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Consensus-Based Distributed Exp3 Policy Over Directed
Time-Varying Networks
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SUMMARY In this paper, we consider distributed decision-making over
directed time-varying multi-agent systems. We consider an adversarial
bandit problem in which a group of agents chooses an option from among
multiple arms to maximize the total reward. In the proposed method, each
agent cooperatively searches for the optimal arm with the highest reward
by a consensus-based distributed Exp3 policy. To this end, each agent
exchanges the estimation of the reward of each arm and the weight for
exploitation with the nearby agents on the network. To unify the explored
information of arms, each agent mixes the estimation and the weight of
the nearby agents with their own values by a consensus dynamics. Then,
each agent updates the probability distribution of arms by combining the
Hedge algorithm and the uniform search. We show that the sublinearity of
a pseudo-regret can be achieved by appropriately setting the parameters of
the distributed Exp3 policy.
key words: distributed decision-making, multi-armed bandit problem,
multi-agent system

1. Introduction

The multi-armed bandit problem is a decision-making prob-
lem where a player agent repeatedly chooses an action, re-
ferred to as an arm, in order to maximize its cumulative re-
ward over a sequence of trials. The challenge of the problem
lies in balancing exploration of new arms and exploitation
of known high-reward arms. Different algorithms have been
developed to address this trade-off, such as the upper con-
fidence bound algorithm [1] and Thompson sampling [2].
These algorithms aim to find the optimal balance between
exploration and exploitation, and are widely applied in fields
such as online advertising, recommendation systems, and
clinical trials [3]–[5].

In some applications, one needs to consider the situa-
tions where an agent must deal with an opponent. This type
of the bandit problem is called the adversarial multi-armed
bandit problem [6], [7]. In the adversarial multi-armed ban-
dit problem, an agent faces a more challenging scenario,
where the reward distributions of the arms are not fixed
but can be adversarially chosen to disrupt agent’s learning
process. The Exp3 (Exponential-weight algorithm for Ex-
ploration and Exploitation) policy is a widely used approach
for solving the adversarial bandit problem [8]. The Exp3 al-
gorithm balances exploration and exploitation by assigning
probabilities to each arm based on their past rewards.
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Recently, the need for a distributed approach has in-
creased in many large-scale machine learning and optimiza-
tion problems, where the datasets or models are too large to
be processed by a single processor [9]–[16]. In a distributed
bandit algorithm, multiple agents cooperatively learn the op-
timal arm by communicating with each other over a network
[17]–[20]. Each agent cooperatively makes a decision by
combining the own estimation of the rewards of the arms
with those of the nearby agents. The advantage of the dis-
tributed multi-armed bandit algorithm over the centralized
one is that it can achieve a smaller upper bound on the regret.
This is because in a distributed setting, agents explore the
arms more effectively, which allows for faster exploration
and more efficient exploitation.

For the cooperative adversarial multi-armed bandit
problem, Cesa-Bianchi et al. proposed the Exp3-Coop al-
gorithm with communication delay and analyzed the impact
of delays between players’ decisions and the potential ben-
efits of cooperation [21]. Bar-On and Mansour proposed a
distributed algorithm for the nonstochastic bandit problem,
which allows agents to learn independently of one another
while still achieving a cooperative goal [22]. Alatur et al. ad-
dressed the multi-armed bandit problem of multiple players
competing for limited resources based on an adaptation of the
Exp3 policy [23]. Yi and Vojnović proposed a decentralized
follow-the-regularizer-leader algorithmwith communication
delays [24]. Although these methods with the adversarial
settings assume undirected or static communication graphs,
considering the case with directed and time-varying commu-
nication graphs is particularly important because agents are
limited to sending messages in specific directions in many
networked systems.

To relax such a limitation on the network topology,
this paper focuses on a cooperative adversarial multi-armed
bandit problem, in which multiple agents work together on
directed and time-varying communication graphs to maxi-
mize the collective reward. We propose a distributed Exp3
policy, in which the learning process is distributed across
multiple player agents. Each agent maintains a local esti-
mate of the reward distribution of arms. These estimations
are combined by the consensus algorithm [25]–[27] to up-
date the probability distribution used for arm selection. As
opposed to the existing work, such as [21]–[24], we do not
make the assumption of omnidirectionality of communica-
tion. Thus, the proposed algorithm can be used in a wider
range of applications.

The remainder of this paper is organized as follows.
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Section 2 presents the distributed Exp3 policy for the adver-
sarial multi-armed bandit problem. The regret analysis of
the proposed policy is conducted in Sect. 3. The numerical
example of the proposed method is shown in Sect. 4. Finally,
concluding remarks are given in Sect. 5.

2. Distributed Exp3 Policy

In the distributed multi-armed bandit problem, a group of
agents works together to learn the best arm to maximize a
reward. Each agent can only observe the reward for the arm
it chooses. Thus, agents share information about the rewards
with other agents over a communication network. In this pa-
per, we model the communication network as a time-varying
directed graph without a self-loop G(t) = (V,E(t)), where
V = {1,2, . . . ,N} and E(t) ⊂ V ×V are the sets of agents
and communication links at time t ∈ T = {1,2, . . . ,T − 1}.
We consider an adversarial multi-armed bandit problemwith
K arms. Let Xi,k(t) ∈ [0,1] be the reward of agent i for arm
k ∈ K = {1,2, ...,K} at time t ∈ T . In this paper, the uncon-
strained reward model is considered, that is, if two or more
agents choose the same arm, they receive the same reward
independently [18].

In the proposed distributed Exp3 algorithm, the proba-
bility of choosing arm k is updated by

pi,k(t) = (1 − α)
wi,k(t)
Wi(t)

+
α

K
, (1)

where α ∈ (0,1) is a trade-off parameter. Equation (1)
implies that the probability of choosing arm k is computed
by combining the Hedge algorithm to exploit the learned
information and the uniform search to explore better arms.
Theweights for exploitation are initialized as wi,k(1) = 1/Kν

for all i ∈ V and k ∈ K, and Wi(1) = W(1) = K1−ν for all
i ∈ V, where 0 < ν ≤ 1.

After updating the probabilities pi,1(t), pi,2(t), . . . ,
pi,K (t), agent i chooses arm ki(t) according to these prob-
abilities. Then, the reward Xi,ki (t)(t) for arm ki(t) is feed-
backed to the agent. The information of the reward X̂i,k(t)
of the nearby agents is unified by the consensus dynamics as
follows:

X̂i,k(t) =

{∑
j∈V ai j (t)Xj ,k (t)

pi ,k (t)
, if k = ki(t),

0, if k , ki(t),
(2)

where ai j(t) is the edgeweight for the directed edge ( j, i) ∈ E.
We note that if arm k is not chosen, then Xi,k(t) = 0 for all
i ∈ V and t ∈ T . The edge weight is defined as

ai j(k)

{
≥ a, j ∈ Ni,

= 0, j < Ni, j , i,
(3)

aii(k) = 1 −
∑
j∈Ni

ai j(k) ≥ a, (4)

where Ni(t) = {` ∈ V | (`, i) ∈ E} is the set of the nearby
agents and a is a positive constant.

Finally, the weights for exploitation are updated by

wi,k(t + 1) = wi,k(t)eβX̂i ,k (t), (5)

Wi(t + 1) =
∑
k∈K

wi,k(t + 1), (6)

where 0 < β ≤ α/K is a learning parameter.
In this paper, we make the stochasticity for the edge

weight.

Assumption 1:
∑

j∈V ai j(t) = 1 for all i ∈ V and t ∈ T .

3. Regret Analysis

To evaluate the performance of the distributed Exp3 algo-
rithm, we consider the following pseudo-regret for the multi-
agent system:

Regret = R∗ −
∑
i∈V

E

[∑
t∈T

Xi,ki (t)(t)

]
, (7)

where R∗ = maxk∈K
∑

i∈V E
[∑

t∈T Xi,k(t)
]
is the maxi-

mum cumulative reward for continuing to choose the same
arm.

The pseudo-regret (7) measures how much reward a
group of agents loses by not selecting the armwith the highest
expected reward. The upper bound on the pseudo-regret is
sublinear if the total regret grows slower than the number
of iterations of the algorithm. This is desirable because
it means that the agents choose the optimal arm with high
probability as the iteration goes on [7], [8]. Therefore, the
purpose of the multi-agent system is to search the optimal
arm by achieving a sublinear regret bound.

The next result evaluates the upper bound of the pseudo-
regret by the distributed Exp3 algorithm.

Theorem 1: The upper bound of the pseudo-regret by the
distributed Exp3 algorithm is given by

Regret ≤ (α + βK)R∗ +
1 − α
β

N ln K . (8)

Proof : From (1) and (6), for all t ∈ T , we have∑
k∈K

pi,k(t) = (1 − α)
∑

k∈K wi,k(t)
Wi(t)

+
∑
k∈K

α

K
= 1.

Moreover, from (1), the probability of choosing arm k is
lower bounded by

pi,k(t) ≥
α

K
> 0. (9)

From (5) and (6), we have

Wi(T) =
∑
k∈K

wi,k(T) =
∑
k∈K

wi,k(T − 1)eβX̂i ,k (T−1).

(10)

From (2), we also have
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0 ≤ βX̂i,k(t)

≤ β

∑
j∈V ai j(t)Xj ,k(t)

pi,k(t)

≤ β

∑
j∈V ai j(t)

α
K

≤ β
K
α
≤ 1, (11)

where the third inequality follows from (9) and Xi,k(t) ≤ 1,
and the forth inequality follows from Assumption 1.

We note that ex ≤ 1 + x + x2 holds for any x ∈ [0,1].
Then, from (10) and (11), we have

Wi(T) =
∑
k∈K

wi,k(T − 1)eβX̂i ,k (T−1)

≤
∑
k∈K

wi,k(T − 1)(1 + βX̂i,k(T − 1)

+ (βX̂i,k(T − 1))2)
= Wi(T − 1)

×

(
1 + β

∑
k∈K

wi,k(T − 1)
Wi(T − 1)

X̂i,k(T − 1)

+β2
∑
k∈K

wi,k(T − 1)
Wi(T − 1)

X̂i,k(T − 1)2
)
. (12)

From (1), we have

pi,k(T − 1) = (1 − α)
wi,k(T − 1)
Wi(T − 1)

+
α

K
.

Thus, we have

wi,k(T − 1)
Wi(T − 1)

=
1

1 − α
pi,k(T − 1) −

α

(1 − α)K

≤
1

1 − α
pi,k(T − 1). (13)

From (13), we obtain

β
∑
k∈K

wi,k(T − 1)
Wi(T − 1)

X̂i,k(T − 1)

≤
β

1 − α

∑
k∈K

pi,k(T − 1)X̂i,k(T − 1)

=
β

1 − α
pi,ki (T−1)(T − 1)X̂i,ki (T−1)(T − 1)

≤
β

1 − α
pi,ki (T−1)(T − 1)

×

∑
j∈V ai j(T − 1)Xj ,ki (T−1)(T − 1)

pi,ki (T−1)(T − 1)

=
β

1 − α

∑
j∈V

ai j(T − 1)Xj ,ki (T−1)(T − 1), (14)

where the second inequality follows from (2).
From (13), we also have

β2
∑
k∈K

wi,k(T − 1)
Wi(T − 1)

X̂i,k(T − 1)2

≤
β2

1 − α

∑
k∈K

pi,k(T − 1)X̂i,k(T − 1)2

≤
β2

1 − α

∑
k∈K

pi,k(T − 1)X̂i,k(T − 1)X̂i,k(T − 1)

≤
β2

1 − α

∑
k∈K

pi,k(T − 1)

×

∑
j∈V ai j(T − 1)Xj ,k(T − 1)

pi,k(T − 1)
X̂i,k(T − 1)

=
β2

1 − α

∑
k∈K

©«
∑
j∈V

ai j(T − 1)Xj ,k(T − 1)ª®¬
× X̂i,k(T − 1)

≤
β2

1 − α

∑
k∈K

©«
∑
j∈V

ai j(T − 1)ª®¬ X̂i,k(T − 1),

=
β2

1 − α

∑
k∈K

X̂i,k(T − 1), (15)

where the last equality follows from Assumption 1.
Substituting (14) and (15) for (12) gives

Wi(T)
≤ Wi(T − 1)

×
©«1 +

β

1 − α

∑
j∈V

ai j(T − 1)Xj ,ki (T−1)(T − 1)

+
β2

1 − α

∑
k∈K

X̂i,k(T − 1)

)
. (16)

This yields

Wi(T)

≤ Wi(1)
T−1∏
t=1

©«1 +
β

1 − α

∑
j∈V

ai j(t)Xj ,ki (t)(t)

+
β2

1 − α

∑
k∈K

X̂i,k(t)

)
. (17)

From (5) and (6), for any arm k ∈ K, we have

Wi(T) =
K∑̀
=1
wi,`(T)

≥ wi,k(T)

= wi,k(T − 1)eβX̂i ,k (T−1)

= wi,k(1)eβ
∑

t∈T X̂i ,k (t). (18)

From (17) and (18), we have

wi,k(1)eβ
∑

t∈T X̂i ,k (t)
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≤ Wi(1)
T−1∏
t=1

©«1 +
β

1 − α

∑
j∈V

ai j(t)Xj ,ki (t)(t)

+
β2

1 − α

∑
k∈K

X̂i,k(t)

)
. (19)

By taking the natural logarithm for (19) and using the ini-
tialization of wi,k(1) = 1/Kν , we have

− ln K + β
∑
t∈T

X̂i,k(t)

≤
∑
t∈T

ln ©«1 +
β

1 − α

∑
j∈V

ai j(t)Xj ,ki (t)(t)

+
β2

1 − α

∑
k∈K

X̂i,k(t)

)
.

We note that ln(1 + x) ≤ x holds for any x ≥ 0. Then, we
have

− ln K + β
∑
t∈T

X̂i,k(t)

≤
β

1 − α

∑
t∈T

∑
j∈V

ai j(t)Xj ,ki (t)(t)

+
β2

1 − α

∑
k∈K

∑
t∈T

X̂i,k(t).

Since X̂i,k(t) is the unbiased estimator of Xi,k(t), by tak-
ing the expectation with respect to the estimated distribution
of the rewards obtained by the distributed Exp3 algorithm,
we have

− ln K + β
∑
t∈T

Xi,k(t)

≤
β

1 − α

∑
t∈T

∑
j∈V

ai j(t)Xj ,ki (t)(t)

+
β2

1 − α

∑
k∈K

∑
t∈T

Xi,k(t).

Furthermore, by taking the expectation with respect to the
true distribution of the rewards, we have

− ln K + βE

[∑
t∈T

Xi,k(t)

]
≤

β

1 − α
E


∑
t∈T

∑
j∈V

ai j(t)Xj ,ki (t)(t)


+
β2

1 − α

∑
k∈K

E

[∑
t∈T

Xi,k(t)

]
.

Then, we have

− N ln K + β
∑
i∈V

E

[∑
t∈T

Xi,k(t)

]

≤
β

1 − α

∑
i∈V

E


∑
t∈T

∑
j∈V

ai j(t)Xj ,ki (t)(t)


+
β2

1 − α

∑
i∈V

∑
k∈K

E

[∑
t∈T

Xi,k(t)

]
.

Therefore, we have

− N ln K + β
∑
i∈V

E

[∑
t∈T

Xi,k(t)

]
≤

β

1 − α

∑
i∈V

E


∑
t∈T

∑
j∈V

ai j(t)Xj ,ki (t)(t)
 +

β2K
1 − α

R∗,

(20)

where the last inequality follows from

R∗ ≥
1
K

∑
i∈V

∑
k∈K

E

[∑
t∈T

Xi,k(t)

]
.

We note that (20) holds for any k ∈ K. Thus, we have

− N ln K + βR∗

≤
β

1 − α

∑
i∈V

E


∑
t∈T

∑
j∈V

ai j(t)Xj ,ki (t)(t)
 +

β2K
1 − α

R∗.

It follows that

−
1 − α
β

N ln K + (1 − α)R∗

≤
∑
i∈V

E


∑
t∈T

∑
j∈V

ai j(t)Xj ,ki (t)(t)
 + βKR∗

=
∑
i∈V

E

[∑
t∈T

Xi,ki (t)(t)

]
+ βKR∗,

where the last equality follows from the unconstrained reward
model, and (3) and (4). This concludes the proof. �

Theorem 1 holds even for the case when the connectiv-
ity of the communication network is not guaranteed. How-
ever, to achieve a better regret bound, sharing the estimated
information between agents is crucial; hence, uniform con-
nectedness plays an important role. Investigating the relation
between the connectedness of the communication graph and
the regret bound is future research of this paper.

The next proposition shows that a sublinear regret can
be obtained if the information on the upper bound of the
accumulated reward is obtained in advance.

Proposition 1: Suppose that the trade-off parameter and
the learning parameter are given as α = βK and β =

min{c/K,
√

N ln K/(2RK)}, where 0 < c < 1 and R∗ ≤ R.
If each agent updates the estimation of the rewards by the
distributed Exp3 algorithm, we have
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Regret ≤
2
c

√
2NRK ln K . (21)

Proof : We consider the case for
√

N ln K/(2RK) ≥ c/K .
Then, we have 2R ≤ N(K ln K)/c2 holds. This yields

Regret = R∗ −
∑
i∈V

E

[∑
t∈T

Xi,ki (t)(t)

]
≤ R∗ ≤ 4R = 2

√
2R
√

2R ≤
2
c

√
2NRK ln K . (22)

Next, we consider the case for
√

N ln K/(2RK) < c/K .
In this case, β =

√
N ln K/(2RK) holds. Moreover, we have

β < c/K . It follows that 1 − α = 1 − βK > 0. Thus, from
(8), we have

Regret ≤ (α + βK)R∗ +
N
β

ln K

≤ 2βKR∗ + N
1
√

N

√
2RK
ln K

ln K

≤ 2
√

2NRK ln K .

�

For a single agent system, the regret bound is given
by (e − 1)αR∗ + (1/α)K ln K for the case with α = β [6].
Thus, by the analysis of [6], the regret is upper-bounded by
N((e− 1)αR∗ + (1/α)K ln K) for the mutliagent system with
N agents. Proposition 1 implies that the tighter regret bound
can be obtained if the trade-off and learning parameters are
properly set.

Compared with the existing cooperative methods [21]–
[24], in the proposed method, the condition of the communi-
cation topology is relaxed to time-varying directed networks.
However, the regret bound of the proposed algorithm is in-
ferior to those of other methods at the cost of extending the
applicable class. For example, in the Exp3-Coop algorithm
[21], the number of agents N affects the regret bound on the
order of the square root of its reciprocal when the commu-
nication graph is fixed and undirected. This regret bound is
more preferable for multiagent systems with the larger num-
ber of agents. Further theoretical analysis of the proposed
algorithm for large-scale networks is a future direction of
this study.

4. Numerical Experiments

We consider a cooperative adversarial multi-armed bandit
problem. Arm 1 is the best arm whose reward is randomly
set from the interval [0.8,1.0]. The reward of arm k ∈ K =
{2,3, . . . ,K} is randomly set from the interval [0.0,0.6] if
the indices i and k are both even or both odd, and [0.4,0.8]
otherwise.

We evaluate the effectiveness of the proposed algorithm
across different values of the trade-off parameter α. The
communication networks at t = 0, 1000, 2000, and 3000 are
shown in Fig. 1. Figure 2 illustrates the pseudo-regret (7)

Fig. 1 Communication networks.

Fig. 2 Pseudo-regret with different values of the trade-off parameter α.

for agent 1. The learning parameter, number of arms, and
number of agents are set to β = 0.01, K = 10, and N = 10,
respectively. We see that the evolution of the regret varies
depending on the value of α. When α = 0.001 and 0.005,
the regret at the initial stage of the iteration remains small but
gradually increases over time. The probability of choosing
an arm in (1) implies that a small value of α hinders the
exploration for better arms, whereas a large value restricts
the exploitation of the learned information of the rewards.
In this example, a value of α = 0.01 achieves a suitable
balance between exploitation with the Hedge algorithm and
exploration with uniform search.

Next, we examine the impact of different values of the
learning parameter β on the convergence performance. We
evaluate the pseudo-regret of agent 1 using the proposed
algorithm for α = 0.01, K = 10, and N = 10, with varying
values of β. Figure 3 shows that the choice of β influences
the evolution of the regret. In this example, the case with β =
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Fig. 3 Pseudo-regret with different values of the learning parameter β.

Fig. 4 Performance comparison with the Exp3-Coop Algorithm [21].

0.01 yields better performance. This result shows that the
selection of an appropriate value for the learning parameter
β is also crucial.

Finally, we consider a comparative performance eval-
uation between the proposed algorithm and the Exp3-Coop
Algorithm [21]. The Exp3-Coop is a distributed variant of
the Exp3 algorithm for adversarial multi-armed bandit prob-
lems. The number of arms and the number of agents are set as
K = 10 and N = 10. Within the framework of the proposed
algorithm, the trade-off parameter is set as α = 0.01. It is
worth noting that the theoretical analysis of the Exp3-Coop
Algorithm in [21] is conducted only for fixed undirected
graphs, which is a primal difference from the analysis of this
paper. However, to investigate the performance comparison
in more general situations, we extended its application to
a time-varying directed network in this example. Figure 4
illustrates the pseudo-regret of agent 1 with varying values
of β. We observe that the sublinear regret trajectories are
achieved for both algorithms with suitable learning param-
eters. Moreover, in this specific example, we see that the
proposed consensus-based Exp3 policy outperformed the
Exp3-Coop algorithm regarding regret minimization. For
future research, it remains to be clarified in what problem
settings, such as the topology of the communication graph

and the number of agents, the proposed algorithm performs
better.

5. Conclusion

In this paper, we presented a distributed Exp3 algorithm for
the adversarial bandit problem on directed and time-varying
networks. We demonstrated that the proposed algorithm co-
operatively estimates the reward distribution for each arm
with nearby agents. We provided an upper bound of the
pseudo-regret, which quantifies the difference between the
optimal reward and the expected reward. Additionally, we
derived a sufficient condition for achieving a sublinear regret
bound. The numerical results illustrated that the sublinear
regret can be achieved by appropriately tuning the trade-off
and learning parameters. As future work, we plan to deter-
mine optimal parameter settings and to investigate the impact
of communication delays between agents on the adversarial
bandit problem.
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