
806
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.5 MAY 2024

PAPER Special Section on Mathematical Systems Science and its Applications

A Small-Data Solution to Data-Driven Lyapunov Equations: Data
Reduction from O(n2) to O(n)
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SUMMARY When a mathematical model is not available for a dynam-
ical system, it is reasonable to use a data-driven approach for analysis and
control of the system. With this motivation, the authors have recently de-
veloped a data-driven solution to Lyapunov equations, which uses not the
model but the data of several state trajectories of the system. However, the
number of state trajectories to uniquely determine the solution is O(n2)
for the dimension n of the system. This prevents us from applying the
method to a case with a large n. Thus, this paper proposes a novel class of
data-driven Lyapunov equations, which requires a smaller amount of data.
Although the previous method constructs one scalar equation from one
state trajectory, the proposed method constructs three scalar equations from
any combination of two state trajectories. Based on this idea, we derive
data-driven Lyapunov equations such that the number of state trajectories
to uniquely determine the solution isO(n).
key words: data-driven solution, Lyapunov equation, stability, controlla-
bility

1. Introduction

When a mathematical model is not available for a dynamical
system, it is reasonable to use a data-driven approach for
analysis and control of the system. Thus, various data-driven
solutions have been recently developed for several stability
[1], [2], controllability [3], [4], observability [4], optimal
control [5], [6], and so on.

Along this direction of research, the authors have re-
cently developed a data-driven solution to Lyapunov equa-
tions in the form of PA + A>P = −Q, where A and Q are
given constant matrices and P is the unknown [7]. The Lya-
punov equations are known to play an important role in con-
trol engineering, such as stability analysis and controllability
analysis. The solution is based on the so-called data-driven
Lyapunov equation, which is defined by not the matrix A
but the state trajectories of the system Ûx(t) = Ax(t) + Bu(t).
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Using this framework, one can solve a Lyapunov equation
even when a model is not available to the system.

On the other hand, the number of state trajectories to
uniquely determine the solution is O(n2) in [7], where n is
the size of the matrix A. In other words, the amount of data
quadratically grows with n. This prevents us from applying
this method to a large-scale system, and thus it is preferable
to reduce the amount of data.

This paper proposes a novel class of data-driven Lya-
punov equations such that the number of state trajectories
to uniquely determine the solution is O(n). In the previ-
ous method [7], one scalar equation, which corresponds to
a part of the Lyapunov equation, is formulated by one state
trajectory. On the other hand, in the proposed method, three
scalar equations are formulated by any combination of two
state trajectories. This idea drastically reduces the amount
of data to construct a data-driven Lyapunov equation.

Finally, we note that our data-driven approach has an
advantage that prior knowledge can be easily incorporated.
In fact, our approach transforms a Lyapunov equation into
an equation described by data, which allows us to take prior
knowledge into account as additional equations. On the
other hand, the model-based approach, which is based on
a mathematical model, uniquely provides the solution to a
Lyapunov equation from the model. Thus, it is hard to
directly incorporate prior knowledge into the problem of
solving a Lyapunov equation.

This paper is organized as follows. In Sect. 2, we in-
troduce our problem and review the existing method and the
amount of required data [7]. Our solutions are presented in
Sects. 3 and 4, respectively. Finally, Sect. 5 concludes this
paper.
Notation : (i) For a vector x ∈ Rn and symmetric matrix
P ∈ Rn×n, let lvec(x) ∈ R1× 1

2 n(n+1) and rvec(P) ∈ R 1
2 n(n+1)

be the pair of a row vector and column vector, such that
x>Px = lvec(x)rvec(P). For example,

lvec(x) =
[
x2

1 2x1x2 2x1x3 x2
2 2x2x3 x2

3
]
,

rvec(P) =
[
p11 p12 p13 p22 p23 p33

]>
for

x =

x1
x2
x3

 , P =

p11 p12 p13
p12 p22 p23
p13 p23 p33

 ,
where xi ∈ R is the i-th component of x, and pi j ∈ R is the
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(i, j)-th component of P.
(ii) Consider the equations f (x) = 0 and g(x) = 0, where
x ∈ Rn. If their solution sets are equal, then the equations
are said to be equivalent.

2. Problem Formulation and Existing Result

Consider the linear system

Ûx(t) = Ax(t), (1)

where x(t) ∈ Rn is the state and A ∈ Rn×n is a Hurwitz
matrix.

For the system, a Lyapunov equation is given by

PA + A>P = −Q, (2)

where Q ∈ Rn×n is a given symmetric matrix and P ∈ Rn×n

is the unknown. There exists a unique solution P ∈ Rn×n to
(2) if A is Hurwitz [8].

If the matrix A is known to us, the solution can be
easily obtained; otherwise, it is reasonable to use a data-
driven solution to the equation. The problem of finding the
solution P from the behavioral data of (1) is formulated as
follows.

Problem 1: Consider the system in (1) and the Lyapunov
equation in (2). Assume that A is unknown but Hurwitz.
Suppose that the data of state trajectories x(t, x0i), t ∈
[0,T] (i = 1,2, . . . ,q) are given, where T is a positive real
number and x(t, x0i) is the state x(t) of the system (1) for the
initial state x(0) = x0i . Find the solution of (2). �

For Problem 1, the following solution [7] has been pre-
sented. Let us briefly review the existing result. Consider
the Lyapunov equation in (2). Let us multiply the both sides
of (2) by x(t, x0i)

> from the left and by x(t, x0i) from the
right and integrate them on the interval [0,T]. As the result,
we obtain the following equation.

x>(T, x0i)Px(T, x0i) − x>0iPx0i = −

∫ T

0
x>(t, x0i)Qx(t, x0i)dt

(i = 1,2, . . . ,q) (3)

This is called the data-driven Lyapunov equation.
By using the functions lvec and rvec introduced at the

end of Sect. 1, (3) is equivalently transformed into

[lvec(x(T, x0i)) − lvec(x0i)]rvec(P)

= −

∫ T

0
x>(t, x0i)Qx(t, x0i)dt

(i = 1,2, . . . ,q), (4)

which is represented as

D rvec(P) = d (5)

for

D B


lvec(x(T, x01)) − lvec(x01)
lvec(x(T, x02)) − lvec(x02)

...
lvec(x(T, x0q)) − lvec(x0q)


∈ Rq×

1
2 n(n+1), (6)

d B



−
∫ T

0 x>(t, x01)Qx(t, x01)dt

−
∫ T

0 x>(t, x02)Qx(t, x02)dt
...

−
∫ T

0 x>(t, x0q)Qx(t, x0q)dt


∈ Rq . (7)

Equation (5) is in the standard form of a linear equation with
respect to the unknown vector rvec(P) ∈ R 1

2 n(n+1). Thus, if

rank(D) =
1
2

n(n + 1), (8)

then (5) has a unique solution. Based on this idea, the
solution to Problem 1 in [7] is given as follows.

Lemma 1: Consider the equation in (3). If (8) holds, then
(3) has a unique solution, and it is equal to the solution to
the Lyapunov equation in (2). �

From this result, it turns out that the solution to the Lyapunov
equation in (2) is obtained by solving a linear equation in
(3) defined by the data of state trajectories. Since D ∈
Rq× 1

2 n(n+1) and (8) imply q ≥ (1/2)n(n + 1), the data-driven
method [7] requires at least (1/2)n(n + 1) state trajectories,
i.e., it requires data of O(n2).

Remark : In Problem 1, A is assumed to be Hurwitz. Thus,
the problem is not solved to determine whether the system
in (1) is stable or not. One application of Problem 1 is to
analyze the observability of (1), since the solution of (2) for
Q = C>C is equal to the observability Gramian of (1) [8].
Another application is to obtain a Lyapunov function of a
stable system, which can be used, for example, to construct
an event-triggered controller [9], [10].

3. Small-Data Solution to Problem 1

3.1 Main Results

In the data-driven Lyapunov equation in (3), each scalar
equation is constructed by one state trajectory. However, as
will be shown later, three scalar equations can be formulated
by any combination of two distinct state trajectories. This
fact gives the following result.

Theorem 1: (i) Consider the following equation:

x>(T, x0i)Px(T, x0j) − x>0iPx0j = −

∫ T

0
x>(t, x0i)Qx(t, x0j)dt

(i = 1,2, . . . ,q, j = i, i + 1, . . . ,q) (9)

which is a modified version of (3). If

rank(X0) = n, (10)
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Table 1 Proposed and conventional methods with q state trajectories.

then (9) has a unique solution, and it is equal to the solution
to (2), where X0 B

[
x01 x02 · · · x0q

]
is the matrix

defined by the initial states of the data x(t, x0i), t ∈ [0,T] (i =
1,2, . . . ,q).
(ii) The minimum number of state trajectories to determine
the unique solution to (9) is n, i.e., O(n). �

This means that the solution to the Lyapunov equation
can be obtained with much less data than the conventional
method [7] (Lemma 1). This fact is summarized in Table 1.

Proof of Theorem 1: (i) It is the consequence of the follow-
ing facts.

(I) Equation (2) has a unique solution if A is Hurwitz [8].
(II) Equation (2) is equivalent to

eA>T PeAT − P = −
∫ T

0
eA>tQeAtdt. (11)

(III) If (10) holds, then (11) is equivalent to

X>0 eA>T PeAT X0−X>0 PX0 = −

∫ T

0
X>0 eA>tQeAt X0dt.

(12)

(IV) Equation (12) is equivalent to (9).

Let us prove Facts (II)–(IV).
(II) First, we multiply the both sides of (2) by eA>t from
the left and by eAt from the right and integrate them on the
interval [0,T]. As the result, we obtain (11). Thus, if P is a
solution to (2), then it is also a solution to (11). Meanwhile,
the converse holds if both (2) and (11) are unique solutions.
Since (11) is a discrete-time Lyapunov equation with the
Schur matrix eAT (because A is Hurwitz), it has a unique
solution. These facts and (I) imply (II).
(III) Under (10), the matrix X0 has full row rank and X>0
has full column rank, which, together with Lemma 2 in the
appendix, proves (III).
(IV) It is trivial from the facts that (9) is the element-wise
expression of (12) and x(t, x0i) = eAt x0i .
(ii) Equation (10) implies q ≥ n. This proves (ii). �

3.2 Examples

3.2.1 Case with Noise-Free data

Consider the linear system

Ûx(t) =
[

0 1
−2 −3

]
x(t) (13)

and the Lyapunov equation in (2) for Q B I, which has the

Fig. 1 Dataset in Sect. 3.2.1.

unique solution

P∗ =
[
1.250 0.250
0.250 0.250

]
. (14)

Then we address Problem 1 for the dataset shown in Fig. 1,
where the state trajectories are generated by x01 = [1 0]>
and x02 = [0 1]>.

Let us apply Theorem 1 to the problem. In this case,
we have q = n = 2 and (10) holds for x01 and x02. Then the
data-driven Lyapunov equation in (9) is given by[

0.600 −0.465
] [

p11 p12
p12 p22

] [
0.600
−0.465

]
−

[
1.000 0.000

] [
p11 p12
p12 p22

] [
1.000
0.000

]
= −0.885, (15)[

0.233 −0.097
] [

p11 p12
p12 p22

] [
0.600
−0.465

]
−

[
0.000 1.000

] [
p11 p12
p12 p22

] [
1.000
0.000

]
= −0.106, (16)
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[
0.233 −0.097

] [
p11 p12
p12 p22

] [
0.233
−0.097

]
−

[
0.000 1.000

] [
p11 p12
p12 p22

] [
0.000
1.000

]
= −0.191, (17)

which provides

P =
[
1.250 0.250
0.250 0.250

]
. (18)

This agrees with the solution to the original Lyapunov equa-
tion, i.e., P∗ in (14).

3.2.2 Case with Noisy Data

We consider the case where noisy data is given as shown in
Fig. 2. The data are the state trajectories in Fig. 1 corrupted
by Gaussian noise with a mean of 0 and a variance of 0.05.

The data-driven Lyapunov equation in (9) is given by[
0.551 −0.444

] [
p11 p12
p12 p22

] [
0.551
−0.444

]
−

[
0.943 0.036

] [
p11 p12
p12 p22

] [
0.943
0.036

]
= −0.878, (19)[

0.227 −0.098
] [

p11 p12
p12 p22

] [
0.551
−0.444

]

Fig. 2 Noisy dataset.

−
[
−0.049 0.960

] [
p11 p12
p12 p22

] [
0.943
0.036

]
= −0.110,

(20)[
0.227 −0.098

] [
p11 p12
p12 p22

] [
0.227
−0.098

]
−

[
−0.049 0.960

] [
p11 p12
p12 p22

] [
−0.049
0.960

]
= −0.199.

(21)

which provides

P =
[
1.300 0.317
0.317 0.306

]
(22)

It turns out that this approximates the true value P∗ in (14).
On the other hand, the existing method [7] requires

more data, i.e., three state trajectories, because three scalar
equations are constructed by three state trajectories, as shown
in (3). For example, for the three state trajectories in Figs. 2
and 3, the data-driven Lyapunov equation in (3) is given by
(19), (21), and[

1.036 −0.683
] [

p11 p12
p12 p22

] [
1.036
−0.683

]
−

[
0.969 1.977

] [
p11 p12
p12 p22

] [
0.969
1.977

]
= −2.066, (23)

which provides

P =
[
1.384 0.229
0.229 0.305

]
. (24)

Although the solution is derived by more data, the accuracy
is similar to the proposed method.

Finally, we show that the proposed method provides
better performance with the data as shown in Figs. 2 and 3.
In this case, the data-driven Lyapunov equation is given by
(19), (20), (21), (23),[

0.551 −0.444
] [

p11 p12
p12 p22

] [
1.036
−0.683

]

Fig. 3 Additional noisy data.
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Fig. 4 Network structure.

−
[
0.943 0.036

] [
p11 p12
p12 p22

] [
0.969
1.977

]
= −1.085, (25)[

0.227 −0.098
] [

p11 p12
p12 p22

] [
1.036
−0.683

]
−

[
−0.049 0.960

] [
p11 p12
p12 p22

] [
0.969
1.977

]
= −0.494.

(26)

The least-squares solution of these equations is

P =
[
1.289 0.252
0.252 0.278

]
, (27)

which is closer to P∗ than (24).

3.2.3 Application to Input Node Design of a Large-Scale
System

Consider the model of a 100-order gene regulatory network
system as shown in Fig. 4, which is developed in [11]. For
the system, we address the problem of finding a gene to
which the control input is applied so that the trace of the
controllability Gramian is maximized.

As shown in [7], the solution is the index of the max-
imum diagonal element of the solution P of (2) for Q = I.
Thus, let us solve the corresponding data-driven Lyapunov
equation. Our result provides gene 34 as the solution with
the data of 100 state trajectories. On the other hand, the
existing method [7] requires 5050 state trajectories to obtain
the solution. This suggests that our method is more practical
than the existing method.

4. Extension to the Case with Discrete-Time Data

4.1 Main Results

Suppose that the state trajectory x(t, x0) is sampled for the
period h and the discrete data x̄k B x(kh, x0) is given. Then
we consider the discrete-time Lyapunov equation

Ā>PĀ − P = −Q, (28)

where Ā B eAh , Q ∈ Rn×n is a given symmetric matrix, and
P ∈ Rn×n is the unknown. There exists a unique solution
P ∈ Rn×n to (28) if A is Hurwitz, i.e., Ā is Schur [8].

Now, we consider the following problem.

Problem 2: Consider the system in (1) and the discrete-
time Lyapunov equation in (28). Assume that Ā is un-
known and Schur, but the sampled data x̄k B x(kh, x0) (k =
0,1, . . . , s) of the state trajectories of (1) are given, where
h ∈ (0,∞) is the sampling period. Find the solution of (28).

�

To derive a solution, we represent the data x̄k (k =
0,1, . . . , s − 1) in the following matrix form:

X̄0 B
[
x̄0 x̄1 · · · x̄s−1

]
. (29)

Then a solution to Problem 2 is obtained as follows.

Theorem 2: (i) Consider the following equation:

x̄>k Px̄l − x̄>k−1Px̄l−1 = −x̄>k−1Qx̄l−1

(k = 1,2, . . . , s, l = k, k + 1, . . . , s). (30)

If

rank(X̄0) = n, (31)

then (30) has a unique solution, and it is equal to the solution
to (28).
(ii) The minimum number of the sampled data to determine
the unique solution to (30) is n + 1, i.e., O(n). �

Proof of Theorem 2: (i) It is the consequence of the follow-
ing facts.

(I) Equation (28) has a unique solution if A is Hurwitz [8].
(II) If (31) holds, then (28) is equivalent to

X̄>0 Ā>PĀX̄0 − X̄>0 PX̄0 = −X̄>0 QX̄0. (32)

(III) Equation (32) is equivalent to (30).

Let us prove Facts (II) and (III).
(II) Under (31), the matrix X̄0 has full row rank and X̄>0 has
full column rank, which, together Lemma 2 in the appendix,
proves (II).
(III) It is trivial from the facts that (30) is the element-wise
expression of (32) and x̄k = Āx̄k−1.
(ii) Equation (31) implies s ≥ n. This proves (ii). �

4.2 Example

Consider the linear system in (13) and the discrete-time Lya-
punov equation in (28) for Q B I and h = 0.1. The solution
is given by

P∗ =
[
13.000 2.508
2.508 3.050

]
. (33)

Then we consider Problem 2 for the dataset composed of
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x̄0 =

[
1.000
1.000

]
, x̄1 =

[
1.077
0.560

]
, x̄2 =

[
1.116
0.225

]
. (34)

Let us apply Theorem 2 to the problem. In this case, (31)
holds for x̄0 and x̄1. Then the data-driven discrete-time
Lyapunov equation in (30) is given by[

1.077 0.560
] [

p11 p12
p12 p22

] [
1.077
0.560

]
−

[
1.000 1.000

] [
p11 p12
p12 p22

] [
1.000
1.000

]
= −2.000, (35)[

1.116 0.225
] [

p11 p12
p12 p22

] [
1.077
0.560

]
−

[
1.077 0.560

] [
p11 p12
p12 p22

] [
1.000
1.000

]
= −1.637, (36)[

1.116 0.225
] [

p11 p12
p12 p22

] [
1.116
−0.225

]
−

[
1.077 0.560

] [
p11 p12
p12 p22

] [
1.077
0.560

]
= −1.474, (37)

which provides

P =
[
13.000 2.508
2.508 3.050

]
. (38)

This agrees with the solution to the original discrete-time
Lyapunov equation, i.e., P∗ in (33).

5. Conclusions

In this paper, we have developed a new class of data-driven
Lyapunov equations, which are defined by data of amount
O(n). Since the amount of data is much less than that of the
existing result [7], i.e., O(n2), this result broadens the appli-
cability of the framework of data-drivenLyapunov equations.

On the other hand, it is still open whether O(n) is the
minimum or not to determine the unique solution to a Lya-
punov equation in a data-driven manner. In the future, we
plan to answer to this question.
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Appendix: On Equivalence of Two Equations

For a matrix-valued function f : Rn×n → Rn×n andmatrices
A ∈ Rm×n, B ∈ Rn×l , we consider the two equations

f (X) = 0n×n, (A· 1)
A f (X)B = 0m×l, (A· 2)

where 0n×n is an n × n zero matrix and 0m×l is similarly
defined. Let S ⊂ Rn×n be the set of the solutions to (A· 1)
and S̃ ⊂ Rn×n be that to (A· 2), i.e.,

S B {X ∈ Rn×n | f (X) = 0n×n}, (A· 3)
S̃ B {X ∈ Rn×n | A f (X)B = 0m×l}. (A· 4)

Lemma 2: Consider the sets in (A· 3) and (A· 4). If A has
full column rank and B has full row rank, then S = S̃. �

Proof : The relation S ⊂ S̃ is trivial from X ∈ S ⇒ f (X) =
0n×n ⇒ A f (X)B = 0m×l ⇒ X ∈ S̃.

Next, we prove S ⊃ S̃. If X ∈ S̃, then

A f (X)B = 0m×l . (A· 5)

If A has full column rank, then A>A is non-singular
[12]. Similarly, if B has full row rank, then BB> is non-
singular. Therefore, multiplying the both sides of (A· 5) by
(A>A)−1 A> from the left and by B>(BB>)−1 from the right,
we get

(A>A)−1 A>A f (X)BB>(BB>)−1 = 0n×n, (A· 6)

which is equal to

f (X) = 0n×n, (A· 7)

i.e., X ∈ S. This proves S ⊃ S̃.
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Since S ⊂ S̃ and S ⊃ S̃, we obtain S = S̃. �
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