the event occurs (i.e.,
the event-triggering condition is satisfied). “0” implies the event does not
occur.

controller considering decentralized event-triggering mech-
anism can be derived by solving a set of LMI optimization
problems. The proposed method was demonstrated by a
numerical example.

In the current stage, we need to determine the param-
eters ai and bi in the event-triggering condition (4) by trial
and error. One of the future efforts is to develop a tuning
method of these parameters from viewpoints of both control
and communication performances. In this paper, a simple
grid search method has been used for solving the BMI op-
timization problem (Problem 2) in Theorem 1. It is also
important to develop a more efficient method.

This work was partly supported by JSPS KAKENHI
Grant Numbers JP21H04558, JP22K04163, JP23H01430.
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