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SUMMARY Differential deep learning analysis (DDLA) was proposed
as a side-channel attack (SCA) with deep learning techniques in non-profiled
scenarios at TCHES 2019. In the proposed DDLA, the adversary sets the
LSB or MSB of the intermediate value in the encryption process assumed for
the key candidates as the ground-truth label and trains a deep neural network
(DNN) with power traces as an input. The adversary also observes metrics
such as loss and accuracy during DNN training and estimates that the key
corresponding to the best-fitting DNN is correct. One of the disadvantages
of DDLA is the heavy computation time for the DNN models because the
number of required models is the as same as the number of key candidates,
which is 256 in the case of AES. Therefore 4096 DNNs are required for
revealing keys of 16 bytes. Furthermore, the DNN models have to be trained
again if the adversary changes a ground-truth label function from LSB to
other labels such as MSB or HW. We propose a new deep-learning-based
SCA in a non-profiled scenario to solve these problems. Our core idea
is to extract feature of the leakage waveform using DNN. The adversary
reveals the correct keys by conducting cluster analysis using the feature
vectors extracted from power traces using DNN. We named this method as
CA-SCA (cluster-analysis-based side-channel attacks), it is advantageous
that only one DNN needs to be trained to reveal all key bytes. In addition,
once the DNN is trained, multiple label functions can be tested without the
additional cost of training DNNs. We provide four case studies of attacking
against AES, including two software implementations and two hardware
implementations. Our attacks against software implementations provide
methods using a concatenated dataset that efficiently train the DNN. Also,
our attack on the hardware implementation introduces multitask learning
to exploit the Hamming distance leakage model. The results show that
the proposed method requires fewer waveforms to reveal all key bytes than
DDLA owing to the efficient learning performance on the above methods.
Comparing the computation time to process the same number of waveforms,
the proposed method requires only about 1/75 and 1/25 of the time when
attacking software and hardware implementations, respectively, due to the
significant reduction in the number of training models.
key words: side-channel attacks, deep-learning, cluster analysis.

1. Introduction

1.1 Background and related works

Side-channel attacks (SCAs) reveal secret information, such
as cryptographic keys, by observing leakage waveforms,
such as power consumption and electromagnetic radiation.
The adversary constructs a statistical model between leakage
waveforms and values calculated from the internal state of
the encryption process The methods used to calculate in-
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termediate values depend on the assumed leakage models
and implementation of the target device. When attacking
against software implementation, Hamming weight (HW) of
intermediate value is used most often. On the other hand,
when attacking against hardware implementation, Hamming
distance (HD) between registers on consecutive clock edges
is used most often.

SCA involves two types of scenarios: profiled and non-
profiled attacks. In a profiled scenario, the adversary uses
a profiled device whose cryptographic key is known. The
adversary constructs a statistical model using leakage wave-
forms acquired from the profiled device (profiling phase) and
reveals the cryptographic key in a targeted device by utilizing
the model (attack phase). This approach has the drawback
that the experimental conditions for acquiring waveforms
must be consistent between the profiling and attack phase.
Conventional attacks in profiled scenarios include template
attacks [1]. In a non-profiled scenario, the adversary has the
advantage of not requiring a profiled device, but has the diffi-
culty of building a statistical model of side-channel informa-
tion from the targeted device. Typical attacks in non-profiled
scenarios include differential power analysis focusing on the
difference of leakage waveforms [2] and correlation power
analysis that assumes a correlation between leakage wave-
forms and intermediate value [3]. In this paper, we deal with
non-profiled scenarios.

Since 2016, deep-learning-based side-channel attacks
(DL-SCAs) have been discussed as an approach that differs
from conventional SCAs [4] [5] [6] [7] [8]. In many cases,
the attack based on the profiled scenario had been stud-
ied. On the other hand, differential deep learning analysis
(DDLA) was proposed in the non-profiled scenario by Timon
[9]. In DDLA, the adversary must train as many deep neural
networks (DNNs) as key candidates. The DNN is trained to
predict the intermediate values calculated from plaintext and
each key candidate. Then, the adversary guesses that the key
corresponding to the DNN model with the best learning met-
rics (loss, accuracy, etc.) among those models is the correct
key. Timon evaluated its attack performance with ASCAD,
which is a public dataset [10], and software-implemented
AES without SCA countermeasures in Atmel XMEGA128,
software-implemented AES with jitterling countermeasure,
and software-implemented AES with second-order mask-
ing. Kuroda et al. studied practical DDLA aspects against
software-implemented AES with two kinds of masking coun-
termeasure, including rotating s-boxes masking, and the full
key bytes (16 bytes) were successfully revealed [11] [12].
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Alipour et al. provided hiding countermeasures to interfere
with model learning in DDLA [13]. Kwon et al. applied
an early stopping method to prevent over-fitting in DDLA
[14]. They also improved the speed by training DNNs in
parallel. Hoang et al. introduced DDLA based on multi-
output classification [15]. This enables faster attacks than
parallel networks. Do et al. also introduced DDLA using
multi-output classification (MOC) and multi-output regres-
sion (MOR) [16]. It performs faster and achieves higher
attack performance than single-output approaches. Do et al.
investigated DNN models for DDLA and the effect of hiding
countermeasures due to noise generation [17]. Meanwhile,
Wu et al. took a different approach which used plaintext
labeling to conduct non-profiled DL-SCA [18].

1.2 Our contribution

In this study, we propose a non-profiled DL-SCA based on
an approach different from DDLA called CA-SCA (cluster-
analysis-based side-channel attacks). CA-SCA uses DNN
to extract the feature of waveform and reveals the key via
cluster analysis of extracted feature vectors. We provide a
method using two kinds of DNNs, autoencoder (AE) and
convolutional neural network (CNN). In our attacks against
software implementations, we provide an efficient method for
training DNNs by taking advantage of the fact that encryption
is a sequential process. In our attacks against hardware
implementations, we introduce DNNs to handle multiple
tasks in order to focus on the HD leakage model.

The contributions of this study are summarized as fol-
lows.

• We propose a new non-profiled DL-SCA called CA-
SCA which is a different approach from DDLA. We pro-
vide two types of attacks: AE-based attacks and CNN-
based attacks. The latter method which train CNNs
using plaintext as the ground-truth label can success-
fully revealed the software- and hardware- implemented
AES protected with SCA countermeasures.

• For attacking software-implemented AES, a ”concati-
nated dataset” procedure in which one waveform is di-
vided into 16 datasets is applied. This approach take ad-
vantage of the fact that the software-implemented AES
is sequentially processed byte-by-byte. This method
improves the training efficiency of the DNN, and only
one DNN training is required to reveal 16. We pro-
vide two case studies on software implementation (Case
study S-1 and S-2). Case study S-1 involves AES with-
out SCA countermeasures. Case study S-2 involves the
ASCAD database.

• For attacking hardware-implemented AES, we apply a
”multi-task learning method” where one DNN outputs
16 labels. This method is advantageous for training
a single waveform containing 16 bytes parallel pro-
cessing. Furthermore, this method also reveal 16 byte
keys by training a single model. We also provide
two case studies focusing on hard- ware implementa-

tion (Case study H-1 and H-2). Case study H-1 in-
volves ASIC-implemented AES without SCA counter-
measures. Case study H-2 involves ASIC- implemented
AES with RSM countermeasures.

• From the computation times of CA-SCA measured in
these 4 case studies, it is clear that the time required
to reveal 16-byte keys is significantly reduced. The
main reason for these results is that the number of DNN
models is 1 for CA-SCA compared to 4096 for DDLA.

This paper is an extended version of [19] that adds at-
tacks against hardware implementations and comparisons
to DDLA variants.

1.3 Paper organization

The remainder of this paper is organized as follows. Sec-
tion 2 provides preliminary information on non-profiled at-
tacks such as CPA and DDLA. Section 3 describes a new
non-profiled attack using cluster analysis as the proposed
method. Section 4 provides two case studies describing at-
tacks against software implementations. Section 5 provides
two case studies describing attacks against hardware imple-
mentations. Section 6 discusses comparisons with other non-
profiled attack methods. Section 7 summarizes our work.

2. Preliminary

2.1 Correlation power analysis

Correlation power analysis (CPA) is a side-channel attack
that does not use deep-learning techniques in a non-profiled
scenario [3]. The following Pearson’s correlation coeffi-
cients 𝑝 are used in this attack.

𝑝 =
E[(𝑊 − 𝜇𝑊 ) (𝐻 − 𝜇𝐻 )]√︁

E[(𝑊 − 𝜇𝑊 )2] · E[(𝐻 − 𝜇𝐻 )2]
, (1)

where 𝑊 , 𝐻, 𝜇𝑊 , 𝜇𝐻 , and E[·] denote the waveform, the
intermediate value when the key is assumed, the average
value of𝑊 , the average value of 𝐻, and the expectation. The
adversary calculates the correlation coefficient 𝑝 for each
candidate key and estimates that the key corresponding to
the highest 𝑝 is the correct key.
Why CPA works well?: Targets without SCA countermea-
sures correlate with the internal state during the encryption
process (e.g., Hamming weight (HW) of intermediate val-
ues, Hamming distance (HD) of register transitions) and the
leakage waveform. When assuming the incorrect key, there
is no correlation between the leakage waveform and the in-
ternal state considering the key. In contrast, when assuming
the correct key, there is a correlation between the leakage
waveform and the HW/HD of the intermediate value con-
sidering the key. Therefore, an adversary can estimate the
key by comparing each correlation coefficient. However, the
adversary cannot attack when there is no correlation between
the waveform and HW/HD of the intermediate value due to
some countermeasures such as masking or hiding.
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2.2 Differential deep-learning analysis

In TCHES 2019, Timon proposed differential deep-learning
analysis (DDLA) as deep-learning-based side-channel anal-
ysis in non-profiled scenarios [9]. The adversary prepares
the DNN modelsM𝜃𝑘 with the same number of candidate
keys, where each DNN is trained with intermediate values
I(𝑘, P) as ground-truth labels calculated from plaintext P and
each candidate key 𝑘 . Cryptographic keys are estimated by
comparing the evaluation metrics (loss and accuracy) when
each model is trained. When focusing on loss, the candidate
key corresponding to the model with the lowest loss score
is estimated as the correct key. 𝐿 (M𝜃𝑘 (T), I(𝑘, P)) denotes
the loss with the ground-truth label I(𝑘, P) when the leakage
waveforms T are input to the DNN modelM𝜃𝑘 with model
parameter 𝜃𝑘 . When focusing on accuracy, the candidate key
corresponding to the model with the highest accuracy score
is estimated as the correct key. The algorithm of DDLA,
when focusing on loss metrics, is shown in Algorithm 1,
where I(·) denotes the label computation function, which is
used to compute intermediate values during the encryption
process using the plaintext P and key candidate 𝑘 . In the
case of attacks against software-implemented AES at the 1st
round of encryption, I(·) is given as follows.

I(𝑘, P) = LSB(S-Box(𝑘 ⊕ P)), (2)

where 𝑘 denote the key candidate, P denote the plaintext,
S-Box(·) denote the S-Box function of the AES and LSB(·)
is a function used to get the least significant bit (LSB) when
the argument is converted to binary. Adversary can change
LSB(·) to MSB(·) that means the most significant bit (MSB).
Advantage of DDLA: In this attack, the DNN builds the re-
lationship between leakage waveforms and intermediate val-
ues from scratch during the key-dependent encryption pro-
cess. Unlike 1st-order CPA, this relationship is not limited
to correlation at the single point in the time series waveform.
For example, it is possible to construct a DNN that combines
the features of the two points where the mask and masked
values are processed during masking countermeasures. The
relationship exists when the key candidate is correct and the
training loss is reduced. In contrast, when the key candidate
is incorrect, the relationship does not exist, and the training
loss is not reduced. Therefore, the adversary can estimate
the key by comparing the training loss.
Disadvantage of DDLA: DDLA requires 256 × 16 models
to reveal all key bytes (128bit) in AES. Thus, a very long
computation time is required. Furthermore, the re-training
of the model is necessary when the adversary attempts to
change the label function applied to the intermediate values.

3. Proposed method

3.1 Core idea

We propose a non-profiled SCA method via cluster analysis
of feature vectors which are extracted from the waveforms

Algorithm 1 Differential deep-learning analysis (using loss
metrics)
Input: Leakage Traces T, Plain-text P, Key space K,

Number of epoch 𝑁ep, DNN model parameters 𝜃𝑘 (𝑘 ∈ K) ,
Base DNN model parameters 𝜃base

Output: Estimated key 𝑘∗

1: for 𝑘 in K do
2: 𝜃𝑘 = 𝜃base
3: for epoch = 1 to 𝑁ep do
4: TrainingM𝜃𝑘

with (T, I(𝑘, P))
5: lloss [𝑁ep ] = 𝐿 (M𝜃𝑘

(T) , I(𝑘, P) )
6: end for
7: Lloss [𝑘 ] = min lloss
8: end for
9: 𝑘∗ = arg min

𝑖

Lloss [𝑖 ]

10: return 𝑘∗

by using deep-learning techniques. We called this method
CA-SCAs.

The core ideas of CA-SCAs are as follows. Sufficiently
trained DNN models obtain a relationship between the ac-
quired waveforms and the cryptographic intermediate val-
ues. We expect that the distribution of the feature vectors
extracted by DNNs to follow the intermediate values. The
feature vectors are distributed based on the correct intermedi-
ate values when the adversary’s hypothetical key is correct,
as shown 𝑘̂ = correct key in Fig. 1. In contrast, the fea-
ture vectors are mixed by the incorrect intermediate values
when the adversary’s hypothetical key is incorrect, as shown
𝑘̂ = 0x00 in Fig. 1. As described above, an adversary
can select the most suitable relationship between the feature
vectors and intermediate values from the key candidates by
making hypotheses about the relationship and comparing the
fitness of each hypothesis. Each fitness is calculated using
the Calinski-Harabasz index, which is one of the metrics
used to evaluate clusters, described in section 3.2.

CA-SCAs offer the following advantages.

• The number of deep learning models trained for feature
extraction is greatly reduced compared to DDLA, which
requires many deep learning models. This is highly
effective for the reduction of computing resources for
model training.

• The adversary can try many kinds of cluster analysis
by changing different leakage models such as HW and
HD (details will be described in section 3.3) once the
feature vectors have been extracted from DNN models.

• SCA countermeasures such as masking can be success-
fully analyzed by introducing supervised training on
models for feature extraction.

The basics of CA-SCAs are explained below. An
overview of CA-SCAs is shown in Fig. 1. First, the adver-
sary trains a DNN model for feature extraction of the leakage
waveform. Next, the adversary extracts feature vectors from
the leakage waveforms by using the trained DNN. It is noted
that each feature vector is corresponding to the intermediate
values which is determined by plaintext and key candidate.
Finally, the adversary conducts cluster analysis on the feature
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Fig. 1: Overview of cluster-analysis-based side-channel at-
tacks (CA-SCAs)

vectors by using the label (i.e, LSB, MSB, HW, HD) of the
intermediate values. Fig. 1 shows the schematic diagram of
cluster analysis using LSB. If the labeling is performed with
the correct key, the dots with the same label are clustered
together, and the dots with different labels are plotted apart
from each other as shown 𝑘̂ = correct key in the figure. On
the other hand, the dots are randomly scattered in case of
incorrect key as shown as 𝑘̂ = 0x00 in the figure. The adver-
sary estimates the candidate key corresponding to the most
appropriately clustered plot to be the correct key.

The quantitative score used in the cluster analysis is
the Calinski-Harabasz index, which is described in section
3.2. In this study, auto-encoder (AE) and convolutional
neural network (CNN) are used as DNN models, and their
respective attack procedures are described in sections 3.4
and 3.5, respectively.

3.2 Calinski-Harabasz index

We used the Calinski-Harabasz index (CH index) for cluster
analysis. The CH index is the variance ratio criterion, and
a higher score indicates a better-defined cluster [20]. Given
a dataset of 𝑁 points: {𝑥1, · · · , 𝑥𝑁 }, and the assignment of
these points to 𝑘 clusters: {𝐶1, 𝐶2, · · · , 𝐶𝑘}, the CH index
is formulated as follows.

CHindex =
𝐵𝑘

𝑊𝑘

× 𝑁 − 𝑘

𝑘 − 1
, (3)

𝐵𝑘 =

𝑘∑︁
𝑖=1

𝑛𝑖 | |𝑚𝑖 − 𝑚 | |22, (4)

𝑊𝑘 =

𝑘∑︁
𝑖=1

∑︁
𝑥∈𝐶𝑖

| |𝑥 − 𝑚𝑖 | |22, (5)

where 𝐵 and 𝑊 between-class variance, and within-class
variance, respectively. where 𝑚𝑖 , 𝑚, and 𝑛𝑖 denote the cen-
ter of cluster 𝐶𝑖 , the overall center of source points, and
the number of points assigned to 𝑖-th cluster, respectively.
Meanwhile, | |𝑥 − 𝑚𝑖 | |2 and | |𝑚𝑖 − 𝑚 | |2 denote the L2 norm
of the two vectors. In this paper, given a set of feature-
extracted vectors X = {𝑥1, · · · , 𝑥𝑁 } and a set of their labels
L = {𝑙1, · · · , 𝑙𝑁 }; the label represents the assignment of
the corresponding waveform to clusters. The function to
calculate the CH index is denoted as CH(X,L). In our ex-
periments, we used a scikit-learn implementation†, where
†See the following URL for a detailed implementation.

https://scikit-learn.org/stable/modules/clustering.
html

the CH index is calculated with multivariate data as input
data X.

The score has no upper limit. A higher score indicates
that the cluster is well formed. In contrast, a score closer to 0
indicates an inappropriate cluster, i.e., a mixture of classes.

3.3 Selected function for calculation of CH index

Once a DNN model is trained for feature extraction, CA-SCA
can try multiple attacks using various leakage models. The
calculation of the CH index requires labels indicating which
cluster the input vector belongs to, and the function that
calculates the labels can be changed. The leakage functions
for CH index used in this study are explained below.

When attacking a software-implemented application on
a microcontroller, the adversary typically uses the following
intermediate value.

𝑣 = S-Box(𝑘𝑡 ⊕ P𝑡 ), (6)

where S-Box(·), 𝑘𝑡 , and P𝑡 denote the S-Box function, the
𝑡-th byte cryptographic key, and the 𝑡-th byte plaintext, re-
spectively.

Although the intermediate value itself can be used as
labels, three labeling functions from the intermediate values
were used in this study and are described below.

• Hamming weight of intermediate value: The adver-
sary conducts cluster analysis on the label of HW, as
same as attack with CPA. This exploits the fact that the
value of the all microcontroller’s precharge bus affects
the power consumption. In this case, the number of
label is nine from HW=0 to HW=8. In this paper, the
function is defined as follows.

𝑓hw (𝑣) = HW(𝑣), (7)

where HW(·) is a function that calculates the Hamming
weight of its arguments. CH index 𝑠 focused on HW
labeling is computed using the feature-extracted vectors
X as follows.

𝑠 = CH(X, 𝑓hw (𝑣)). (8)

• Mono-bit including LSB/MSB: The adversary con-
ducts cluster analysis in mono-bit labeling, including
LSB/MSB, as it does when attacking with DDLA. This
exploits the fact that the value of the single microcon-
troller’s precharge bus affects the power consumption.
For example, in the case of LSB labeling, there are two
classes which are LSB=0 group and LSB=1 group. In
this paper, the function is defined as follows.

𝑓mono (𝑣, 𝑏) = 𝑣 ⊕ 2𝑏, (9)

where 𝑏 is the bit position to be selected. For example,
when LSB labeling is selected, 𝑏 is 0. CH index 𝑠

focused on LSB labeling is computed using the feature-
extracted vectors X as follows.

𝑠 = CH(X, 𝑓mono (𝑣, 0)). (10)
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When all bits (i.e., multi-bit) are used, the CH index 𝑠

is the sum of the respective CHindex, as in Eq.(11).

𝑠 =

7∑︁
𝑏=0

CH(X, 𝑓mono (𝑣, 𝑏)), (11)

where X, 𝑣 and 𝑏 denote the feature-extracted vectors,
the value calculated using Eq. (6), and the bit position,
respectively. The adversary calculated and compared
these sum values for each candidate key.
When attacking against a hardware-implemented appli-

cation on FPGA or ASIC, the adversary typically uses transi-
tion value of register. This exploits the fact that the transition
of the register on the device affects power consumption. In
general, the adversary focuses on the last round (10th round
in case of AES-128) of AES when they know the ciphertext
C. The transition value of register is formulated as follows.

𝑣 = C𝑠 (𝑡 ) ⊕ S-Box−1 (𝑘𝑡 ⊕ C𝑡 ), (12)

where S-Box−1 (·), 𝑘𝑡 , C𝑡 , and C𝑠 (𝑡 ) denote the inverse S-
Box function, the t-th cryptographic key, the t-th ciphertext,
and the ciphertext of corresponding to the target byte 𝑡 con-
sidering ShiftRows, respectively. In this case, it is possible
to conduct CA-SCA by adapting the register transition 𝑣 to
the above three label functions.

3.4 Procedure of CA-SCA with autoencoder

Auto-encoder (AE) is a type of DNN for achieving feature
extraction via unsupervised training [21]. AE learns to make
the input and output the same, then the difference between
them are often used for anomaly detection. In this study, we
train AE by the leakage waveforms to obtain feature vectors
which will be used for clustering on the CA-SCAs.

AE consists of an encoder and decoder, as shown in Fig.
2. The input data are compressed into latent variables (fea-
ture vectors) using the encoder and then reconstructed to its
original dimensions using the decoder. AE is unsupervised
learning in which the loss between the output and input data
is minimized.

The attack procedure of CA-SCA with AE is shown in
Algorithm 2. First, an AE consisting of an encoder M𝜃e
with parameters 𝜃e and a decoderM𝜃d with parameters 𝜃d
is trained unsupervised using waveforms set T (lines 1-3 in
algorithm 2). Next, the waveforms in the S-Box process cor-
responding to the target byte are input to the trained encoder
M𝜃e , and their latent variables X are calculated (line 4 in
algorithm 2). Finally, the adversary performs a cluster anal-
ysis of X using the label computed from the candidate keys
and plaintext according to the assumed leakage model (e.g.,
LSB of S-Box out in the first round). This cluster analysis
is performed for each candidate key, and the candidate key
with the highest CH index is estimated to be the correct key.

3.5 Procedure of CA-SCA with convolutional neural net-
work

CA-SCA, described in the previous section, can be extended

Encoder Decoder

L
a
te

n
t 

v
a
ri
a
b
le

Loss minimization

Feature vectors

Fig. 2: Feature vectors extraction using auto-encoder in CA-
SCA

Algorithm 2 Cluster-analysis-based side-channel attacks
with auto-encoder
Input: Leakage Traces T, Plain-text P, Key space K,

Number of epoch 𝑁ep, Encoder parameter 𝜃e,
Decoder parameter 𝜃d

Output: Estimated key 𝑘∗

1: for epoch = 1 to 𝑁ep do
2: TrainingM𝜃e ,M𝜃d with T // Training of AE
3: end for
4: X = M𝜃e (T) //Extract feature vectors (Latent Variables) on AE
5: for target byte = 0 to 15 do
6: for 𝑘 in K do
7: 𝑣 = S-Box(𝑘 ⊕ Ptarget byte )
8: Scal [𝑘 ] ← CH-index is calculated with 𝑣 and X by Eq. (8), (10),

or (11)
9: end for

10: 𝑘∗ [target byte] = arg max
𝑖

Scal [𝑖 ]

11: end for
12: return 𝑘∗

to a method using supervised learning. One method of su-
pervised learning is convolutional neural networks (CNNs).
The procedure of CA-SCA with CNNs is described below.

It is necessary to consider how to label the leakage wave-
forms since CNN is supervised learning that requires ground-
truth label. CA-SCA with CNN uses plaintext/ciphertext as
labels. Plaintext is used for 1st round in software imple-
mentation and ciphertext is used for last round in hardware
implementation. Here, we explain why plaintext labeling
is effective in CA-SCA against software-implemented AES.
SCAs against software-implemented AES generally focus on
the S-Box output 𝑣 at the first round shown below.

𝑣 = S-Box(𝑘∗ ⊕ P), (13)

where 𝑘∗, P and S-Box(·) denote correct key, plaintext, and
S-Box function. In case of the DDLA training, the interme-
diate value 𝑣 is used as the supervised output label. In our
CA-SCAs, the plaintext P is used as the supervised output
label to avoid different labels for each key candidate, but it
has been described in [22] that a similar training model can
be obtained.

The procedure of CA-SCAs using CNN is explained
using Algorithm 3. At first, a CNN consisting of a fea-
ture extraction layerM𝜃f and a classification layerM𝜃c as
shown 3 is trained using a waveform set T and plaintext P
(lines 1-3 in algorithm 3). The trained CNN outputs the
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Algorithm 3 Cluster-analysis-based side-channel attacks
with convolutional neural network
Input: Leakage Traces T, Plaintext P, Key space K,

Number of epoch 𝑁ep, feature extractor layers parameter 𝜃f ,
classification layers parameter 𝜃c

Output: Estimated key 𝑘∗

1: for epoch = 1 to 𝑁ep do
2: TrainingM𝜃f ,M𝜃e with (T, P) // Supervised training of CNN
3: end for
4: X = M𝜃f (T)

// X is the feature vectors which is used for cluster-analysis.
5: for target byte = 0 to 15 do
6: for 𝑘 in K do
7: 𝑣 = S-Box(𝑘 ⊕ Ptarget byte )
8: Scal [𝑘 ] ← CH-index is calculated with 𝑣 and X by Eq. (8), (10),

or (11)
9: end for

10: 𝑘∗ [target byte] = arg max
𝑖

Scal [𝑖 ]

11: end for
12: return 𝑘∗
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Fig. 3: Feature vectors extraction using convolutional neural
network in CA-SCA

probability of plaintext given the waveforms 𝑤 (it is illus-
trated as 𝑝(Plaintext = 0x02|𝑤0) in Fig. 3). Next, feature
maps are calculated using the trained feature extraction layer
M𝜃f (line 4 in algorithm 3). The feature map corresponds
to feature vectors and can be treated the same as the latent
variables in the previous section. Finally, the target byte and
key candidates are set, and the CH index is calculated for
each. The adversary assumes that the key candidate with the
highest CH index is the correct key.

4. Evaluation with software-implemented AES

4.1 Overview

This section describes the attack evaluation of CA-SCAs
against software-implemented AES. Section 4.2 describes
concatenated dataset which improve learning efficiency for
DNN models when attacking against software-implemented
AES with CA-SCA using AE, as explained in section 3.4,
and CA-SCA using CNN, as described in section 3.5. Sec-
tion 4.3 evaluates attacks against AES without SCA counter-
measures. Section 4.4 evaluates attacks against the ASCAD
database. Section 4.5 discusses these evaluations.
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Fig. 4: Overview of how to improve learning efficiency at
DNN by using a concatenated dataset.

4.2 Efficient training method of AE and CNN

As discussed in section 3.1, CA-SCA is advantageous in
terms of computational cost because the number of trained
models is significantly reduced compared to DDLA. In this
section, we discuss another advantage of CA-SCA in terms
of learning efficiency, i.e., the ability to train models with
fewer waveforms.

Each byte is processed sequentially when encryption
is processed on a microcontroller with a single core. In
other words, the attacked SubByte is processed byte by byte.
Therefore, SCA leakage corresponding to the 16 key bytes
appears in 16 separate locations in the leakage waveform.
The SubBytes processing details at these locations are gen-
erally the same. In the proposed method, the leakage wave-
forms of 16 bytes are concatenated, and AE and CNN are
trained with these waveforms dataset as shown in Fig. 4. We
called it a concatenated dataset. It is possible to obtain 16
waveforms from a single encryption as training data then the
training efficiency is improved, and the number of training
models can be reduced to one.

In CA-SCA with AE, the model is trained to minimize
reconstruction error. On the other hand, in CA-SCA with
CNN, the model is trained the plaintext of the byte of in-
terest is output. The trained AE or CNN is input with the
waveforms focused on the target byte, and feature vectors are
extracted. Cluster analysis is then applied to reveal crypto-
graphic keys.

4.3 Case study S-1: Software-implemented AES without
SCA countermeasures

This section provides the results of attack evaluations of
software-implemented AES without SCA countermeasures.



FUKUDA et al.: CA-SCA: NON-PROFILED DL-SCAS BY USING CLUSTER ANALYSIS
7

Table 1: Setup for CA-SCA in case study S-1

CA
-S

CA
w

ith
A

E

Network (Total params 106.07 KB)
Layer type Output Shape

Encoder

Input (None, 70, 1)
Conv1D (filters = 4, kernel size = 7, strides = 7) + SeLU (None, 10, 4)
Flatten (None, 40)
Full Connected(128) + SeLU (None, 128)
Full Connected(64) + SeLU (None, 64)

Decoder

Full Connected(128) + SeLU (None, 128)
Full Connected(40) + SeLU (None, 40)
Reshape (None, 10, 4)
Conv1D Transpose (filters = 4, kernel size = 7, strides = 7) (None, 70, 4)
Conv1D Transpose (filters = 1, kernel size = 5, strides = 1) (None, 70, 1)

Other setting
Number of epochs: 50
Loss function: MeanSquaredError
Optimizer: Adam(learning rate=0.001)
batch size: 256

CA
-S

CA
w

ith
C

N
N

Network (Total params 117.88 KB)
Layer type Output Shape

Feature
extractor

Input (None, 70, 1)
Conv1D (filters = 4, kernel size = 7, strides = 7) + SeLU (None, 10, 4)
Flatten (None, 40)
Full Connected(128) + SeLU (None, 128)
Full Connected(64) + SeLU (None, 64)

Classification Full Connected(256) + Softmax (None, 256)
Other setting

Number of epochs: 50
Loss function: CrossEntropy
Optimizer: Adam(learning rate=0.001)
batch size: 256

We evaluated six attack methods: CA-SCA with AE, CA-
SCA with CNN, DDLA, MOR[16], MOC[16], and CPA.
The setup for the experiments is described in detail below.

4.3.1 Details of waveforms

ChipWhisperer-Lite (CW1173), developed by new AE Tech-
nology, was used as the environment for waveform acqui-
sition. CW303-XMEGA target, also developed by New
AE Technology, was used as the target microcontroller
board. This board is equipped with an 8-bit microcontroller,
ATXmega128D4-AU. Power consumption during encryp-
tion operations was acquired using the A/D converter on
CW1173, which has a sampling rate of 29 MS/s.

4.3.2 Setup for analysis

The number of waveforms used in the analysis was set from
50 to 1,000 at 50 intervals, and multiple runs were performed.
Other DNN settings are shown in Table 1.

4.3.3 Experimental results

For the initial evaluation, attacks were conducted when the
selected function for the calculation of the CH index was var-
ied. The functions explained in section 3.3 were evaluated
as follows.

• HW labeling: The CH index is calculated using Eq.
(8).

• LSB labeling: The CH index is calculated using Eq.
(10).

• Multi-bit: The CH index is calculated using Eq. (11).

The results of CA-SCA with AE and CA-SCA with
CNN are shown in Fig. 5a and 5b, respectively. The hor-
izontal axis shows the number of waveforms used in the
analysis, and the vertical axis shows the number of revealed
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(a) Results of CA-SCA w/ AE
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(b) Results of CA-SCA w/ CNN

Fig. 5: Comparison results of the selected functions on the
CA-SCAs

key bytes. All key bytes were revealed in about 500 wave-
forms in CA-SCA with AE which selected clustering with
HW labeling or multi-bit. On the other hand, only 11 key
bytes were revealed by clustering with LSBs, even with 1,000
waveforms. All key bytes were revealed in about 400 wave-
forms in CA-SCA with CNN which selected clustering with
HW labeling or multi-bit. On the other hand, only eight
key bytes were revealed by clustering with LSBs, even with
1,000 waveforms. These results indicate that the selected
function for CA-SCA with AE and CNN is important. It is
also shown that HW labeling, multibit, which focuses on 8
bits, is more efficient than LSB labeling, which focuses on 1
bit. However, as mentioned above, once the model has been
trained, the selected function can be changed, and the attack
can be conducted in many kinds. The computational cost for
clustering is very small compared to that of DNN training.

For the next evaluation, we observed the value of the CH
index during the attack, with emphasis on analyzing the 0th
key byte. HW labeling was adopted as the selected function.
The transitions of the CH index when CA-SCA with AE and
CA-SCA with CNN are conducted are shown in Fig. 6a and
6b, respectively. The horizontal axis indicates the number of
waveforms used in the analysis, and the vertical axis indicates
the CH index. The red line shows the result of using the
correct key, while the gray line shows the result of using
the incorrect key. In both cases of CA-SCA with AE and
CA-SCA with CNN, the CH-index values of the correct key
and the other keys are separated after about 100 waveforms,
indicating that the attack is successful. Comparing AE and
CNN, the number of waveforms required to reveal all keys is
about 500 and 400, and the CH-index graphs shown in Fig.
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Fig. 6: Transition of CH index when attacking against
software-implemented AES without SCA countermeasures.
Target is 0th key byte.
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Fig. 7: Comparison with other non-profiled attacks when
attacking against software-implemented AES without SCA
countermeasures

6 are similar, indicating that there is no significant difference
in attack performance when AES without countermeasures
is the attack target.

As a final evaluation, we compared the results with
other non-profiled attacks (CPA, DDLA, and DDLA vari-
ants (MOR, MOC)[16]). In CA-SCA, HW labeling was
adopted as the selected function. The results of the evalua-
tion are shown in Fig. 7, where the horizontal axis shows the
number of waveforms used in the analysis, and the vertical
axis shows the number of revealed key bytes. Compared
to CA-SCA, which required around 400 waveforms to re-
veal all keys, and DDLA, which required 1000 waveforms
to reveal only 13 bytes, conventional CPA was able to re-
veal all keys in 30 waveforms. As a result, CPA was the
most powerful attack in software implementations without
SCA countermeasures, where there is a strong correlation
between the HW of intermediate value and the waveform.
In other words, these experimental results suggest that the
conventional CPA is better than deep learning when the cor-
relation between waveform leakage and assumed model is
clear. On the other hand, when comparing DDLA, including
its variants and CA-SCA, CA-SCAs were more powerful,
which could be due to the effect of the concatenated dataset
method used in CA-SCA.

4.4 Case study S-2: ASCAD database

In this section, we provide the results of attack evaluations
of the ASCAD database. We evaluated the following attack

methods: CA-SCA with AE, CA-SCA with CNN, DDLA,
MOR[16], MOC[16], and CPA. The setup for experiments
is described below.

4.4.1 Details of waveforms

The ASCAD database is a public dataset that provides the
electromagnetic (EM) emission waveforms during the op-
eration of AES with a table re-computation masking coun-
termeasure on AVR ATMega8515, which is an 8-bit mi-
crocontroller†. These waveforms were acquired using an
oscilloscope with a sampling rate of 2 GS/s. The wave-
forms corresponding to the first round of AES processing
are available in this dataset. In general, the evaluation is
often limited to the SubBytes processing of the 2nd byte of
the first round, but waveforms corresponding to SubBytes
processing for all bytes are used in this study. This dataset
has table re-computation masking countermeasure, but the
mask value is fixed to 0 for the 0th and 1st byte. Note that
masking is disabled for these two bytes.

4.4.2 Setup for analysis

The number of waveforms used in the analysis was set from
1,000 to 20,000 at 1,000 intervals, and multiple runs were
performed. The waveforms corresponding to SubBytes other
than the 2 bytes for which masking was disabled were used
to train for training the DNN. Other DNN settings are shown
in Table 2.

4.4.3 Experimental results

We observed the value of the CH index during the attack.
In this evaluation, we focus on the analysis of the 2nd key
byte. Multi-bit was adopted as the selected function. This is
because it achieved the best results among HW labeling, LSB
labeling, and Multi-bit. The transitions of the CH index when
CA-SCA with AE and CA-SCA with CNN are conducted are
shown in Fig. 8a and 8b, respectively. The horizontal axis
indicates the number of waveforms used in the analysis, while
the vertical axis indicates the CH index. The red line shows
the result of using the correct key, while the gray line shows
the result of using the incorrect key. In case of CA-SCA with
CNN, the CH-index values of the correct key and the other
keys are separated after about 12,000 waveforms, indicating
that the attack is successful. On the other hand, in case of
CA-SCA with AE, the CH index values calculated using the
correct and incorrect keys were not separated. This indicates
that supervised learning should be used to attack masking
countermeasures.

We compared the results with other non-profiled attacks
(CPA, DDLA, and DDLA variants (MOR, MOC)[16]). In
CA-SCA, multi-bit was adopted as the selected function.
The results of the evaluation are shown in Fig. 9, where the

†The ASCAD database is available at https://github.com/
ANSSI-FR/ASCAD
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Table 2: Setup for CA-SCA in case study S-2

CA
-S

CA
w

ith
A

E

Network (Total params 106.07 KB)
Layer type Output Shape

Encoder

Input (None, 700, 1)
Conv1D (filters = 4, kernel size = 7, strides = 7) + SeLU (None, 100, 4)
Conv1D (filters = 8, kernel size = 5, strides = 5) + SeLU (None, 20, 8)
Conv1D (filters = 16, kernel size = 5, strides = 5) + SeLU (None, 4, 16)
Flatten (None, 64)
Full Connected(256) + SeLU (None, 256)
Full Connected(128) + SeLU (None, 128)
Full Connected(64) + SeLU (None, 64)

Decoder

Full Connected(64) + SeLU (None, 64)
Full Connected(128) + SeLU (None, 128)
Full Connected(256) + SeLU (None, 256)
Full Connected(64) + SeLU (None, 64)
Reshape (None, 4, 16)
Conv1D Transpose (filters = 16, kernel size = 5, strides = 5) (None, 20, 16)
Conv1D Transpose (filters = 8, kernel size = 5, strides = 5) (None, 100, 8)
Conv1D Transpose (filters = 4, kernel size = 7, strides = 7) (None, 700, 4)
Conv1D Transpose (filters = 1, kernel size = 5, strides = 1) (None, 700, 1)

Other setting
Number of epochs: 200
Loss function: MeanSquaredError
Optimizer: Adam(learning rate=0.001)
batch size: 20000

CA
-S

CA
w

ith
C

N
N

Network (Total params: 294.09 KB)
Layer type Output Shape

Feature
extractor

Input (None, 700, 1)
Conv1D (filters = 4, kernel size = 7, strides = 7) + SeLU (None, 100, 4)
Conv1D (filters = 8, kernel size = 5, strides = 5) + SeLU (None, 20, 8)
Conv1D (filters = 16, kernel size = 5, strides = 5) + SeLU (None, 4, 16)
Flatten (None, 64)
Full Connected(256) + SeLU (None, 256)
Full Connected(128) + SeLU (None, 128)
Full Connected(64) + SeLU (None, 64)

Classification Full Connected(256) + Softmax (None, 256)
Other setting

Number of epochs: 200
Loss function: CrossEntropy
Optimizer: Adam(learning rate=0.001)
batch size: 20000
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Fig. 8: Transition of CH index when attacking against AS-
CAD database

horizontal axis shows the number of waveforms used in the
analysis, and the vertical axis shows the number of revealed
key bytes. For CA-SCA using CNN, all key bytes were
revealed in 12,000 waveforms. In contrast, DDLA, MOR,
MOC, CPA, and CA-SCA with AE, did not reveal all key
bytes even with 20,000 waveforms. The above results show
that CA-SCA using CNN has the highest attack efficiency
among the six methods.

4.5 Discussion

It is expected that the computation time to attack is greatly
smaller than DDLA since CA-SCA trains only one DNN
model. Thus, we measured and compared the computation
time. We used a workstation equipped with a CPU: Intel
Xeon Cold6226R (2.98GHz), DDR4 memory: 192GB, and
a GPU: RTX-A5000 24GB to measure the computation time.
The period of time measurement focused on parts of the DNN
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Fig. 9: Comparison with other non-profiled attacks when
attacking against ASCAD database. Two of the 16 key bytes
are not protected by SCA countermeasure using the masking
method.

training, calculations of a correlation coefficient, and the CH
index. Note that data loading and label calculation are not
included in the period.

Figures 10a and 10b show the computation time re-
quired for the six attacks in case study S-1 and S-2, respec-
tively. The hatched bars indicate the computation time when
1,000 waveforms were used in Fig. 10a. CPA assumes a
correlation between intermediate values and waveforms and
is very fast, taking only 2 seconds, because it only calculates
the correlation coefficient. On the other hand, DDLA, which
is SCA using deep learning techniques, is very slow, taking
50 minutes and 8 seconds. This is because 16 × 256 DNN
models are trained to estimate 16 key bytes. The compu-
tation times of MOC and MOR, which are DDLA variants
specifically designed to reduce computation time, are 15m
23s and 2m 26s, respectively. CA-SCAs using AE and CNN
had computation times of 41 and 37 seconds, respectively.
The computation time of CA-SCAs with AE and CNN was
approximately 1/75 of the computation of DDLA. Also, the
unhatched bars are the computation time when all key bytes
are revealed. In case study S-1, the proposed CA-SCAs with
CNN and AE were able to reveal all key bytes in much less
time than DDLA. In addition, CA-SCAs, which require only
one model to reveal all key bytes, require less computation
time than MOR and MOC, which require 16 models. In
case study S-2, in which attacks were evaluated using up to
20,000 waveforms shown in Fig. 10b, the proposed CA-SCA
with CNN was able to reveal all key bytes in much less time
than other attacks.

The CA-SCA with AE in case study S-2 did not reveal
the protected keys. This is because AE is an unsupervised
learning method that does not provide ground-truth labels
for training. There is a correlation between the product
of the two points, where the mask value and the masked
value are processed, in the waveforms and the HW of the
true intermediate value [23]. The model cannot learn this
relationship because unsupervised learning does not provide
a ground-truth label that depends on the true intermediate
value. Therefore, CA-SCA with AE did not work for the
ASCAD database.
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Fig. 10: Comparison of computation time in case study S-
1 and S-2. The long bars represent the attack time at the
maximum number of waveforms available. The number of
available waveforms is 1,000 and 20,000 in case study S-
1 and S-2, respectively. The short bars surrounded by a
black Box represent the time required for all key bytes to be
revealed. The number of waveforms required to reveal all
key bytes is shown in Table 5.

5. Evaluation with hardware-implemented AES

5.1 Overview

This section describes the attack evaluation of CA-
SCAs against hardware-implemented AES. Section 5.2 de-
scribes how to adopt CA-SCA with CNN into hardware-
implemented AES. Section 5.3 evaluates attacks against
ASIC-implemented AES without SCA countermeasures.
Section 5.4 evaluates attacks against ASIC-implemented
AES with RSM countermeasures. Section 5.5 discusses
these evaluations.

5.2 How to adopt CA-SCA with CNN into hardware-
implemented AES

Hardware-implemented AES often runs byte processing in
parallel, unlike software implementation. In this case, all
bytes are processed in a single clock cycle. Therefore, it is
difficult to simply apply the learning method used in section
3.5, because the ground-truth label (plaintext or ciphertext)
cannot be defined.

We introduce multi-task learning (MTL) [24] to solve
this problem. In MTL, a single learner handles tasks with dif-
ferent characteristics. This allows multiple tasks to share the
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Fig. 11: Overview of cluster-analysis-based side-channel at-
tacks

same model, making the model more compact. An overview
of CA-SCA using a CNN applied with MTL is shown in
Fig. 11. In this model, the layers for feature extraction are
common, and the layers for classification are branched into
16 sub networks. Each branched network for classification
infers the ciphertext of the corresponding byte. This model
structure allows 16 ciphertext labels to be given for a single
waveform. Hereafter, we refer to CNN applying MTL as
CNN-MTL. Note that this method also can reveal 16 byte
keys by training a single model.

To attack hardware-implemented AES, the HD model
is typically used, but the computation of HD requires the
use of different bytes of ciphertext, as shown in Eq. (12)
when the target byte is other than the 0th, 4th, 8th, and 12th
byte. CNN-MTL method is expected to successfully reveal
all keys by focusing on the feature vectors which is created
by considering all bytes of ciphertext.

5.3 Case study H-1: ASIC-implemented AES without
SCA countermeasures

5.3.1 Target device and experimental setup

This section provides the results of attack evaluations of
ASIC-implemented AES without SCA countermeasures.
We evaluated six attack methods: CA-SCA with AE, CA-
SCA with CNN-MTL, DDLA, MOR[16], MOC[16], and
CPA.

The experimental setup for SCA evaluation is described
below. The attack target is a prototype AES cryptographic
circuit fabricated in 180nm CMOS process. SCA evalua-
tion board is ZUIHO and its daughter board SASEBO-RII
on which the ASIC is mounted†. Power consumption wave-
forms were acquired using an oscilloscope DSOX3104T de-
veloped by Keysight.

5.3.2 Setup for analysis

The number of waveforms used in the analysis was set from

†https://www.risec.aist.go.jp/project/sasebo/
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Table 3: Setup for CA-SCA in case study H-1

CA
-S

CA
w

ith
A

E

Network (Total params 981.66 KB)
Layer type Output Shape

Encoder

Input (None, 40, 1)
Flatten (None, 40)
Full Connected(256) + SeLU (None, 256)
Full Connected(256) + SeLU (None, 256)
Full Connected(128) + SeLU (None, 128)
Full Connected(128) + SeLU (None, 128)

Decoder

Full Connected(128) + SeLU (None, 128)
Full Connected(256) + SeLU (None, 256)
Full Connected(256) + SeLU (None, 256)
Full Connected(40) + SeLU (None, 40)
Reshape (None, 40, 1)

Other setting
Number of epochs: 100
Loss function: MeanSquaredError
Optimizer: Adam(learning rate=0.001)
batch size: 1000

CA
-S

CA
w

ith
C

N
N

-M
TL

Network (Total params: 1.78 MB)
Layer type Output Shape

Feature
extractor

Input (None, 40, 1)
Conv1D (filters = 16, kernel size = 3, strides = 3) + (None, 13, 16)BatchNorm + SeLU
Conv1D (filters = 32, kernel size = 3, strides = 3) + (None, 4, 32)BatchNorm + SeLU
Flatten (None, 128)

Classification

Full Connected(256) + SeLU (None, 256)
Full Connected(64) + SeLU (None, 64)
Full Connected(64) + SeLU (None, 64)
Full Connected(256) + Softmax (None, 256)

Other setting
Number of epochs: 100
Loss function: CrossEntropy
Optimizer: Adam(learning rate=0.001)
batch size: 1000

1,000 to 10,000 at 1,000 intervals, and multiple runs were
performed. In the scenario in which the adversary knew
the ciphertext, we chose the waveform at the 10th round of
processing as the points of interest. Other DNN settings are
shown in Table 3.

5.3.3 Experimental results

We observed the value of the CH index during the attack.
In this evaluation, we focus on analyzing the 0th key byte.
Multi-bit was adopted as the selected function. The transi-
tions of the CH index when CA-SCA with AE and CA-SCA
with CNN-MTL are shown in Fig. 12a and 12b, respectively.
The horizontal axis indicates the number of waveforms used
in the analysis, and the vertical axis indicates the CH index.
The red line shows the result of using the correct key, while
the gray line shows the result of using the incorrect key. In
both cases of CA-SCA with AE and CA-SCA with CNN-
MTL, the CH-index values of the correct key and the other
keys are separated after about 2,000 waveforms, indicating
that the attack is successful.

We compared the result with other non-profiled attacks
(CPA, DDLA, and DDLA variants (MOR, MOC)[16]). In
CA-SCA, multi-bit was adopted as the selected function.
The results of the evaluation are shown in Fig. 13, where
the horizontal axis shows the number of waveforms used
in the analysis, and the vertical axis shows the number of
revealed key bytes. For CPA, all key bytes were revealed
in 5,000 waveforms, whereas CA-SCA with AE and CNN-
MTL required 8,000 waveforms. Similar to the experimental
results for unprotected software implementation described in
section 4.3, the attack performance of conventional CPA is
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Fig. 12: Transition of CH index when attacking against
ASIC-implemented AES without SCA countermeasures
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Fig. 13: Comparison with other non-profiled attacks when
attacking against ASIC-implemented AES without SCA
countermeasures

higher than that of methods using deep learning when there
is a large correlation between the waveforms and the leakage
model. In contrast, DDLA revealed only five key bytes even
with 10,000 waveforms. MOR and MOC also revealed only
two key bytes even with 10,000 waveforms.

5.4 Case study H-2: ASIC-implemented AES with RSM
countermeasures

5.4.1 Target device and experimental setup

This section provides the results of attack evaluations of
ASIC-implemented AES with RSM countermeasures. The
RSM countermeasure can be implemented with small area
penalty and provide some robustness against attacks using
DPA, CPA, and zero-offset 2nd order DPA [25]. The RSM
countermeasures uses 16 kinds of masked S-Boxes for Sub-
Bytes processing in AES. The masked S-Boxes are rotated
by rounds of AES, and is connected to a different data reg-
ister for each round. We evaluated six attack methods: CA-
SCA with AE, CA-SCA with CNN-MTL, DDLA, MOR[16],
MOC[16], and CPA. The experimental setup is the same as
in section 5.3.

5.4.2 Setup for analysis

The number of waveforms used in the analysis was set from
20,000 to 200,000 at 20,000 intervals, and multiple runs
were performed. In a scenario in which the adversary knew
the ciphertext, we chose the waveform at the 10th round of
processing as the points of interest. Other DNN settings are
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Table 4: Setup for CA-SCA in case study H-2

CA
-S

CA
w

ith
A

E

Network (Total params 981.66 KB)
Layer type Output Shape

Encoder

Input (None, 40, 1)
Flatten (None, 40)
Full Connected(256) + SeLU (None, 256)
Full Connected(256) + SeLU (None, 256)
Full Connected(128) + SeLU (None, 128)
Full Connected(128) + SeLU (None, 128)

Decoder

Full Connected(64) + SeLU (None, 64)
Full Connected(128) + SeLU (None, 128)
Full Connected(256) + SeLU (None, 256)
Full Connected(256) + SeLU (None, 256)
Full Connected(40) + SeLU (None, 40)
Reshape (None, 40, 1)

Other setting
Number of epochs: 100
Loss function: MeanSquaredError
Optimizer: Adam(learning rate=0.001)
batch size: 5000

CA
-S

CA
w

ith
C

N
N

-M
TL

Network (Total params: 1.78 MB)
Layer type Output Shape

Feature
extractor

Input (None, 40, 1)
Conv1D (filters = 16, kernel size = 3, strides = 3) + (None, 100, 4)BatchNorm + SeLU
Conv1D (filters = 32, kernel size = 3, strides = 3) + (None, 100, 4)BatchNorm + SeLU
Flatten (None, 64)

Classification

Full Connected(256) + SeLU (None, 256)
Full Connected(64) + SeLU (None, 64)
Full Connected(64) + SeLU (None, 64)
Full Connected(256) + Softmax (None, 256)

Other setting
Number of epochs: 100
Loss function: CrossEntropy
Optimizer: Adam(learning rate=0.001)
batch size: 5000

shown in Table 4.

5.4.3 Experimental results

We observed the value of the CH index during the attack.
In this evaluation, we focus on analyzing the 0th key byte.
Multi-bit was adopted as the selected function. The transi-
tions of the CH index when CA-SCA with AE and CA-SCA
with CNN-MTL are shown in Fig. 14a and 14b, respectively.
The horizontal axis indicates the number of waveforms used
in the analysis, and the vertical axis indicates the CH in-
dex. The red line shows the result of using the correct key,
while the gray line shows the result of using the incorrect
key. In both cases, the CH-index values of the correct key
and the other keys are separated after about 30,000 wave-
forms, indicating that the attack is successful. This value
is increased from 2,000 in the results of AES without SCA
countermeasures as shown in section 5.3.3, indicating that
more waveforms are required to reveal the key against RSM
countermeasure.

We compared the result with non-profiled attacks (CPA,
DDLA, and DDLA variants (MOR, MOC)[16]). For CA-
SCA, multi-bit was adopted as the selected function. The
evaluated results are shown in Fig. 15, where the horizontal
axis shows the number of waveforms used in the analysis,
and the vertical axis shows the number of revealed key bytes.
For CA-SCA using AE and CA-SCA using CNN-MTL, all
key bytes were revealed in 140,000 and 80,000 waveforms,
respectively. In contrast, DDLA, MOR, MOC, and CPA did
not reveal all key bytes even with 200,000 waveforms. The
above results show that CA-SCA using CNN-MTL has the
highest attack efficiency of the six methods.
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Fig. 14: Transition of CH index when attacking against
ASIC-implemented AES with RSM
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Fig. 15: Comparison with other non-profiled attacks when
attacking against ASIC-implemented AES with RSM coun-
termeasures

5.5 Discussion

The computation times for the six methods were measured
on the same workstation and measurement conditions as de-
scribed in section 4.5. Figures 16a and 16b show the
computation time required for the six attacks in case study
H-1 and H-2, respectively. The hatched bars in Fig. 16a
indicate the computation time when 10,000 waveforms were
used. CPA assumes a correlation between intermediate val-
ues and waveforms and is very fast, with a time of only 6
seconds, because it only calculates the correlation coeffi-
cient. On the other hand, DDLA, which is SCA using deep
learning techniques, is very slow, with a time of 1 hours 38
minutes and 56 seconds. The computation times of MOC
and MOR, which are DDLA variants specifically designed to
reduce computation time, are 24m 32s and 15m 48s, respec-
tively. CA-SCAs using AE and CNN-MTL had computation
times of 3 minutes 15 seconds and 4 minutes 16 seconds,
respectively. The computation times of CA-SCAs with AE
and CNN-MTL were approximately 1/30 and 1/22 of those
for DDLA, respectively. We also compared the time required
to reveal all keys. Also, the unhatched bars are the compu-
tation time when all key bytes are revealed. The proposed
methods were able to reveal all key bytes in much less time
than DDLA in both case studies. In addition, CA-SCAs,
which require only one model to reveal all key bytes, require
less computation time than MOR and MOC, which require
16 models.

While CA-SCA with AE could not reveal all keys in
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Fig. 16: Comparison of computation time in case study H-
1 and H-2. The long bars represent the attack time at the
maximum number of waveforms available. The number of
available waveforms is 10,000 and 200,000 in case study
H-1 and H-2, respectively. The short bars surrounded by a
black Box represent the time required for all key bytes to be
revealed. The number of waveforms required to reveal all
key bytes is shown in Table 6.

the case study S-2, the CA-SCA with AE in case study H-
2 successfully revealed all the keys. This is because the
mask value caused a first-order SCA leakage. Moradi et al.
mentioned that there is a vulnerability in the mask value of
RSM [26]. Additionally, Fukuda et al. showed that the CNN
learns the correlation between the HW of the upper 4-bit of
the register transition and the waveforms [27]. This implies
that first-order SCA leakage occurs at some bit positions.
However, note that CA-SCA with AE may not be able to
attack when mask values in RSM are applied such that first-
order SCA leakage does not occur [28].

6. Comparison with other non-profiled attack methods

CA-SCAs can target any implementation that is attackable
by DDLA. In this section, we summarized characteristics
of proposed method in comparison with other non-profiled
attacks such as DDLA and CPA. We discuss the following
three main points: (1) optimization of hyperparameters in
CA-SCA and DDLA, (2) the availability of the concatenated
dataset, and (3) attack conditions required for higher-order
CPA.

6.1 Optimization of hyperparameters in CA-SCA and
DDLA

DDLA aims to achieve a difference in accuracy between

the correct key models and the incorrect key model. For
this purpose, it is necessary to set hyperparameters such as
appropriate NN and regularization. On the other hand, CA-
SCAs aim to improve the accuracy of the model as much
as possible. For this purpose, the adversary only needs
to prepare a large NN. The size of each NN is larger in
CA-SCA than in DDLA from the above. Therefore, the
computation time of one model for CA-SCAs may be longer
than that for DDLA when concatenated datasets cannot be
utilized. However, the computation time of the proposed
method is shorter than that of DDLA and its variants because
the number of models can be reduced by 1/4096 for DDLA
and 1/16 for its variants at present.

6.2 Availability of the concatenated dataset

The concatenated datasets are an important option to increase
the efficiency of CA-SCAs. This technique provides a larger
dataset for CA-SCAs than the number of acquired traces. It
is not available for DDLA because the adversary needs to set
a label-set for each key candidate. This option allows CA-
SCA to collect training data more efficiently than DDLA.
Please note that CA-SCAs work even without this option, as
shown in section 5.

To use the concatenated dataset option, the leakage
waveforms of the target must satisfy the following require-
ments.

• The SW implementation is processed sequentially by
the cryptographic round function, or the small-area HW
implementation is processed with a few SubBytes cir-
cuits.

• The leakage waveforms cropped as PoI contain both
areas where the mask and masked values are processed.

• The leakage waveforms cropped as PoI are known in
which byte the SubByte is processed.

Firstly, the ASIC implementation used in case studies H-1
and H-2 does not apply to concatenated datasets. This is
because the 16 SubBytes processing is done in parallel. Sec-
ondly, for example, in the RSM implementation used in [12],
the mask value is not processed during SubBytes process-
ing, which is set as PoI, and the mask value is processed
before the SubBytes processing as pre-processing. There-
fore, the adversary needs to include pre-processing and Sub-
Bytes processing in the PoI, and the concatenated datasets
are not applicable now. Finally, it is also possible that the
concatenated datasets do not work in an attack against shuf-
fling countermeasures. These issues could be improved by
inputting the section where the mask and shuffle values are
processed independently into the DNN model, which will be
worked on in the future.

6.3 Attack conditions required for higher-order CPA

If the high-order attacks against masked implementation [23]
is possible, the computation time is shorter than that of the
proposed method. However, this attack requires a precise



14
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

selection of both PoIs where the mask and masked value
are processed. The proposed method allows the adversary to
reveal the cryptographic keys without knowing these points.

7. Conclusion

We examined new non-profiled side-channel attacks (SCAs)
using deep learning techniques. We proposed cluster-
analysis-based side-channel attacks (CA-SCAs) where cor-
rect key is revealed by the score of cluster analysis on fea-
ture vectors extracted from waveforms by using deep neural
networks (DNNs). We used auto-encoder (AE) and con-
volutional neural networks (CNNs) as DNNs. Our method
requires only one trained DNN model to reveal all key bytes,
whereas DDLA requires 256 × 16 trained DNN models.
Therefore, the computation time for model training is very
short. Another advantage of our method is that once the
DNN model is trained, it is not necessary to re-train the
DNN model when trying attacks with different labels. We
provided the experimental results of attacks against software
and hardware implemented AES to demonstrate the effec-
tiveness of the proposed method.

We evaluated attacks against the software-implemented
AES without SCA countermeasures and the ASCAD
database in case studies S-1 and S-2. We used a method that
effectively trains DNNs by utilizing byte-by-byte sequential
processing called concatenated dataset. In both case stud-
ies, we showed that all key bytes are revealed using fewer
waveforms than DDLA. We also showed that the compu-
tation time for our attack is reduced compared to DDLA.
Table 5 summarizes the number of waveforms required for
the attack.

We also evaluated attacks against the ASIC-
implemented AES without SCA countermeasures and the
ASIC-implemented AES with RSM countermeasures in case
studies H-1 and H-2. We introduced multi-task learning
(MTL) to enhance attacks against hardware-implemented
AES in CA-SCA with CNN. In both case studies, we showed
that all key bytes are revealed using fewer waveforms than
DDLA. We also showed that the computation time for our
attack is reduced compared to DDLA. Table 6 summarizes
the number of waveforms required for the attack.

We confirmed the effectiveness of the proposed method
through the above four case studies. In our future work, we
plan to study leakage assessment, e.g., test vector leakage
assessment [29], using CA-SCAs.
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