
DOI:10.1587/transfun.2024CIP0004

Publicized:2024/09/04

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Cryptography and Information Security

Mitigation of Membership Inference Attack by Knowledge
Distillation on Federated Learning

Rei UEDA†a), Student Member, Tsunato NAKAI††, Nonmember, Kota YOSHIDA†††,
and Takeshi FUJINO†††, Members

SUMMARY Federated learning (FL) is a distributed deep learning tech-
nique involving multiple clients and a server. In FL, each client individually
trains a model with its own training data and sends only the model to the
server. The server then aggregates the received client models to build a
server model. Because each client does not share its own training data
with other clients or the server, FL is considered a distributed deep learning
technique with privacy protection. However, several attacks that steal in-
formation about a specific client’s training data from the aggregated model
on the server have been reported for FL. These include membership infer-
ence attacks (MIAs), which identify whether or not specific data was used
to train a target model. MIAs have been shown to work mainly because
of overfitting of the model to the training data, and mitigation techniques
based on knowledge distillation have thus been proposed. Because these
techniques assume a lot of training data and computational power, they
are difficult to introduce simply to clients in FL. In this paper, we propose
a knowledge-distillation-based defense against MIAs that is designed for
application in FL. The proposed method is effective against various MIAs
without requiring additional training data, in contrast to the conventional
defenses.
key words: Federated Learning, Knowledge Distillation, Membership In-
ference Attack

1. Introduction

Deep learning is now being used in various fields such as
medicine and transportation. In particular, centralized learn-
ing, which accumulates training data and trains a deep neu-
ral network (DNN) model on a server, is commonly used.
However, there is a risk of leaking private information in
centralized learning, because data holders share their own
data with the server. Some organizations cannot send train-
ing data to the server because of agreements on data privacy.
This is a disadvantage because DNNs generally require a
large amount of data for training.

Accordingly, federated learning (FL) was proposed to
solve this problem of the sharing of private information. FL
is a distributed deep learning technique that comprises mul-
tiple clients and a server and does not involve sharing of the
clients’ training data with other clients or the server [1]. In
FL, clients train a model with their own training data and send
only the trained model to the server. The server then aggre-
gates the models received from the clients. FL is considered

†The author is with the Graduate School of Science and Engi-
neering, Ritsumeikan University, Kusatsu-shi 525-8577, Japan.

††The author is with Mitsubishi Electric Corporation,
Kamakura-shi 247-8501, Japan.
†††The author is with the Department of Science and Engineering,

Ritsumeikan University, Kusatsu-shi 525-8577, Japan.
a) E-mail: ri0098kv@ed.ritsumei.ac.jp

to have a lower risk of leaking private information than cen-
tralized deep learning because the clients do not share their
own training data. However, there is a growing threat of pri-
vacy attacks that steal information about the clients’ training
data from the aggregated model on the server.

Among these attacks are membership inference attacks
(MIAs), which reveal private information in the training
data from the model [2, 3]. Specifically, MIAs can iden-
tify whether or not specific data was used to train a target
model. The defender must design the target models to be-
have similarly on training and non-training data to mitigate
MIAs. Existing defenses against MIAs can be divided into
provable privacy defenses and empirical membership pri-
vacy defenses, as shown in Table 1 [4]. DP-SGD is a prov-
able privacy defense using differential privacy, but DP-SGD
is shown to greatly reduce the model utility (see Section
5.3). Because of this problem of the provable privacy de-
fenses, empirical membership privacy defenses have been
researched in recent years. In the empirical membership
privacy defenses, the performance of their methods is eval-
uated based on tradeoffs among MIA privacy risk, model
utility and computational cost. Here, adversarial regulariza-
tion (AdvReg) and Memguard have a problem that requires
a lot of computational cost to mitigate the MIA (see Sec-
tion 6.2). DMP, KCD and SELENA are a defense with
the use of knowledge distillation. Here, knowledge distil-
lation is a technique in which knowledge acquired in one
model (teacher) is transferred to another model (student) [5].
Knowledge distillation can mitigate overfitting of the model
to the training data. Therefore, various MIA defenses using
knowledge distillation have been proposed [4, 6, 7] in recent
years. In particular, KCD and SELENA show a good trade-
off between MIA privacy risk and model utility. However,
KCD and SELENA require a lot of training data and compu-
tational costs (see Section 2.2.2). This is not a problem for
centralized learning, where the server has a lot of training
data and computational resources. However, it can be a sig-
nificant problem for clients in FL. In general, the amount of
training data varies between clients, and not all clients have
enough data and computing resources to implement defenses
based on knowledge distillation. In addition, if the clients
are implemented on edge devices, they will not have exten-
sive computing resources. Considering the situation on edge
devices, the conventional empirical membership privacy de-
fenses proposed for the centralized learning scenario are not
suitable for FL.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 1: Two categories of the MIA defenses: provable privacy
defenses and empirical membership privacy defenses [4].

Low model utility High model utility
Provable
privacy DP-SGD [8] No defences yet

Empirical
membership

privacy
Not considered

AdvReg [9]
Memguard [10], DMP [6]

KCD [7], SELENA [4]
FLKD (Our proposed defense)

In this paper, we propose a new empirical membership
privacy defense that introduces knowledge distillation into
FL. Our proposed defense can mitigate MIAs without re-
quiring a lot of training data and computational cost for FL
clients.

Our contributions are as follows:

• We developed a defense against MIAs by using knowl-
edge distillation in a way that is suitable for FL. Our
proposed defense does not require a lot of training data
or computational cost for FL clients.

• We evaluated our proposed defense on the CIFAR100,
Purchase100, and Texas100 datasets with two MIA
methods: single-query and label-only attacks. The pro-
posed defense showed better privacy protection than the
conventional defenses did.

2. Preliminaries

2.1 Federated learning

Federated learning (FL) is a distributed deep learning tech-
nique in which training parties are split into multiple clients
and a server [1]. Figure 1 shows an overview of FL, and Al-
gorithm 1 gives its operation procedure. In addition, Table
2 lists the settings used in FL. The model in FL is typically
trained with the following steps [11].

1. A server sends a model 𝜔𝑟 to each client, where 𝑅 is
the number of rounds. Here, 𝜔1 is the initial model,
which the server prepares.

2. Each client independently trains the model 𝜔𝑟 with its
own training data.

3. Each client sends its trained model 𝜔𝑟𝑘 to the server,
where 𝜔𝑟𝑘 denotes the distributed model 𝜔𝑟 as trained
with the 𝑘-th client’s training data.

4. The server aggregates the trained models 𝜔𝑟𝑘 and up-
dates its own model to 𝜔𝑟+1.

These four steps collectively comprise a round; the accuracy
of the model on the server improves with repeated rounds.

In FL, the clients do not share their training data with
the server or the other clients. Therefore, FL is considered
a distributed deep learning technique with higher privacy
protection. The model on the server contains private in-
formation on the clients’ training data, however, and it is
thus exposed to the threat of membership inference attacks
(MIAs) [12, 13].

…𝑪𝟏

𝑫𝟏

Dataset

𝝎𝟏
𝒓

…

𝝎𝟏
𝒓

𝝎𝑲
𝒓

𝝎𝒓+𝟏

Aggregation of all 
client models

Updated model

Server

𝝎𝒓

Distributed
model

𝝎𝟏
𝒓

𝑪𝑲

𝑫𝑲

Dataset

𝝎𝑲
𝒓

𝝎𝒓

𝝎𝑲
𝒓

Client 1

Client K

Trained
model

Fig. 1: Federated learning.

Table 2: Settings used in federated learning.
𝑅 Number of rounds
𝐾 Number of clients
𝐷𝑘 Training data on 𝑘-th client
𝑛𝑘 Number of training samples on the 𝑘-th client
𝑛 Number of training samples for all clients

L𝑘 (𝜔𝑟 , 𝐷𝑘 ) Loss function of 𝑘-th client’s model
𝜔𝑟
𝑘

Local model of 𝑘-th client
𝜔𝑟 Server model in 𝑟-th round

Algorithm 1 Training procedure in federated learning
Input: Training data: 𝐷1, 𝐷2, ..., 𝐷𝐾 ; Initial server model: 𝜔1

Output: Trained model on server: 𝜔𝑅+1

1: for 𝑟 = 1 to 𝑅 do
2: for 𝑘 = 1 to 𝐾 do
3: ※ Clients independently train model
4: 𝜔𝑟𝑘 = arg min L𝑘

𝜔𝑟
(𝜔𝑟 , 𝐷𝑘 )

5: end for
6: ※ Server aggregates trained client models

7: 𝜔𝑟+1 =
𝐾∑
𝑘=1

𝑛𝑘
𝑛
𝜔𝑟𝑘

8: end for
9: return 𝜔𝑅+1

2.2 Membership inference attacks and defenses

An MIA identifies whether specific data is used for training
a target model [2, 3].

2.2.1 Existing membership inference attacks

MIAs are classified into white-box attacks and black-box
attacks depending on the capabilities of the attacker [2, 7].

In white-box MIAs, the attacker has the target model
and can use the target model parameters, the intermediate
values for the target data, and the confidence scores. In
black-box MIAs, the attacker does not have the target model



UEDA et al.: MITIGATION OF MEMBERSHIP INFERENCE ATTACK BY KNOWLEDGE DISTILLATION ON FEDERATED LEARNING
3

and only uses the confidence scores or prediction labels of
the target data.

In this paper, we assume the black-box scenario; the
server and all clients in FL are trustworthy. The trained
model is securely stored on a server and only accepts users’
(including adversary) access through APIs. The two types
of black-box MIAs are single-query attacks and label-only
attacks [4].

Single-query attack: This attack is based on the confi-
dence score and is classified into two types, namely, neural-
network- (NN-) based and metric-based attacks [7].

NN-based attacks [3, 9] assume that the attacker has
prior knowledge about some of the target model’s training
(member) and non-training (non-member) data. The attacker
thus trains a classification model with this prior knowledge
and uses the model for attack.

Metric-based attacks also assume prior knowledge.
Specifically, the attacker computes a metric𝑚 = 𝑀 (𝐹 (𝑥), 𝑦)
from the confidence score 𝐹 (𝑥) and hard label 𝑦 of the target
data from the target model 𝐹. It then decides the membership
of the target data via the computed metric 𝑚 and a thresh-
old determined from the prior knowledge. Such metric-
based attacks can be classified into correctness-, confidence-,
entropy-, and modified entropy-based attacks.

A correctness-based attack estimates that correctly pre-
dicted target data indicates member data [4, 7, 14]. The
metric 𝐼𝑐𝑜𝑟𝑟 is defined as follows:

𝐼𝑐𝑜𝑟𝑟 (𝐹 (𝑥), 𝑦) = 1{argmax
𝑖

𝐹 (𝑥)𝑖 = 𝑦}, (1)

where 𝐹 (𝑥)𝑖 is a class-independent confidence score.
A confidence-based attack estimates that a high con-

fidence score indicates member data [4, 7]. Specifically, it
identifies the target data as member data when the confi-
dence score is higher than either a class-dependent threshold
𝜏(𝑦) or a class-independent threshold 𝜏. The metric 𝐼𝑐𝑜𝑛 𝑓 is
defined as follows:

𝐼𝑐𝑜𝑛 𝑓 (𝐹 (𝑥), 𝑦) = 1{𝐹 (𝑥)𝑦 ≥ 𝜏(𝑦) }, (2)

where 𝐹 (𝑥)𝑦 is a class-dependent confidence score.
An entropy-based attack estimates that low entropy in-

dicates member data [4,7]. That is, it identifies the target data
as member data when the entropy is lower than either a class-
dependent threshold 𝜏(𝑦) or a class-independent threshold 𝜏.
The metric 𝐼𝑒𝑛𝑡𝑟 is defined as follows:

𝐼𝑒𝑛𝑡𝑟 (𝐹 (𝑥), 𝑦) = 1{−
∑
𝑖

𝐹 (𝑥)𝑖 log(𝐹 (𝑥)𝑖) ≤ 𝜏(𝑦) }.

(3)

Lastly, a modified entropy-based attack estimates that
low entropy, together with the entropy metric and correct
label, indicates member data [4, 7]. Specifically, this attack
identifies the target data as member data when the combined

Private
training data

𝑫𝒓𝒆𝒇

Predict

Student model
(protected)

𝑫𝒓𝒆𝒇

Soft
label

𝑫𝒕𝒓

Teacher model
(unprotected)

Reference
data

Dataset for
distillation

Train Train

Fig. 2: DMP, a defense using knowledge distillation for MIAs.

entropy is lower than either a class-dependent threshold 𝜏(𝑦)
or a class-independent threshold 𝜏. The metric 𝐼𝑀𝑒𝑛𝑡𝑟 is
defined as follows:

𝐼𝑀𝑒𝑛𝑡𝑟 (𝐹 (𝑥), 𝑦) = 1{−(1 − 𝐹 (𝑥)𝑦) log(𝐹 (𝑥)𝑦)
−
∑
𝑖≠𝑦

𝐹 (𝑥)𝑖 log(1 − 𝐹 (𝑥)𝑖) ≤ 𝜏(𝑦) }. (4)

Label-only attack: This attack is based on a bound-
ary estimation attack [4, 15, 16] using a prediction label.
The boundary estimation attack estimates that data located
far from the classification boundary is member data. The
attacker computes the distance from the target data to the
boundary by adding small noise to the target data that is not
sufficient to cause misclassification. Then, the target data is
determined as member data when the distance to the bound-
ary is larger than either a class-dependent threshold 𝜏(𝑦) or a
class-independent threshold 𝜏. Because this attack is based
on the respective distances of member and non-member data
to the classification boundary, obfuscation of the confidence
score does not protect against it.

2.2.2 Existing defenses using knowledge distillation

In this section, we introduce three existing MIA defenses
that use knowledge distillation assuming centralized deep
learning techniques.

First, DMP mitigates MIAs through knowledge distil-
lation with reference data [6]. Here, knowledge distillation
entails a technique to transfer knowledge acquired in one
model (teacher) to another model (student). Figure 2 shows
an overview of DMP. The defender trains a teacher model
(unprotected) with private training data 𝐷𝑡𝑟 and builds a stu-
dent model (protected) with knowledge distillation by using
reference data 𝐷𝑟𝑒 𝑓 and the teacher model. Here, the ref-
erence data 𝐷𝑟𝑒 𝑓 is unlabeled and disjoint from the private
training data 𝐷𝑡𝑟 .

Because it is difficult to prepare reference data for DMP,
KCD [7] was proposed as an MIA defense to solve this prob-
lem. Specifically, it mitigates MIAs through knowledge dis-
tillation with the split training data [7]. Figure 3 shows an
overview of KCD for the case of 𝑠 = 3 divisions. The de-
fender divides all the training data into multiple subsets and
trains sub-models with each combination of the subsets. In



4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

𝑫𝟑

𝑫𝟐

𝑫𝟏

𝑫𝟑

𝑫𝟐

𝑫𝟑

𝑫𝟏

𝑫𝟐

𝑫𝟏

𝑭𝟏

Hard-label
dataset

𝑫𝟏

Predict

𝑫𝟐

𝑫′𝟏

𝑫′𝟑

𝑫′𝟐

𝑫′𝟏

Protected
model

𝑭𝟐

𝑭𝟑

𝑫𝟑

𝑫′𝟐

𝑫′𝟑

Soft
label

Predict Predict

Soft
label

Soft
label

Soft-label
dataset

Train

Train

Train

Train

Fig. 3: KCD with 𝑠 = 3 divisions.

𝑫𝟑

𝑫𝟐

𝑫𝟏

𝑫𝟏

𝑭𝟏

Predict

𝑫′𝟑

𝑫′𝟐

𝑫′𝟏

𝑭𝟐

𝑭𝟑

𝑫′𝟐

𝑫𝟐

𝑫𝟑

𝑫𝟑

𝑫𝟐

𝑫𝟏

𝑫𝟑

𝑫𝟐

𝑫𝟏

𝑫′𝟑

𝑫′𝟏

Average

Protected
model

Soft
label

Soft-label
dataset

Predict Predict

Hard-label
dataset

Average

Average

Soft
label

Soft
label

Train

Train

Train

Train

Fig. 4: SELENA with 𝑠 = 3 divisions.

addition, it builds a protected model with knowledge distilla-
tion by using the sub-models. KCD requires a lot of training
data and computational resources to achieve sufficient effects
against MIAs.

Lastly, SELENA mitigates MIAs through knowledge
distillation with the split training data and soft-label averag-
ing [4]. Figure 4 shows an overview of SELENA for the case
of 𝑠 = 3 divisions. The defender divides the training data
into multiple subsets and trains sub-models with each sub-
set. In addition, it builds a protected model with knowledge
distillation by using the sub-models and averaged soft la-
bels. Like KCD, SELENA requires a lot of training data and
computational resources to achieve sufficient effects against
MIAs.

2.2.3 Existing defenses without knowledge distillation

Here, we introduce three existing defenses that do not use
knowledge distillation assuming centralized learning.

First, DP-SGD mitigates MIAs by adding Gaussian
noise 𝑁 (0, 𝜎2𝐶2) to the gradient, where 𝜎 is a noise pa-
rameter and 𝐶 is a clipping size [8]. Specifically, the de-
fender clips the gradient according to the constant 𝐶 and
then adds the noise 𝑁 (0, 𝜎2𝐶2) to the clipped gradient. A
larger 𝜎 provides more privacy protection against MIAs but
decreases the model accuracy.

Next, adversarial regularization (AdvReg) mitigates
MIAs by training the model to reduce the discrepancy in con-
fidence scores between member and non-member data [9].

First, the defender builds a binary classifier with the confi-
dence scores of member and non-member data. Second, it
defines a combination loss function using the binary clas-
sifier’s outputs and the cross-entropy loss used in common
classification models. Finally, the defender trains a pro-
tected model with the combination loss function. AdvReg
determines the binary classifier’s fraction on the defined loss
function via a constant 𝜆. A larger 𝜆 provides more privacy
protection against MIAs but decreases the model accuracy.
In addition, AdvReg entails additional computational cost
for building the binary classifier.

Last, Memguard mitigates MIAs by adding noise to the
target model’s confidence score [10]. Because this defense
obfuscates the confidence score without changing the predic-
tion label, Memguard can mitigate MIAs without degrading
the model accuracy. However, it cannot mitigate label-only
MIAs, which use only the prediction label.

2.3 Application of conventional MIA defenses to FL

In this section, we discuss the application of conventional
MIA defenses used in centralized learning, as described in
Sections 2.2.2 and 2.2.3, to FL.

First, DMP requires reference datasets, but it is diffi-
cult for all clients to prepare such reference datasets in FL.
Therefore, DMP is not a good defense against MIAs in FL.
Moreover, KCD and SELENA require much training data
and computational cost for training the sub-models, which is
difficult for all clients to implement in FL. Therefore, KCD
and SELENA also are not good MIA defenses in FL.

On the other hand, DP-SGD mitigates MIAs by sim-
ply adding noise to the gradient, which is not difficult to
implement for all clients in FL.

Similarly, because AdvReg mitigates MIAs by training
the model to reduce the discrepancy in confidence scores
between member and non-member data, it also is not difficult
for all clients to implement in FL. However, AdvReg requires
building an additional binary classifier, so there are concerns
in terms of its computational cost.

Lastly, Memguard mitigates MIAs by simply adding
noise to the target model’s confidence score. Therefore, it is
easy to apply Memguard to the server model in FL, which
is intended to be served to users who use the model as a
service.

3. Our proposed defense

KCD and SELENA are superior defenses against MIAs in
centralized learning. As explained above, however, they are
difficult to apply for all clients in FL. In this paper, we propose
a defense against MIAs, called federated learning knowledge
distillation (FLKD), that uses applicable knowledge distilla-
tion in FL. Figure 5 shows an overview of FLKD’s training
procedure, which is specified in Algorithm 2. In addition,
Table 3 lists the settings used in FLKD.

In FLKD, the server additionally sends distillation mod-
els 𝜔𝑑 (𝜔𝑟

𝑘
) to the clients. This enables the clients to skip



UEDA et al.: MITIGATION OF MEMBERSHIP INFERENCE ATTACK BY KNOWLEDGE DISTILLATION ON FEDERATED LEARNING
5

Processing on client

𝝎𝒅(𝝎𝟏
𝒓)

Predict

𝑻 ≤

𝑻 >

𝑪𝟏

𝑫𝟏

Hard-label
dataset

Calculation of 
average 

confidence score
𝑺𝟏
𝒓+𝟏

Average 
confidence score

𝑺𝟏
𝒓+𝟏

𝑫′𝟏

Soft-label dataset

𝑫𝟏

Hard-label dataset

Soft-label

Train(𝑻 ≤)

Train(𝑻 >)

Update model

𝝎𝒅(𝝎𝟐
𝒓)

Predict

𝑻 ≤

𝑻 >

𝑪𝟐

𝑫𝟐

Hard-label
dataset

Calculation of 
average 

confidence score
𝑺𝟐
𝒓+𝟏

Average 
confidence score

𝑺𝟐
𝒓+𝟏

𝑫′𝟐

Soft-label dataset

𝑫𝟐

Hard-label dataset

Soft-label

Train(𝑻 ≤)

Train(𝑻 >)

Update model

𝝎𝒅(𝝎𝑲
𝒓 )

Predict

𝑻 ≤

𝑻 >

𝑪𝑲

𝑫𝑲

Hard-label
dataset

Calculation of 
average 

confidence score
𝑺𝑲
𝒓+𝟏

Average 
confidence score

𝑺𝑲
𝒓+𝟏

𝑫′𝑲

Soft-label dataset

𝑫𝑲

Hard-label dataset

Soft-label

Train(𝑻 ≤)

Train(𝑻 >)

Update model

…

Processing on serverCommunication channel

𝝎𝟏
𝒓+𝟏

𝝎𝟐
𝒓+𝟏

𝝎𝑲
𝒓+𝟏

𝝎𝟏
𝒓+𝟏

𝝎𝒓+𝟏

𝝎𝒓+𝟏

𝝎𝒓+𝟏

𝝎𝒓+𝟏 𝝎𝒅(𝝎𝟏
𝒓)

𝝎𝟐
𝒓+𝟏

𝝎𝒓+𝟏 𝝎𝒅(𝝎𝟐
𝒓)

𝝎𝑲
𝒓+𝟏

𝝎𝒓+𝟏 𝝎𝒅(𝝎𝑲
𝒓 )

Aggregation of all client models

…

𝝎𝟏
𝒓

𝝎𝟐
𝒓

𝝎𝑲
𝒓

𝝎𝒓+𝟏

Aggregation of (K-1) client models

…

𝝎𝟏
𝒓

𝝎𝟐
𝒓

𝝎𝑲
𝒓

𝝎𝒅(𝝎𝑲
𝒓 )

𝝎𝒅(𝝎𝟏
𝒓)

𝝎𝒅(𝝎𝟐
𝒓)

Models for knowledge 
distillation on clients

Fig. 5: Training phase of our proposed defense, FLKD.

𝝎𝒅(𝝎𝟏
𝒓)

Predict

𝑫𝟏

Hard-label
dataset

Average 𝑺𝟏
𝒓+𝟏

…

Model 
outputs

…

Hard label 
of Dataset

…

Results of multiplying 
outputs and hard labels

Calculation of average confidence score

Fig. 6: Calculation of average confidence score.

Table 3: Settings used in FLKD.
𝜔𝑟 Server model in 𝑟-th round

𝜔𝑑 (𝜔𝑟
𝑘
) Distillation model of 𝑘-th client in (𝑟 + 1)-th round

𝑆𝑟
𝑘

Average confidence score of 𝑘-th client in 𝑟-th round
𝑇 Threshold for distillation
𝐷𝑘 Hard-label training data of 𝑘-th client
𝐷

′
𝑘

Soft-label training data of 𝑘-th client

building a teacher model and focus only on student model
training. FLKD comprises two phases: initialization and
training. The details of each phase are given below.

Initialization phase

1. The server sends the initial server model 𝜔1 to the
clients (Algorithm 2 L.3).

2. The clients train the received model 𝜔1 with their own
training data and then send each trained model 𝜔1

𝑘 back

to the server (Algorithm 2 L.4).
3. The server calculates its next model 𝜔2 and a distilla-

tion model 𝜔𝑑 (𝜔1
𝑘
) , which is calculated by aggregating

models excluding the target client’s trained model 𝜔1
𝑘

(Algorithm 2 L.6).

Training phase

1. The server sends its model 𝜔𝑟+1 (𝑟 ≥ 1) and a dis-
tillation model 𝜔𝑑 (𝜔𝑟

𝑘
) , which is aggregated from the

models of all clients but the 𝑘-th one (Algorithm 2 L.9).
2. A client calculates the average confidence score 𝑆𝑟+1

𝑘
for training data 𝐷𝑘 with the distillation model 𝜔𝑑 (𝜔𝑟

𝑘
) .

Figure 6 illustrates the calculation of 𝑆𝑟+1
𝑘 (Algorithm

2 L.11).
3. If the average confidence score 𝑆𝑟+1

𝑘 is higher than a pre-
defined threshold 𝑇 , then the client trains the received
model 𝜔𝑟+1 with the soft-label training data 𝐷 ′

𝑘 (Algo-
rithm 2 L.12-13). Otherwise, if 𝑆𝑟+1

𝑘 is lower than 𝑇 ,
then the client trains 𝜔𝑟+1 with the hard-label training
data 𝐷𝑘 (Algorithm 2 L.14-15).

4. The client sends the trained model 𝜔𝑟+1
𝑘 to the server,

which calculates the updated server model 𝜔𝑟+2 and
the updated distillation model 𝜔𝑑 (𝜔𝑟+1

𝑘
) (Algorithm 2

L.18).

In FLKD, as described above, the client controls the



6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Algorithm 2 Training phase of FLKD
Input: Hard label training data: 𝐷1, 𝐷2, ..., 𝐷𝐾 ; Initial server model:

𝜔1

Output: Trained model on server: 𝜔𝑅+1

1: ※ Initialization phase
2: for 𝑘 = 1 to 𝐾 do
3: Server sends initial server model 𝜔1 to each client.
4: Clients independently train model 𝜔1 with their own training data

and send trained model 𝜔1
𝑘

to server.
5: end for
6: Server calculates server model 𝜔2 and distillation model 𝜔𝑑 (𝜔1

𝑘
) .

7: ※ Training phase
8: for 𝑟 = 1 to 𝑅 − 1 do
9: Server sends server model 𝜔𝑟+1 and distillation model 𝜔𝑑 (𝜔𝑟

𝑘
)

aggregated from all models except 𝑘-th client’s model to clients.
10: for 𝑘 = 1 to 𝐾 do
11: Client calculates average confidence score 𝑆𝑟+1

𝑘
for training data

𝐷𝑘 with distillation model 𝜔𝑑 (𝜔𝑟
𝑘
) .

12: if 𝑆𝑟+1
𝑘

≥ 𝑇 then
13: Client trains server model 𝜔𝑟+1 with soft-label training data

𝐷
′
𝑘

and sends trained model 𝜔𝑟+1
𝑘

to server.
14: else
15: Client trains server model 𝜔𝑟+1 with hard-label training data

𝐷𝑘 and sends trained model 𝜔𝑟+1
𝑘

to server.
16: end if
17: end for
18: Server aggregates client’s model 𝜔𝑟+1

𝑘
and calculates server model

𝜔𝑟+2 and distillation model 𝜔𝑑 (𝜔𝑟+1
𝑘

) .
19: end for
20: return 𝜔𝑅+1

knowledge distillation implementation with a threshold 𝑇
(Algorithm 2 L.11-15). In this way, FLKD achieves both
model accuracy and privacy protection against MIAs.

The accuracy of the client model 𝜔𝑟𝑘 is expected to
increase with each round. According, the accuracy of 𝜔𝑟𝑘
is low in early rounds, as is the accuracy of the distillation
model 𝜔𝑑 (𝜔𝑟

𝑘
) built from the client models 𝜔𝑟𝑘 . Soft labels

calculated by the distillation model are considered to have a
negative effect on model training, because they are close to
random in the early round. FLKD addresses this problem
by switching the knowledge distillation via the threshold
𝑇 . That is, a client trains the server’s model 𝜔𝑟+1 with
the hard-label training data 𝐷𝑘 in the early rounds, and if
the average confidence score 𝑆𝑟+1

𝑘 representing the model
accuracy exceeds 𝑇 , then the client’s training is switched to
knowledge distillation. Here, the average confidence score
𝑆𝑟+1
𝑘 is calculated from the hard- and soft-label outputs of

the distillation model 𝜔𝑑 (𝜔𝑟
𝑘
) (see Figure 6). Because 𝑆𝑟+1

𝑘
is calculated from a one-hot vectorized confidence score, it
is a nonnegative number in [0, 1].

If the threshold𝑇 is set higher, then clients only conduct
knowledge distillation near the last round, and the model is
more likely to overfit. On the other hand, if it is set lower, then
clients conduct knowledge distillation from early rounds, and
overfitting is less likely to occur.

An advantage of FLKD is that the distillation model for
each client is quickly built by changing the aggregated com-
bination (model parameter averaging). Table 4 summarizes

the client processing required for knowledge distillation with
different defenses. As seen in the table, when KCD or SE-
LENA is applied in FL, a client must train 𝑠 + 1 models with
a limited number of training samples, such as 𝑛𝑘 (𝑠 − 1)/𝑠
or 𝑛𝑘/𝑠. In contrast, FLKD only requires one additional
inference for knowledge distillation and can mitigate MIAs
without additional model training. Accordingly, clients can
mitigate MIAs via FLKD without a lot of training data or
computational resources.

4. Experimental setup

In this section, we introduce our experimental setup.

4.1 Datasets

We used the 100-class classification datasets of CIFAR100,
Purchase100, and Texas100, as in existing studies on MIAs
[4]．

CIFAR100: This dataset contains 60,000 images, each
of which is a color image with 32 × 32 pixels [17].

Purchase100: This dataset is based on Kaggle’s “Ac-
quire Valued Shoppers Challenge” 1. Specifically, we used
a dataset that was preprocessed by Shokri et al. [3] and con-
tains 197,324 records. Each record has 600 binary features
about the items purchased by a customer.

Texas100: This dataset is based on the “Texas Depart-
ment of State Health Services” data, and we use a version
that was again preprocessed by Shokri et al. [3]. This dataset
contains 67,330 records, where each record has 6,170 binary
features about a patient.

Table 5 lists the training and test data sizes used to
train and evaluate the target model. In addition, as listed in
the table, an MIA attacker has some of the target model’s
member and non-member data as prior knowledge.

4.2 Membership inference attacks

For this paper, we selected the trained server model as the
target model and applied both single-query and label-only
attacks against it. As in existing studies on MIAs, we used
the “Accuracy” as the metric [4, 7, 9]:

Accuracy =
TP+TN

TP+FP+TN+FN
. (5)

Here, TP, TN, FP, and FN denote true positives, true neg-
atives, false positives, and false negatives, respectively, in
terms of whether the prediction and ground-truth labels are
members.

A random guess has 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.5 because MIA
is a binary classification task. The Accuracy thus diverges
from 0.5 as the risk of leaking private information increases.

1https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data



UEDA et al.: MITIGATION OF MEMBERSHIP INFERENCE ATTACK BY KNOWLEDGE DISTILLATION ON FEDERATED LEARNING
7

Table 4: Comparison of client processing required for knowledge distillation in FL. Here, 𝑛𝑘 is the number of training samples for the 𝑘-th
client, and 𝑠 is the number of divisions for KCD and SELENA.

Defense Number of
training models

Number of training
samples for each model

Number of inferences
for knowledge distillation

None 1 𝑛𝑘 0
FLKD 1 𝒏𝒌 1
KCD 𝑠 + 1 𝑛𝑘 (𝑠 − 1)/𝑠 s

SELENA 𝑠 + 1 𝑛𝑘/𝑠 s

Table 5: Datasets.
Dataset Target model Prior knowledge MIA evaluation

Training Test Training Test Training Test
CIFAR100 50,000 5,000 5,000 5,000 5,000 5,000

Purchase100 20,000 5,000 5,000 5,000 5,000 5,000
Texas100 50,000 5,000 5,000 5,000 5,000 5,000

We also defined a “mitigation ratio” (MR) to evaluate the
tradeoff between the MIA accuracy and model accuracy:

Mitigation Ratio (MR) =
MIA Accuracy

Model Accuracy
, (6)

where a smaller MR indicates a better defense against MIAs.

4.3 Target model setups

We compared FLKD with DP-SGD, AdvReg, and Mem-
guard, the existing defenses described in Section 2.3. DP-
SGD and AdvReg were applied in FL by introducing them
to all clients individually, while Memguard was introduced
as a defense in the server model.

4.3.1 Model architectures

We used ResNet18 as the model architecture for CIFAR100
[4]. For Purchase100 and Texas100 [4], we used a 4-layer
fully connected NN with various number of nodes in each
layer [1024, 512, 256, 128].

4.3.2 Hyperparameters of target model

We evaluated the defenses against MIAs in FL by varying the
number of clients𝐾 among 5, 10, and 20. Each client had the
same number of training samples, where all the training data
without duplicates was divided equally among the clients.
The hyperparameters of FLKD, DP-SGD, and AdvReg were
set as follows.

• FLKD: The threshold 𝑇 was varied from 0.50～0.95
in increments of 0.05 for all three datasets.

• DP-SGD: For CIFAR100, the clipping size 𝐶 was 40,
and the noise parameter was varied among 0.001, 0.01,
and 0.03. For Purchase100, the clipping size 𝐶 was
0.001, and the noise parameter was varied among 0.03,
0.05, and 0.07. Lastly, for Texas100, the clipping size𝐶
was 0.0001, and the noise parameter was varied among
0.001, 0.01, and 0.05.

• AdvReg: The privacy parameter 𝜆 was varied among

1, 10, 30, and 50 for all three datasets.

5. Experimental results

Table 6 and Figure 7 give the MIA accuracy and model ac-
curacy of the target model. In the figure, results plotted
at the bottom right in each graph indicate that both the ac-
curacy and privacy are better. According to these results,
FLKD showed the best tradeoff between the MIA accuracy
and model accuracy as compared to the existing defenses
of DP-SGD, AdvReg, and Memguard. The results in the
table indicate that FLKD reduced single-query attacks by
14% and label-only attacks by 15% with a 1% reduction in
the model accuracy, as compared to an undefended model
(“None”), on CIFAR100 with five clients. In addition, on
Purchase100 with five clients, FLKD reduced single-query
attacks by 7% and label-only attacks by 7% with a 3% reduc-
tion in the model accuracy, as compared to the undefended
model. Finally, on Texas100 with five clients, FLKD re-
duced single-query attacks by 21% and label-only attacks by
14% without degrading the model accuracy.

5.1 Results of changing number 𝐾 of clients in FL

As introduced above, Figure 7 shows the MIA and model
accuracies in FL when the number of clients, 𝐾 , was 5,
10 or 20. In this scenario, the number of training samples
for each client decreased as the number of clients increased
(see Section 4.3.2). For example, on CIFAR100, each client
had 10,000 training samples when 𝐾 was 5, but only 2,500
training samples when 𝐾 was 20. According to Figure 7,
FLKD showed the best tradeoff between the MIA and model
accuracies when the number of each client’s training samples
was limited to 2,500. FLKD can mitigate MIAs without
requiring a lot of training data (see Section 3); therefore,
it can sufficiently mitigate MIAs without depending on the
number of training samples for clients in FL.

5.2 Results of changing FLKD threshold 𝑇

Next, Figure 8 shows the MIA and model accuracies when
the threshold 𝑇 was varied in FLKD. On all three datasets, a
larger threshold 𝑇 yielded a higher MIA accuracy. This was
because a client switched its knowledge distillation accord-
ing to𝑇 : as described in Section 3, a client conducted knowl-
edge distillation only when the average confidence score 𝑆𝑟+1

𝑘
is greater than or equal to 𝑇 . Accordingly, when a client sets



8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 6: Comparison of the MIA and model accuracies on three datasets for FLKD, an undefended model (“None”), and the existing
defenses DP-SGD, AdvReg, and Memguard.

Dataset Client Defense Model accuracy MIA accuracy MR
Name Parameter Train Test Best single Label Best single Label

CIFAR100 5

None - 0.9993 0.7178 0.7129 0.7134 0.9932 0.9939
FLKD T=0.70 0.8501 0.7098 0.5710 0.5638 0.8045 0.7943

DP-SGD 𝜎 = 0.01 0.8544 0.6598 0.5977 0.5984 0.9059 0.9069
AdvReg 𝜆 = 30 0.8513 0.6946 0.5772 0.5791 0.8310 0.8337

Memguard - 0.9993 0.7178 0.6417 0.7134 0.8940 0.9939

Purchase100 5

None - 0.9991 0.8268 0.6446 0.6445 0.7796 0.7795
FLKD T=0.75 &textbf0.9155 0.7900 0.5720 0.5788 0.7241 0.7327

DP-SGD 𝜎 = 0.05 0.9172 0.7698 0.6072 0.6004 0.7888 0.7799
AdvReg 𝜆 = 30 0.9109 0.7622 0.5792 0.5771 0.7599 0.7572

Memguard - 0.9991 0.8268 0.6019 0.6445 0.7280 0.7795

Texas100 5

None - 0.9969 0.5868 0.7510 0.6977 1.2798 1.1890
FLKD T=0.60 0.7023 0.6290 0.5449 0.5516 0.8663 0.8769

DP-SGD 𝜎 = 0.05 0.6578 0.5804 0.5422 0.5361 0.9342 0.9237
AdvReg 𝜆 = 50 0.7790 0.6178 0.5995 0.5868 0.9704 0.9498

Memguard - 0.9969 0.5868 0.7174 0.6977 1.2226 1.1890

0.58 0.62 0.66 0.70 0.74 0.78
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneS NoneL

FLKDS

FLKDL

MemguardS

MemguardL

AdvRegS

AdvRegL

DP SGDS

DP SGDL

(a) CIFAR100 (5 clients)

0.70 0.74 0.78 0.82 0.86
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneS

NoneL

FLKDS

FLKDL

MemguardS

MemguardL

AdvRegS

AdvRegL

DP SGDS

DP SGDL

(b) Purchase100 (5 clients)

0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneS

NoneL

FLKDS

FLKDL

MemguardS

MemguardL

AdvRegS

AdvRegL
DP SGDS

DP SGDL

(c) Texas100 (5 clients)

0.58 0.62 0.66 0.70 0.74 0.78
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneSNoneL

FLKDS

FLKDL

MemguardS

MemguardL

AdvRegS

AdvRegL

DP SGDS

DP SGDL

(d) CIFAR100 (10 clients)

0.70 0.74 0.78 0.82 0.86
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneS
NoneL

FLKDS

FLKDL

MemguardS

MemguardL

AdvRegS

AdvRegL

DP SGDS

DP SGDL

(e) Purchase100 (10 clients)

0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneS

NoneL

FLKDS

FLKDL

MemguardS

MemguardL

AdvRegS

AdvRegL
DP SGDS

DP SGDL

(f) Texas100 (10 clients)

0.58 0.62 0.66 0.70 0.74 0.78
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneSNoneL

FLKDS

FLKDL

MemguardS
MemguardL

AdvRegS
AdvRegL

DP SGDS

DP SGDL

(g) CIFAR100 (20 clients)

0.70 0.74 0.78 0.82 0.86
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y NoneS
NoneL

FLKDS

FLKDL

MemguardS

MemguardL

AdvRegS

AdvRegLDP SGDS

DP SGDL

(h) Purchase100 (20 clients)

0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneS

NoneL

FLKDS

FLKDL

MemguardS

MemguardL

AdvRegS
AdvRegL

DP SGDS

DP SGDL

(i) Texas100 (20 clients)

Fig. 7: Comparison of the MIA and model accuracies on three datasets for FLKD, an undefended model (“None”), and the existing defenses
DP-SGD, AdvReg, and Memguard. The vertical axis indicates the MIA accuracy, while the horizontal axis indicates the model
accuracy for testing. The subscripts S and L indicate the best single-query and label-only attack results, respectively, in each graph.
Points toward the bottom right in each graph represent better defenses.

a high threshold (e.g., 𝑇 = 0.95), it conducts knowledge dis- tillation only near the last round and not mitigate MIAs. On



UEDA et al.: MITIGATION OF MEMBERSHIP INFERENCE ATTACK BY KNOWLEDGE DISTILLATION ON FEDERATED LEARNING
9

the other hand, when it sets a low threshold (e.g., 𝑇 = 0.50),
it conducts knowledge distillation from early rounds, and the
model accuracy may possibly decrease. Therefore, a client
needs to set an appropriate threshold 𝑇 depending on the
model application in FLKD.

5.3 Results of changing DP-SGD noise parameter 𝜎

Figure 9 shows the MIA and model accuracies when the
noise parameter 𝜎 of DP-SGD was varied. Larger values
of 𝜎 yielded lower MIA and model accuracies. In addition,
to achieve the same privacy protection as FLKD, DP-SGD
induced a large reduction in the model accuracy. Specifi-
cally, for an MIA accuracy of about 56% on CIFAR100, the
model accuracy was about 12% lower for DP-SGD than for
FLKD. In addition, for an MIA accuracy of about 58% on
Purchase100, the model accuracy was about 6% lower for
DP-SGD than for FLKD. Finally, for an MIA accuracy of
about 55% on Texas100, the model accuracy was about 5%
lower for DP-SGD than for FLKD.

5.4 Results of changing AdvReg parameter 𝜆

Figure 10 shows the MIA and model accuracies when the
parameter 𝜆 of AdvReg was varied. On CIFAR100 and Pur-
chase100, larger values of 𝜆 yielded lower MIA and model
accuracies. Specifically, for an MIA accuracy of about 57%
on CIFAR100, the model accuracy was about 3% lower for
AdvReg than for FLKD. In addition, for an MIA accuracy of
about 58% on Purchase100, the model accuracy was about
3% lower for AdvReg than for FLKD.

On Texas100, on the other hand, as the AdvReg param-
eter 𝜆 was increased, the MIA accuracy decreased, but the
model accuracy increased. For 𝜆 = 30, 50, however, there
was no difference in the MIA or model accuracy. Therefore,
AdvReg had a limited MIA accuracy reduction and could
not achieve better privacy protection than FLKD could on
Texas100.

6. Discussion

In this section, we discuss the application of KCD in FL,
the computational cost of FLKD and the communication
overhead of FLKD.

6.1 Application of KCD to client in FL

As explained above (see Section 2.3), it is difficult to apply
KCD to clients in FL. In this section, we experimentally
demonstrate this problem. Figure 11 shows the MIA and
model accuracies when KCD was applied to clients in FL.
As the number of clients, 𝐾 , increased, the model accuracy
decreased, because the amount of training data for each client
decreased. In our setup, each client had the same number
of training samples (see Section 4.3.2). Therefore, as the
number of clients increased, each client was limited in the
amount of training data for KCD, and the model accuracy

decreased.
From this result, KCD is not a good defense against

MIAs in FL.

6.2 Computational cost of FLKD

We also compared the training and inference times of FLKD
with those of the existing defenses DP-SGD, AdvReg, Mem-
guard, and KCD. We calculated these times by using an
NVIDIA GeForce RTX 3090 with 24 GB of VRAM, 64 GB
of DRAM, and an Intel Corei7-12700 CPU. The calculation
conditions were as follows. On each dataset, the number of
training epochs was 10, and the batch sizes for training and
evaluation were 64.

• CIFAR100: We calculated the time for the client to
train the model with 10,000 training samples and the
inference time for the client to evaluate 5,000 test sam-
ples with the model.

• Purchase100: We calculated the time for the client to
train the model with 4,000 training samples and the in-
ference time for the client to evaluate 5,000 test samples
with the model.

• Texas100: We calculated the time for the client to train
the model with 10,000 training samples and the infer-
ence time for the client to evaluate 5,000 test samples
with the model.

Table 7 lists the computational costs for an undefended
model (”None”), FLKD, DP-SGD, AdvReg, Memgurad, and
KCD. Here, the undefended model (”None”) is faster than
other defense techniques in the training and inference phases.
As seen in the table, FLKD could mitigate MIAs while hav-
ing approximately the same training and inference times as
those of an undefended model (“None”).

As explained above, DP-SGD requires clipping and
adding the gradient for each batch training (see Section
2.2.3). Therefore, it had a longer training time than None, but
it had the same inference time. AdvReg requires building an
additional binary classifier (see Section 2.2.3). Therefore,
it had a significantly longer training time than None, but
with the same inference time. Memguard mitigates MIAs by
adding noise to the confidence score in the inference phase
(see Section 2.2.3). Therefore, its training time was the
same as that of None, but the inference time was signifi-
cantly increased. Finally, in KCD, the client trains multi-
ple sub-models with split training data (see Section 2.2.2).
Therefore, its training time was significantly increased over
that of None, but with the same inferecen time.

6.3 Reduction method of communication overhead on
FLKD

In Figure 5, the server additionally sends distillation mod-
els 𝜔𝑑 (𝜔𝑟

𝑘
) to the 𝑘-th client in FLKD. Therefore, FLKD

has the disadvantage that the communication cost from the
server to the clients is twice as high as for standard FL.
However, there is a technique to perform our FLKD with the



10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

0.58 0.62 0.66 0.70 0.74 0.78
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneS

T = 0.50S

T = 0.55S

T = 0.60S

T = 0.65S

T = 0.70S

T = 0.75S

T = 0.80S

T = 0.85S

T = 0.90S

T = 0.95S

(a) CIFAR100 (single-query attacks)

0.70 0.74 0.78 0.82 0.86
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneS

T = 0.50S

T = 0.55S

T = 0.60S

T = 0.65S

T = 0.70S

T = 0.75S

T = 0.80S

T = 0.85S

T = 0.90S

T = 0.95S

(b) Purchase100 (single-query attacks)

0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneS

T = 0.50S

T = 0.55S

T = 0.60S

T = 0.65S

T = 0.70S

T = 0.75S

T = 0.80S

T = 0.85S

T = 0.90S

T = 0.95S

(c) Texas100 (single-query attacks)

0.58 0.62 0.66 0.70 0.74 0.78
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneL

T = 0.50L
T = 0.55L

T = 0.60L

T = 0.65L

T = 0.70L

T = 0.75L

T = 0.80L

T = 0.85L

T = 0.90L

T = 0.95L

(d) CIFAR100 (label-only attacks)

0.70 0.74 0.78 0.82 0.86
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneL

T = 0.50L

T = 0.55L

T = 0.60L

T = 0.65L

T = 0.70L

T = 0.75L

T = 0.80L

T = 0.85L

T = 0.90L

T = 0.95L

(e) Purchase100 (label-only attacks)

0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneL

T = 0.50L

T = 0.55L

T = 0.60L

T = 0.65L

T = 0.70L

T = 0.75L

T = 0.80L

T = 0.85L

T = 0.90L

T = 0.95L

(f) Texas100 (label-only attacks)

Fig. 8: Comparison of the MIA and model accuracies on three datasets for various threshold values 𝑇 in FLKD, with five clients in FL. The
vertical axis indicates the MIA accuracy, while the horizontal axis indicates the model accuracy for testing. Points toward the bottom
right in each graph represent better defenses.

0.58 0.62 0.66 0.70 0.74 0.78
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneSNoneL

= 0.03S
= 0.03L

= 0.05S

= 0.05L

= 0.07S

= 0.07L

FLKDS

FLKDL

(a) CIFAR100

0.70 0.74 0.78 0.82 0.86
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y NoneS

NoneL

= 0.03S= 0.03L

= 0.05S

= 0.05L

= 0.07S

= 0.07L

FLKDS

FLKDL

(b) Purchase100

0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78
M

IA
 a

cc
ur

ac
y

NoneS

NoneL

= 0.03S

= 0.03L

= 0.05S

= 0.05L

= 0.07S

= 0.07L

FLKDS

FLKDL

(c) Texas100

Fig. 9: Comparison of the MIA and model accuracies on three datasets for various noise parameters 𝜎 in DP-SGD, with five clients in FL.
The vertical axis indicates the MIA accuracy, while the horizontal axis indicates the model accuracy for testing. The subscripts S
and L indicate the best single-query and label-only attack results, respectively, in each graph. Points toward the bottom right in each
graph represent better defenses.

0.58 0.62 0.66 0.70 0.74 0.78
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneSNoneL

= 1S

= 1L

= 10S= 10L

= 30S

= 30L

= 50S = 50L

FLKDS

FLKDL

(a) CIFAR100

0.70 0.74 0.78 0.82 0.86
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneSNoneL

= 1S

= 1L

= 10S

= 10L= 30S

= 30L

= 50S

= 50L FLKDS

FLKDL

(b) Purchase100

0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68
Model accuracy

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

M
IA

 a
cc

ur
ac

y

NoneS

NoneL

= 1S

= 1L

= 10S

= 10L

= 30S

= 30L

= 50S
= 50L FLKDS

FLKDL

(c) Texas100

Fig. 10: Comparison of the MIA and model accuracies on three datasets when the parameter 𝜆 of AdvReg was varied, with five clients. The
vertical axis indicates the MIA accuracy, while the horizontal axis indicates the model accuracy for testing. The subscripts S and
L indicate the best single-query and label-only attack results, respectively. Points toward the bottom right in each graph represent
better defenses.



UEDA et al.: MITIGATION OF MEMBERSHIP INFERENCE ATTACK BY KNOWLEDGE DISTILLATION ON FEDERATED LEARNING
11

0.20 0.30 0.40 0.50 0.60 0.70 0.80
Model accuracy

0.46

0.50

0.54

0.58

0.62

0.66

0.70

0.74

M
IA

 a
cc

ur
ac

y

None:K = 5S

None:K = 10S

None:K = 20S

KCD:K = 5S
KCD:K = 10S

KCD:K = 20S

FLKD:K = 5S

FLKD:K = 10S

FLKD:K = 20S

(a) CIFAR100 (single-query attacks)

0.40 0.50 0.60 0.70 0.80 0.90
Model accuracy

0.46

0.50

0.54

0.58

0.62

0.66

0.70

0.74

M
IA

 a
cc

ur
ac

y

None:K = 5S

None:K = 10S

None:K = 20S

KCD:K = 5S

KCD:K = 10S

KCD:K = 20S

FLKD:K = 5S

FLKD:K = 10S

FLKD:K = 20S

(b) Purchase100 (single-query attacks)

0.20 0.30 0.40 0.50 0.60 0.70 0.80
Model accuracy

0.46

0.50

0.54

0.58

0.62

0.66

0.70

0.74

M
IA

 a
cc

ur
ac

y

None:K = 5S

None:K = 10SNone:K = 20S

KCD:K = 5S

KCD:K = 10S

KCD:K = 20S

FLKD:K = 5S

FLKD:K = 10S
FLKD:K = 20S

(c) Texas100 (single-query attacks)

0.20 0.30 0.40 0.50 0.60 0.70 0.80
Model accuracy

0.46

0.50

0.54

0.58

0.62

0.66

0.70

0.74

M
IA

 a
cc

ur
ac

y

None:K = 5L

None:K = 10L

None:K = 20L

KCD:K = 5LKCD:K = 10L

KCD:K = 20L

FLKD:K = 5L

FLKD:K = 10L

FLKD:K = 20L

(d) CIFAR100 (label-only attacks)

0.40 0.50 0.60 0.70 0.80 0.90
Model accuracy

0.46

0.50

0.54

0.58

0.62

0.66

0.70

0.74

M
IA

 a
cc

ur
ac

y
None:K = 5L

None:K = 10L

None:K = 20L

KCD:K = 5L

KCD:K = 10L

KCD:K = 20L

FLKD:K = 5L

FLKD:K = 10L

FLKD:K = 20L

(e) Purchase100 (label-only attacks)

0.20 0.30 0.40 0.50 0.60 0.70 0.80
Model accuracy

0.46

0.50

0.54

0.58

0.62

0.66

0.70

0.74

M
IA

 a
cc

ur
ac

y

None:K = 5L

None:K = 10L

None:K = 20L

KCD:K = 5L

KCD:K = 10L

KCD:K = 20L
FLKD:K = 5L

FLKD:K = 10L

FLKD:K = 20L

(f) Texas100 (label-only attacks)

Fig. 11: Comparison of the MIA and model accuracies on three datasets when the number of clients was varied in KCD, with the number of
divisions, 𝑠, set to 10. The vertical axis indicates the MIA accuracy, while the horizontal axis indicates model accuracy for testing.
Points toward the bottom right represent better defenses.

Table 7: Comparison of the computational costs on three datasets for an undefended model (“None”), FLKD, and the existing defenses
DP-SGD, AdvReg, Memguard, and KCD.

None FLKD DP-SGD AdvReg Memguard KCD

CIFAR100 Training time 36.00s 37.87s 95.43s 123.36s 36.00s 2361.84s
Inference time 1.87s 1.87s 1.87s 1.87s 1256.61s 1.87s

Purchase100 Training time 0.62s 0.64s 4.85s 3.46s 0.62s 21.71s
Inference time 0.05s 0.05s 0.05s 0.05s 1156.80s 0.05s

Texas100 Training time 2.44s 2.48s 28.59s 6.25s 2.44s 74.65s
Inference time 0.06s 0.06s 0.06s 0.06s 1314.39s 0.06s

Processing on client

𝑪𝒕

𝑫𝒕

Dataset
(𝒏𝒕 samples)

Processing on serverCommunication channel

𝝎𝒓+𝟏

Aggregation of all client models

…

𝝎𝟏
𝒓

𝝎𝒕
𝒓

𝝎𝑲
𝒓

𝝎𝒓+𝟏

𝝎𝒕
𝒓+𝟏

𝝎𝒅(𝝎𝒕
𝒓)

Distillation model 
of 𝒕-th client

FLKD

𝝎𝒅(𝝎𝒕
𝒓)

𝒏

𝒏 − 𝒏𝒕

𝝎𝒓+𝟏

Server
model

𝝎𝒕
𝒓

𝒏𝒕
𝒏
×

Local model 
in 𝒓-th round

−

Distillation model 
of 𝒕-th client

Calculate the 
distillation model

Update model
𝝎𝒕
𝒓+𝟏

Local model in 
(𝒓 + 𝟏)-th round

Fig. 12: Reduction method of communication overhead on FLKD.

comparable communication costs as standard FL. Figure 12
shows the reduction method of communication overhead on
FLKD. In this technique, clients calculate their distillation
model instead of receiving them from the server. To com-
pute the distillation model, the client needs the number of

training samples for all clients 𝑛, which is not confidential
information and can be received from the server. Each client
can calculate its distillation model with the following steps:



12
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

𝜔𝑟+1 =
𝐾∑
𝑘=1

𝑛𝑘
𝑛
𝜔𝑟𝑘 , (7)

𝜔𝑑 (𝜔𝑟𝑡 ) =
𝐾∑

𝑘=1,𝑘≠𝑡

𝑛𝑘
𝑛 − 𝑛𝑡

𝜔𝑟𝑘

=

{
𝐾∑
𝑘=1

𝑛𝑘
𝑛
𝜔𝑟𝑘 −

𝑛𝑡
𝑛
𝜔𝑟𝑡

}
· 𝑛

𝑛 − 𝑛𝑡

=
{
𝜔𝑟+1 − 𝑛𝑡

𝑛
𝜔𝑟𝑡

}
· 𝑛

𝑛 − 𝑛𝑡
,

(8)

where 𝜔𝑟+1 is the server model in (𝑟 + 1)-th round, 𝜔𝑟𝑡 is
the local model of the 𝑡-th client and 𝑛𝑡 is the number of
training samples on the 𝑡-th client. Note that the 𝑡-th client
has the server model 𝜔𝑟+1, the number of training samples
on the 𝑡-th client 𝑛𝑡 , and the local model of the 𝑡-th client 𝜔𝑟𝑡
in the standard FL procedure; the only additional knowledge
required to perform our FLKD is 𝑛. Since 𝑛 is an integer
scalar value, sending this is small enough to be negligi-
ble compared to the model parameter exchange performed
in the standard FL. Therefore, FLKD can mitigate MIAs
at the equivalent communication costs as standard FL. In
addition, the computational cost that the client additionally
calculates the distillation model is negligible, since the distil-
lation model can be calculated by only a few multiplications
and subtraction.

7. Conclusion

In this paper, we proposed a defense against MIAs that uses
knowledge distillation in a way that is suitable for FL. Our
proposed defense, called federated learning knowledge dis-
tillation (FLKD), can mitigate MIAs without a lot of training
data and computational cost, in contrast to existing defenses
such as KCD and SELENA. We compared FLKD with the
existing defenses DP-SGD, AdvReg, Memguard, and KCD
in terms of the tradeoff between the task and MIA accuracies
on the CIFAR100, Purchase100, and Texas100 datasets.

In our experimental results, FLKD showed the best ac-
curacy tradeoff on these tasks, as compared to the exist-
ing defenses. Specifically, on CIFAR100, FLKD reduced
single-query attacks by 14% and label-only attacks by 15%
with a 1% reduction in model accuracy as compared to an
undefended model. On Purchase100, as compared to the
undefended model, it reduced single-query attacks by 7%
and label-only attacks by 7% with a 3% reduction in model
accuracy. Finally, on Texas100, FLKD reduced single-query
attacks by 21% and label-only attacks by 14% without de-
grading the model accuracy.

In addition, FLKD achieved the best computational cost
in terms of the training and inference times. In FLKD, each
client mitigates MIAs by using a distillation model built
on the server, rather than building the distillation model
itself. Therefore, FLKD requires only as much as training
and inference time as an undefended model. By the clients

calculating their distillation model instead of the server, the
communication costs can be reduced to the same level as
standard FL.

In our future work, we evaluate the MIA privacy risk
and the model utility of the FLKD in white-box MIAs [2].

References

[1] T. Li, A.K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol.37, no.3, pp.50–60, 2020.

[2] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference
attacks against centralized and federated learning,” 2019 IEEE sym-
posium on security and privacy (SP), pp.739–753, IEEE, 2019.

[3] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” 2017 IEEE sym-
posium on security and privacy (SP), pp.3–18, IEEE, 2017.

[4] X. Tang, S. Mahloujifar, L. Song, V. Shejwalkar, M. Nasr,
A. Houmansadr, and P. Mittal, “Mitigating membership inference
attacks by self-distillation through a novel ensemble architecture,”
31st USENIX Security Symposium, USENIX Security 2022, Boston,
MA, USA, August 10-12, 2022, ed. K.R.B. Butler and K. Thomas,
pp.1433–1450, USENIX Association, 2022.

[5] G.E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” CoRR, vol.abs/1503.02531, 2015.

[6] V. Shejwalkar and A. Houmansadr, “Membership privacy for machine
learning models through knowledge transfer,” Proceedings of the
AAAI conference on artificial intelligence, pp.9549–9557, 2021.

[7] R. Chourasia, B. Enkhtaivan, K. Ito, J. Mori, I. Teranishi, and
H. Tsuchida, “Knowledge cross-distillation for membership privacy,”
Proceedings on Privacy Enhancing Technologies, vol.2, pp.362–377,
2022.

[8] M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang, “Deep learning with differential privacy,” Pro-
ceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pp.308–318, 2016.

[9] M. Nasr, R. Shokri, and A. Houmansadr, “Machine learning with
membership privacy using adversarial regularization,” Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2018, Toronto, ON, Canada, October 15-19,
2018, ed. D. Lie, M. Mannan, M. Backes, and X. Wang, pp.634–646,
ACM, 2018.

[10] J. Jia, A. Salem, M. Backes, Y. Zhang, and N.Z. Gong, “Memguard:
Defending against black-box membership inference attacks via adver-
sarial examples,” Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, ed. L. Cavallaro, J. Kinder, X. Wang, and
J. Katz, pp.259–274, ACM, 2019.

[11] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B.A. y Ar-
cas, “Communication-efficient learning of deep networks from de-
centralized data,” Artificial intelligence and statistics, pp.1273–1282,
PMLR, 2017.

[12] Y. Liu, J. Peng, J. Kang, A.M. Iliyasu, D. Niyato, and A.A.A. El-
Latif, “A secure federated learning framework for 5g networks,” IEEE
Wireless Communications, vol.27, no.4, pp.24–31, 2020.

[13] M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central dif-
ferential privacy for robustness and privacy in federated learning,”
arXiv preprint arXiv:2009.03561, 2020.

[14] S. Yeom, I. Giacomelli, A. Menaged, M. Fredrikson, and S. Jha,
“Overfitting, robustness, and malicious algorithms: A study of po-
tential causes of privacy risk in machine learning,” J. Comput. Secur.,
vol.28, no.1, pp.35–70, 2020.

[15] C.A. Choquette-Choo, F. Tramèr, N. Carlini, and N. Papernot, “Label-
only membership inference attacks,” Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML 2021, 18-24 July



UEDA et al.: MITIGATION OF MEMBERSHIP INFERENCE ATTACK BY KNOWLEDGE DISTILLATION ON FEDERATED LEARNING
13

2021, Virtual Event, ed. M. Meila and T. Zhang, Proceedings of
Machine Learning Research, vol.139, pp.1964–1974, PMLR, 2021.

[16] Z. Li and Y. Zhang, “Membership leakage in label-only exposures,”
CCS ’21: 2021 ACM SIGSAC Conference on Computer and Com-
munications Security, Virtual Event, Republic of Korea, November
15 - 19, 2021, ed. Y. Kim, J. Kim, G. Vigna, and E. Shi, pp.880–895,
ACM, 2021.

[17] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

Rei Ueda received his B.E. in electronic en-
gineering fron Ritsumeikan University in 2023.
He is currently a master’s student at the Graduate
School of Science and Engineering, Ritsumeikan
University. His research interests include ma-
chine learning. He is a member of IEICE.

Tsunato Nakai received the B.E., M.E., and
Ph.D. in engineering from Ritsumeikan Univer-
sity, Japan, in 2013, 2015, and 2022. His re-
search interests include machine learning, hard-
ware and industrial control system security. He
is a member of IPSJ.

Kota Yoshida received his B.E., M.E., and
Ph.D. in engineering from Ritsumeikan Univer-
sity in 2017, 2019, and 2022. He is currently an
assistant professor in Department of Electronic
and Computer Engineering at Ritsumeikan Uni-
versity. His research interests include machine
learning and hardware security. He is a member
of IEICE, IEEE, JSAI.

Takeshi Fujino was born in Osaka, Japan,
on March 17, 1962. He received his B.E. and
M.E., and Ph.D. in electronic engineering from
Kyoto University, Kyoto, Japan, in 1984, 1986,
and 1994. He joined the LSI Research and
Development center, Mitsubishi Electric Corp.
in 1986. Since then, he had been engaged in
the development of micro-fabrication processes,
such as electron beam lithography, and embed-
ded DRAM circuit design. He has been a profes-
sor at Ritsumeikan University since 2003. His

research interests include hardware security such as side-channel attacks and
physically unclonable functions. He is a member of IEICE, IPSJ, IEEE.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

