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A Dual-Branch Algorithm for Semantic-Focused Face
Super-Resolution Reconstruction

Qi QI†, Liuyi MENG††a), Nonmembers, Ming XU†††, Member, and Bing BAI††††, Nonmember

SUMMARY In face super-resolution reconstruction, the interference
caused by the texture and color of the hair region on the details and con-
tours of the face region can negatively affect the reconstruction results. This
paper proposes a semantic-based, dual-branch face super-resolution algo-
rithm to address the issue of varying reconstruction complexities and mu-
tual interference among different pixel semantics in face images. The al-
gorithm clusters pixel semantic data to create a hierarchical representation,
distinguishing between facial pixel regions and hair pixel regions. Subse-
quently, independent image enhancement is applied to these distinct pixel
regions to mitigate their interference, resulting in a vivid, super-resolution
face image.
key words: semantic information, dual branch, image layering, face super-
resolution

1. Introduction

Face super-resolution (FSR) is a specialized image super-
resolution (SR) technique that focuses on recovering high-
resolution (HR) face images from low-resolution (LR) face
images. The human face is a highly structured object with
distinctive characteristics that are valuable for the task of
FSR. These specific attributes and structure of the human
face, such as facial landmarks, skin texture, and facial sym-
metry, can be effectively explored and leveraged in FSR al-
gorithms. By incorporating this knowledge into the FSR
process, it is possible to enhance the quality and resolution
of face images more accurately.

In the early years of FSR researches, methods like
SPARNet [1] utilized the extracted face landmarks to guide
the FSR process. However, accurately extracting landmarks
from LR face images can be challenging. Recently, with the
rapid development of GAN techniques [2], generative priors
of pretrained face GAN models, such as PULSE [3], DIC-
GAN [4], GFPGAN [5] are exploited for real-world FSR.
These methods first map the LR input image to an interme-
diate latent code, which then controls the pretrained GAN
at each convolution layer to provide generative priors such
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as facial textures and colors. However, when the given face
images have tiny resolution (e.g., of size 16×16 pixels) and
arbitrary characteristics which need to be reconstructed at
high magnification factors (e.g., 8×), such a decoupling con-
trol method is insufficient to guide the precise SR process
and leads to unstable quality of restored faces.

Natural images have countless pixel semantics that
cannot be layered due to their variability. However, the face
image, which consists of the face and a variable background,
can be layered. This is because the FSR algorithm mainly
focuses on reconstructing the face, allowing the background
pixels to be categorized. The face structure and pixel se-
mantics in the image are fixed. Therefore, pixel layering can
be performed based on the semantic information, thus eas-
ing the reconstruction of different regions. Our analysis re-
vealed the presence of similar image blocks within the face
image. Subsequently, we clustered pixels based on semantic
similarities. For the purpose of this paper, we defined two
categories: the facial pixel region and the hair pixel region,
as depicted in Fig. 1.

Consequently, we propose a semantic-based two-
branch FSR algorithm. Firstly, the resolution of the LR face
image is enhanced using the residual super-resolution mod-
ule (SRResNet) [6]. Then, the semantics of the pixels in
the enhanced face image are identified by using the BiSeNet
[7], which results in a hierarchical image. Then, the hier-
archical image is fed into the proposed dual-branch struc-
ture network. This structure serves two purposes: 1) Fur-
ther enhancing the initial SR face image; 2) Reducing the
interference among different facial semantics regions which
have varying reconstruction difficulties. Finally, we design
a novel structure extraction module and a self-enhancing
module to further enhance the high frequency detail in-
formation and improve the overall reconstruction quality.
Extensive experiments are implemented on face datasets:
CelebA [8], Helen [9], and FFHQ [10], which fully demon-
strates that our proposed method can match and exceed the
state-of-the-art performance in both quantitative and quali-
tative measurements.

Fig. 1 The image of facial semantic clustering segmentation.
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Fig. 2 Illustration of the proposed SR network. ⊗ denotes element-wise multiplication.

2. Proposed Method

2.1 Network Architecture

The network structure of the semantic-focused dual-branch
FSR algorithm is composed of three main modules: SR
residual module (SRResNet) [6], image layering module
(BiSeNet) [7], and the dual-branch high-frequency informa-
tion enhancement module. The dual-branch module consists
of a hair-region enhancement module and a face-region en-
hancement module. The overall network structure can be
seen in Fig. 2.

Face semantic segmentation models, like BiSeNet,
tend to have low accuracy when applied to LR face images.
To address this, firstly, we improve the effective resolution
of the input LR face image with a SR residual module (SR-
ResNet), which can effectively improve the accuracy of sub-
sequent facial segmentation results, as illustrated in Eq. (1).

IPreSR = SRResNet (ILR) (1)

where IPreSR is the initial SR face image and ILR is the ob-
served LR face image. SRResNet can improve the effec-
tive face image resolution from 16×16 to 128×128. The
enhancement procedure involves the restoration of missing
information in the LR face image.

Then, the image layering stage begins by using
BiSeNet to extract the semantic information from pixels in
the IPreSR image, producing a facial region mask (Fmask) and
a hair region mask (Hmask) which are used to segment the en-
tire face image IPreSR and are non-overlapping, as illustrated
in Eq. (2).

IPreSR F = Fmask × IPreSR
IPreSR H = Hmask × IPreSR

(2)

2.2 Structure Extraction Module

Conventional FSR methods like SPARNet [1] are effective
in reconstructing the flat regions in HR face images. How-
ever, when the given face images have tiny resolution, the
high-frequency textures restored by these methods are ei-
ther blurred or distorted, which is mainly due to the insuffi-
cient attention and supervision for the structure information.
To address this issue, a structure extraction module is pro-
posed to restore the high-frequency structure information.
The proposed structure extraction module has the convolu-
tion layer structure, which is composed of 9 cosine angles

Fig. 3 Structure extraction convolution layer consisting of 9 cosine Ga-
bor kernels.

Gabor kernels [11], denoted as Kθ. As shown in Fig. 3, the
structure extraction module has 9 different directional filters,
which can effectively capture the intricate details and further
restore high-frequency structure information.

Given the hair-region input image, the structure extrac-
tion module can generate a set of orientation-specific re-
sponses, represented as Fθ, as detailed in Eq. (3).

Fθ = IPreSR H ∗ Kθ (3)

where ∗ represents the convolution operation and the param-
eters of the convolution kernel are fixed constants. The di-
rection angle θ is sampled uniformly between 0 and π (ra-
dian system), and the parameters of the Gabor kernel are cal-
culated as specified in Eq. (4). This choice of Gabor kernel
allows for effective extraction of high-frequency structure
and contributes to enhancing the quality of the reconstructed
image.

Kθ = exp
(
−

1
2

(
û2

σ2
u

+
v̂2

σ2
v

))
cos

(
2πû
λ

)
û = u cos θ + v sin θ

(4)

where σu, σv and λ are hyperparameters. To find the best
performance of our proposed method, we investigate the
correlation of these hyperparameters on CelebA dataset.
From σu, σv and λ = 1 to 5, the average PSNR of differ-
ent combinations help us determine the selection of hyper-
parameters, which are set to 1.8, 2.4 and 4 respectively.

To obtain the haired texture map T(i, j) and orientation
map P(i, j), the maximum value in the feature vector F(i, j)
and its corresponding θ are determined pixel by pixel. This
process is described in Eq. (5).

T(i, j) = maxθ F(i, j)
P(i, j) = arg maxθ F(i, j)

(5)

where the functions maxθ( ) and argmaxθ( ) correspond to
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Fig. 4 Self-enhancing module. ⊗ denotes matrix multiplication.

taking the maximum value and its corresponding angle θ in
the feature vector F(i, j), respectively. After that, T and P
are concatenated and sent to the self-enhancing module.

By accurately activating the essential high-frequency
structure information with our convolution kernel parameter
modulation method, our proposed structure extraction en-
hancement module can capture the intricate details explic-
itly and efficiently, and further improves the overall recon-
struction quality.

2.3 Self-Enhancing Module

The proposed self-enhancing module exploits the self-
similarity measurements and inter spatial correlation infor-
mation to enhance the features representation. As shown in
Fig. 4, inspired by [12], self-enhancing module exploits two
streams 1 × 1 convolutions (u( ) and v( )) to obtain the fea-
ture representation, and multiply them to get the response
matrix.

Softmax( ) denotes the normalization operation. En-
hanced feature is obtained by multiplying response weight
matrix and feature representation computed by 1 × 1 con-
volutions g( ). The response matrix establishes the long-
distance dependence between different locations, which can
effectively expand the receptive fields of our network. Thus
it overcomes the defects that conventional methods can only
obtain the limited information from the local neighbor re-
gion, and enhance the high-frequency components and learn
abstract feature representations in self-enhancing way.

2.4 Loss Function

BiSeNet is trained to produce the mask maps Mout that ap-
proximate the ground-truth mask maps Mgt, as described in
Eq. (6).

LBiSeNet =
1
N

N∑
i=1

CrossEntropy
(
Mout,Mgt

)
(6)

where CrossEntropy( ) stands for the CrossEntropy·loss·[7].
In the calculation of the reconstruction loss func-

tion, all loss terms comply with the constraints of the L1
paradigm, as described in Eq. (7).

Lpixel =
1
N

n∑
i=1

‖Fh m × SRi − Fh m × HRi‖1 (7)

where Fh m is the background removal mask.
In this paper, the content loss in the reconstruction

loss function is indeed calculated by utilizing the VGG16
network [13]. This process extracts the high-level seman-
tic features of the image. Following this, the L1 paradigm
constraints are applied to these high-level semantic feature
maps as per the methodology outlined in Eq. (8).

Lperce =
1
N

N∑
i=1

‖VGG(SRi) − VGG (HRi)‖1 (8)

To enhance the perceptual realism of the reconstructed
image, we incorporate adversarial loss into the loss function,
as described in Eqs. (9) and (10).

Lgen =
1
N

N∑
i=1

log (1 − D (G (LRi))) (9)

Ldis =
1
N

N∑
i=1

[
log D (HRi)+log (1 − D (G (LRi)))

]
(10)

where Lgen and Ldis are utilized to alternately update the pa-
rameters of the generator in Fig. 2 and the discriminator.

The overall reconstruction loss function L comprises
pixel loss, perceptual loss, and adversarial loss, as described
in Eq. (11).

L = Lpixel + 0.006Lperce + 0.001Lgen (11)

3. Experiments

3.1 Datasets

The training and testing phases of this study utilized three
facial datasets, namely CelebA [8], Helen [9], and FFHQ
[10]. CelebA dataset was divided into three subsets: a train-
ing set consisting of 162,770 sets of LR/HR face images,
a validation set with 19,867 sets and a test set with 19,962
sets. The FFHQ dataset was divided into a training set con-
taining 60,000 sets of LR/HR face images and a test set com-
prising 10,000 sets of LR/HR face images. Lastly, the Helen
dataset was split into a training set consisting of 2,000 sets
of LR/HR face images and a test set with 330 sets of LR/HR
face images.

3.2 Experimental Setup

The method presented in this study leverages the PyTorch
framework for implementation. The algorithms were trained
and validated using an NVIDIA TITAN Xp, and all the
SRResNet, BiSeNet, and our self-enhancing module were
trained simultaneously. The batch size for the training data
is set at 16. The resolution of the HR face images from
CelebA and Helen datasets is set at 128×128, with a down-
sampling factor of 8. The optimization process incorporates
the Stochastic Gradient Descent (SGD) algorithm, utilizing
the Adam parameter for learning rate (learning-rate=0.001),
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Table 1 Quantitative results on CelebA and Helen datasets.

Fig. 5 Comparison of SR effects between the proposed algorithm and
other SR algorithms on CelebA dataset.

and the weight decay coefficient (betas = (0.5,0.0.9)).

3.3 Comparative Experiments

In this subsection, we present both quantitative and quali-
tative evaluations of the algorithms proposed in our study,
specifically focusing on a magnification factor of 8.

The quantitative evaluations involve comparing the
Peak Signal-to-Noise Ratio (PSNR) and Structure Similar-
ity Index Measure (SSIM) of our proposed algorithms with
existing methods on the CelebA and Helen datasets. For the
qualitative evaluations, we show the SR face images recon-
structed by various algorithms on the CelebA and Helen test
sets.

The existing methods used for comparison in the quan-
titative experiments include PULSE [3], SPARNet [1], DIC-
GAN [4], and GFPGAN [5]. The results of these experi-
ments are presented in Table 1. According to the results pre-
sented in Table 1, our proposed FSR algorithm achieves the
highest PSNR values on the CelebA and Helen datasets. It
outperforms DICGAN by 0.04 dB and 0.02 dB, respectively.
Moreover, our algorithm also achieves the best SSIM results
on the CelebA dataset, surpassing DICGAN by 0.013 dB.

In the qualitative experiments, we evaluated the per-
formance of various algorithms, including SPARNet, DIC-
GAN, GFPGAN, and PULSE. It is worth noting that the
PULSE produces the obvious wrong identity-aware details,
as can be observed in Fig. 5.

In comparison, our method aims to faithfully retain the
identity information from the original image while also re-
covering some of the finer details. As a result, the recon-
struction of the facial area is superior, which helps mitigate

Fig. 6 Super-resolution effect of different models.

the presence of artifacts in the image. This indicates that
our algorithm is successful in preserving the identity infor-
mation of the face while enhancing the overall quality of the
image.

3.4 Ablation Experiments

The dual-branch enhancement structure was removed from
the network to assess the effectiveness of this particular
module. Similarly, the structure extraction module was
eliminated from the hair branch to evaluate its impact. Ab-
lation experiments were conducted using the FFHQ dataset,
where the LR face image resolution was set at 32×32 and
the HR face image resolution was set at 256×256.

Figure 6 illustrates the results of these ablation experi-
ments. The images shown are:
(a) The Interpolated Low-Resolution (ILR) face image ob-

tained after magnifying the LR image 8 times using
bicubic interpolation.

(b) The SR face image reconstructed by SRResNet only.
(c) The SR face image reconstructed by the network after

removing the structure extraction module from the hair
branch.

(d) The SR face image reconstructed by the network using
the method proposed in this study.

(e) The HR face image, which serves as the ground truth.
By comparing these images, we can assess the impact

of removing specific modules from the network and deter-
mine the effectiveness of the proposed method in recon-
structing the HR face image.

Compared to (b), both (c) and (d) exhibit superior re-
covery of the facial region, effectively demonstrating the en-
hancement of the facial portion of the image due to the dual-
branch structure. When compared to (c), the hair region in
(d) is rich in texture, featuring distinct hair edges and an
overall glossy, bright color. This effectively underlines the
significance of the structural extraction module in extracting
hair directionality and texture.

4. Conclusion

In this paper, we proposed a semantic-based two-branch



LETTER
1439

FSR algorithm. Firstly, the resolution of the LR face image
was enhanced using the residual super-resolution module.
Then, the semantics of the pixels in the enhanced face image
were identified by using the segmentation network module,
which resulted in a hierarchical image. Then, the hierar-
chical image was fed into the proposed dual-branch struc-
ture network. Finally, we design a novel structure extrac-
tion module and a self-enhancing module to further enhance
the high frequency detail information and improve the over-
all reconstruction quality. Extensive experiments are imple-
mented on face datasets, which fully demonstrates that our
proposed method can match and exceed the state-of-the-art
performance in both quantitative and qualitative measure-
ments.
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