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LETTER
An edge-preserving stripe noise removal method for infrared images

Zewei HE†, Zixuan CHEN†, Guizhong FU††, Yangming ZHENG†∗, Nonmembers, and Zhe-Ming LU†∗, Member

SUMMARY In this letter, we propose a single frame based method to
remove the stripe noise, meanwhile preserving the vertical details. The key
idea is to employ the side-window filter to perform edge-preserving smooth-
ing, and then accurately separate the stripe noise via a 1D column guided
filter. Experimental results demonstrate the effectiveness and efficiency of
our method.
key words: stripe noise, side-window filter, edge-preserving

1. Introduction

Thermal images captured via uncooled long-wave in-
frared cameras typically suffer from column/stripe non-
uniformity [1], which caused by the different characteristics
of column-parallel accumulators and analog-to-digital con-
verters (ADCs) in infrared focal plane array (FPA) [2]–[4].
This type of non-uniformity, or so-called column fixed pat-
tern noise (FPN), appears as column-oriented stripes (see in
Fig. 1). Obvious stripes will significantly degrade the qual-
ity and radiometric accuracy of captured infrared images,
leading to performance drop of subsequent infrared imaging
applications (e.g., objection detection, thermal diagnosis,
target tracking). stripe-free infrared images are highly de-
manded or required among these tasks. Therefore, stripe
non-uniformity correction (NUC), which aims to remove
the stripe noise, has attracted significant attention among
both the academic and industrial communities over the past
decades.

However, it is difficult to achieve perfect stripe NUC by
using the traditional calibration-based [5], [6] or scene-based
[7]–[10] methods. These methods are designed for compen-
sating slowly drifted spatial non-uniformity of infrared cam-
eras, which are not suitable for high-frequency stripe noise.
Recently, filtering methods, which transfer the stripe NUC
into an image processing problem, have achieved promising
results. Nevertheless, it is challenging to distinguish the tex-
ture from stripe noise in some cases. For example, a vertical
edge caused by specific object in the scene is similar to the
stripe noise, making it easy to be smoothed or blurred.

To address the above problem, we propose a single
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Fig. 1 Infrared images with obvious column stripe noise.

image based processing algorithm called edge-preserving
stripe noise removal (EPSNR) method to accurately filter
out the stripe noise without blurring vertical edges (see in
Fig. 2). The key idea of EPSNR is to employ side-window
filtering technique [11]–[13] into the first step for information
decomposition. Specifically, the filtering window’s side is
aligned with the pixel being processed (treat each pixel as a
potential edge). To fit our task and accelerate the speed, there
are only left or right side windows placed on one side of the
pixel, and the one whose output is closer to the current pixel
value is chosen. Then we leverage the 1D column guided
filter from [14] to accurately extract stripe noise.

The workflow of our proposed EPSNR method is illus-
trated in Fig. 2, and the main contributions of our work can
be summarized as follows:

• Through analyzing the procedure of conventional fil-
tering, we theoretically reveal that placing the center
of the filtering window on the pixel being processed
(i.e., traditional filtering practice) will inevitably blur
vertical edges.

• Side window strategy is firstly introduced for infrared
image stripe noise removal. By aligning the window’s
side with the pixel being processed, the vertical edges
can be well preserved.

2. Related Work

The traditional non-uniformity correction (NUC) methods
can be divided into two main categories: calibration-based
[5], [6] and scene-based [7]–[10]. The calibration-based
methods need shutter or blackbody as the uniform temper-
ature reference to correct the non-uniformity. This prac-
tice will periodically freeze the capturing for a few seconds,
therefore is not suitable for real-time infrared applications.
Many scene-based methods [7], [8], [10], [15] are proposed
to perform NUC, and they typically require processing multi-

Copyright © 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Step 1: 
Edge-preserving filtering

Side-window 
box filter

Step 2: 
Strip extraction

Filtering 
image

Guidance 
image

1D column
guided filter

Stripe noise 𝑠𝑖Input image with 
stripe noise 𝑝𝑖

Output image 
without blurring 
vertical edges 𝑜𝑖

Smoothed part 𝑞𝑖

High-frequency  part 
(texture + stripe) ℎ𝑓𝑖

Information 
decomposition

Fig. 2 Overall diagram of our proposed EPSNR method.

ple frames. A noticeable limitation is the running speed, and
if the image sequences lack enough scene motions, “ghost-
ing” artifacts will appear in the current frame.

In this letter, we focus on stripe non-uniformity, which
can be seen as the column FPN. Both calibration-based
and scene-based methods cannot achieve satisfactory results.
In [2], [16], the stripe NUC is translated into a gradient-
constrained optimization problem. They try to compute the
optimal image where the energy of horizontal gradients is as
small as possible. Cao and Li [17] set up a thermal calibra-
tion experiment to derive the behavioral model of the stripe
noise, and then embedded the least-squares optimization to
find the optimal model parameters. Once parameters are
obtained, stripe noise can be removed from the input. Ten-
dero et al. [3], [4] proposed the famous Midway Histogram
Equalization (MHE) method, which adjusts pixels’ intensi-
ties within a column. The basic hypothesis behind MHE
is the statistical similarity between two adjacent columns.
MHE can effectively remove stripe noise without blurring
fine details. However, it tends to generate false artifacts.

Filtering methods belong to another research line.
Münch et al. [18] designed a destriping method based on
wavelet decomposition and Fourier transform (WD-FT). The
column-oriented stripe noise is decomposed into the verti-
cal component, and filtered out in the Fourier domain. Cao
et al. [14] built a local linear model to reveal the relation-
ship between stripe noise and the thermal radiation. Then,
a 1D row guided filter is applied to perform information de-
composition (both stripe noise and textures are divided into
the high-frequency part) while a 1D column guided filter
is applied to extract stripe noise. Cao et al. [1] improved
the algorithm by firstly introducing wavelet decomposition
and then conducting 1D column guided filtering on different
scale levels (WD-GF).

More recently, deep learning based methods have been
applied in stripe NUC [19]–[21], and achieve state-of-the-art
performance. The biggest problem of these methods is the
lack of interpretability. We do not discuss them in this work.

3. Methodology

Strip noise, which can be regarded as the column FPN, is
a typical undesired non-uniformity in long-wave infrared
cameras. Many single frame based methods are proposed
to remove the column FPN [14], [17], [18]. Among them,
one main category is the filtering method, which employs
the image processing algorithm as a tool to filter out the

noise. In this letter, we develop a filtering method, called
edge-preserving stripe noise removal (EPSNR) method, to
tackle the column FPN.

3.1 Edge-preserving Decomposition

By far 1D guided filtering (1D-GF) method proposed by
Cao et al. [14] is the most relevant to our research work.
As for 1D-GF method, the input infrared image is typically
decomposed into a smoothed part and a high-frequency part
via a row guided filter. As shown in Fig. 2, we also adopt
this profile to conduct information decomposition in the first
step. The key difference between 1D-GF and our EPSNR
are filters used for decomposition. We argue that the row
guided filter used in 1D-GF may cause edge blurring, since
it involves averaging operations on pixels on both sides of
the edge.

Fig. 3 A 1D signal with a step edge. Pixels 𝑥1:3 and 𝑥4:6 are on the two
sides of the edge. 𝑙 and ℎ denote the grayscale values of two sides.

We take step edge as an example to analyze the essen-
tial reason why 1D row guided filter cannot maintain vertical
edge. In Fig. 3, 𝑥1:3 and 𝑥4:6 are pixels on the two sides of
the step edge, and 𝑙 and ℎ are their values. According to
[13], [22], the output of 1D row guided filter at 𝑥𝑖 (i.e., 𝑞𝑖)
can be calculated by averaging the possible values (all the
windows that cover 𝑥𝑖 will contribute to 𝑞𝑖). For simplifica-
tion, we only consider the situation where the input image
𝑝 is regarded as the guidance image 𝐼, and the size of local
window 𝑤𝑘 is 1 × 3. The output values at 𝑥3 and 𝑥4 can be
derived as:

𝑞3 = 𝑙 + 𝜖 (ℎ − 𝑙)
3(𝜎2 + 𝜖)

, (1)

𝑞4 = ℎ − 𝜖 (ℎ − 𝑙)
3(𝜎2 + 𝜖)

, (2)

where 𝜎2 =
2(ℎ−𝑙)2

9 is the variance of 𝑝 in 𝑤𝑘 , and 𝜖 is
a regularization parameter which is non-negative. It is not
difficult to note that the output at 𝑥3 is greater than 𝑙 and the
output at 𝑥4 is smaller than ℎ. Therefore, the step edge will
be blurred after the 1D row guided filter.

One possible solution is to utilize pixels of the same side
of the edge. Here, we align the right end of the local window
with 𝑥3 to calculate the output at 𝑥3, instead of aligning the
center of window with 𝑥3. Similarly, we align the left end of
the local window with 𝑥4. To the best of our knowledge, this
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is the first work that the side window strategy is applied for
infrared image stripe noise removal.

To accelerate the processing speed, we adopt only two
side windows (i.e., left and right). Given a 1D local window
whose size is 1 × (2𝑟 + 1), left side window contains pixels
from start to 𝑟+1 and right side window contains pixels from
𝑟 + 2 to end. The one whose output is closer to the current
input value is selected as the final output. Based on this novel
method of placing sides of local windows on the target pixels,
the output values at 𝑥3 and 𝑥4 are equals to their input values
(the simplest box filter is employed in our implementation).
Note that the step edge is perfectly preserved. The details of
the 1D side-window filter is summarized in Algorithm 1.

Algorithm 1: 1D Side-window Filter.
Data: input image 𝑝, pixel position 𝑖, left 1D side window 𝐿,

right 1D side window 𝑅

Result: output image 𝑞

1 𝑞𝐿
𝑖
← mean(𝑝𝑖 ) , 𝑖 ∈ 𝐿;

2 𝑞𝑅
𝑖
← mean(𝑝𝑖 ) , 𝑖 ∈ 𝑅;

/* using 1D box filter */

3 𝑠 ← argmin𝑛∈{𝐿,𝑅} { |𝑞𝑛
𝑖
− 𝑝𝑖 | };

/* selecting the side window whose output is
closer to 𝑝𝑖 */

4 𝑞𝑖 ← 𝑞𝑠
𝑖

;

After the edge-preserving decomposition by 1D side-
window filter, the input image 𝑝 is decomposed into a
smoothed part (i.e., 𝑞) and a high-frequency part ℎ 𝑓 .

3.2 1D Column Guided Filter

Following [1], [14], we employ the ℎ 𝑓 and 𝑞 as the filtering
and guidance images to extract the stripe noise 𝑠 from ℎ 𝑓 .

𝑠 = F𝐶𝐺𝐹 (filtering = ℎ 𝑓 , guidance = 𝑞), (3)

where F𝐶𝐺𝐹 (·) denotes the 1D column guided filtering op-
eration with local window size ℎ𝑒𝑖 × 1.

The reason we use 𝑞 as the guidance image is that
our thermal calibration experiment observes a local linear
relationship exists between 𝑠 and ℎ 𝑓 , and such relationship
satisfies the key assumption of guided filtering [1], [14]. The
extracted 𝑠 is further subtracted from the input 𝑝 to obtain
the final result 𝑜.

4. Experimental Results

4.1 Implementation Details

The hyper-parameter 𝑟, which defines the window size of
our 1D side-window filter, is set to 4. For the step of
1D column guided filter, we set 𝜖 = 0.22 and ℎ𝑒𝑖 = 𝐻
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(𝐻 means the height of input image) to keep consis-
tent with [14]. We make use of a 20-image infrared
dataset from [4] for testing the performance (download link:
http://demo.ipol.im/demo/glmt mire/). All the experiments

are conducted in Matlab R2022b on a laptop equipped with
Inter Core i7-12700H CPU (2.3 GHz) and 64 GB memory.

4.2 Discussion

We discuss the effectiveness of our 1D side-window filter
against 1D row guided filter. Both of them are utilized in
step 1 for information decomposition. The intermediate and
final results are shown in Fig. 4, and the input infrared image
is consistent with that from Fig. 2.
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(b
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Fig. 4 The edge-preserving results of 1D-GF [14] and our proposed EP-
SNR. We plot the pixel intensity values of a randomly selected row (high-
lighted by the horizontal blue line).

We need to point out that the 1D row guided filter used
in 1D-GF will blur the vertical edge in the first step, and the
smoothed part contains obvious edge blurring effect. The
blurred edge will further affect the stripe noise extraction
operation conducted by the column guided filter in step 2.
We also plot the pixel intensity values of a selected row
crossing the vertical edge to show the priority of 1D side-
window filter. The last column of Fig. 4 clearly demonstrates
the edge-preserving effect of our proposed EPSNR.

4.3 Comparison

We thoroughly compare the proposed EPSNR method with
MHE [4], WD-FT [18], 1D-GF [14], and WD-GF [1] in
Fig. 5. There are some undesired artifacts in the process-
ing results of WD-FT and MHE (highlighted with the red
ellipses). In addition, textures around the vertical edge
are blurred in the processing results of WD-GF and 1D-
GF (highlighted with red arrows). In comparison, our EP-
SNR achieves the best performance, effectively removing the
stripe noise and preserving the vertical edges without arti-
facts. Note that, the removal effect of stripe noise is not the
only criterion, and the preservation of original information
(e.g., vertical edge) is also crucial. It is necessary to balance
the relationship between the two items.

To quantitatively evaluate the performance, we use a
reference-free index 𝐷

𝑆𝐹
𝑆𝑇

proposed in [23]. This indicator
can take into account both the removal of stripe noise and the
preservation of vertical edges simultaneously. Higher 𝐷𝑆𝐹

𝑆𝑇
value indicates the proposed method has a better ability to
suppress stripe noise while preserving original information.
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Fig. 5 Comparative results of WD-FT, WD-GF, MHE, 1D-GF, and our
proposed EPSNR. We select an infrared image with obvious vertical edge
from the 20-image dataset [4] as the input. Please zoom in on screen to see
more details.

The experimental results are illustrated in Table 1.
Another advantage is the running speed. As shown in

Table 1, our EPSNR is the most efficient among the state-of-
the-art destriping methods, indicating its practicability.

Table 1 Quantitative results of WD-FT, WD-GF, MHE, 1D-GF, and our
proposed EPSNR. 𝐷𝑆𝐹

𝑆𝑇
is tested on infrared images from [4]. The running

time is tested on infrared images with 384 × 288 resolution.
Methods MHE WD-FT WD-GF 1D-GF EPSNR

𝐷
𝑆𝐹
𝑆𝑇

0.44 0.40 0.42 0.35 0.49
Running time (s) 0.62 0.38 0.26 0.11 0.06

5. Conclusion

In this letter, we propose EPSNR to remove the stripe noise,
meanwhile preserving the vertical details. For the first time,
side-window filter is employed to perform edge-preserving
decomposition, and then the stripe noise is accurately sepa-
rated from the high-frequency part via a 1D column guided
filter. Our EPSNR outperforms state-of-the-art destriping
methods.
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